V0.5.0
This commit is contained in:
35
docs/Formularies/CONTROL-FORMULARY.md
Normal file
35
docs/Formularies/CONTROL-FORMULARY.md
Normal file
@@ -0,0 +1,35 @@
|
||||
# Control Formulary
|
||||
## Settling time
|
||||
$
|
||||
T_s = \frac{\ln(a_{\%})}{\zeta \omega_{n}}
|
||||
$
|
||||
|
||||
- $\zeta$ := Damping ratio
|
||||
- $\omega_{n}$ := Natural frequency
|
||||
|
||||
## Overshoot
|
||||
$
|
||||
\mu_{p}^{\%} = 100 e^{
|
||||
\left(
|
||||
\frac{- \zeta \pi}{\sqrt{1 - \zeta^{2}}}
|
||||
\right)
|
||||
}
|
||||
$
|
||||
|
||||
## Reachable Space
|
||||
$X_r = Span(K_c)$
|
||||
|
||||
$X = X_r \bigoplus X_{r}^{\perp} = X_r \bigoplus X_{nr}$
|
||||
|
||||
> [!TIP]
|
||||
> Since $X_{nr} = X_r^{\perp}$ we can find a set of perpendicular
|
||||
> vectors by finding $Ker(X_r^{T})$
|
||||
|
||||
## Non Observable Space
|
||||
$X_no = Kern(K_o)$
|
||||
|
||||
$X = X_no \bigoplus X_{no}^{\perp} = X_no \bigoplus X_{o}$
|
||||
|
||||
> [!TIP]
|
||||
> Since $X_{o} = X_no^{\perp}$ we can find a set of perpendicular
|
||||
> vectors by finding $Ker(X_{no}^{T})$
|
||||
49
docs/Formularies/GEOMETRY-FORMULARY.md
Normal file
49
docs/Formularies/GEOMETRY-FORMULARY.md
Normal file
@@ -0,0 +1,49 @@
|
||||
# Geometry Formulary
|
||||
|
||||
## Inverse of a Matrix
|
||||
$A^{-1} = \frac{1}{det(A)} Adj(A)$
|
||||
|
||||
## Adjugate Matrix
|
||||
The adjugate of a matrix $A$ is the `transpose` of the `cofactor matrix`:\
|
||||
$Adj(A) = C^{T}$
|
||||
|
||||
### $(i-j)$-minor (AKA $M_{ij}$)
|
||||
$M_{ij}$ := Determinant of the matrix $B$ got by removing the
|
||||
***$i$-row*** and the ***$j$-column*** from matrix $A$
|
||||
|
||||
### Cofactors
|
||||
$C$ is the matrix of `cofactors` of a matrix $A$ where all the elements $c_{ij}$
|
||||
are defined like this:\
|
||||
$
|
||||
c_{ij} = \left( -1\right)^{i + j}M_{ij}
|
||||
$
|
||||
|
||||
## Eigenvalues
|
||||
By starting from the definition of `eigenvectors`:\
|
||||
$A\vec{v} = \lambda\vec{v}$
|
||||
|
||||
As we can see, the vector $\vec{v}$ was unaffected by this matrix
|
||||
multiplication appart from a scaling factor $\lambda$, called `eigenvalue`
|
||||
|
||||
By rewriting this formula we get:\
|
||||
$
|
||||
\left(A - \lambda I\right)\vec{v} = 0
|
||||
$
|
||||
|
||||
This is solved for:\
|
||||
$\det(A- \lambda I) = 0$
|
||||
|
||||
> [!NOTE]
|
||||
> If the determinant is 0, then $(A - \lambda I )$ is not invertible, so
|
||||
> we can't solve the previous equation by using the trivial solution (which
|
||||
> can't be taken into account since $\vec{v}$ is not $0$ by definition)
|
||||
|
||||
## Caley-Hamilton
|
||||
Each square matrix over a `commutative ring` satisfies its own
|
||||
characteristic equation $det(\lambda I - A)$
|
||||
|
||||
> [!TIP]
|
||||
> In other words, once found the characteristic equation, we can
|
||||
> substitute the ***unknown*** variable $\lambda$ with the matrix itself
|
||||
> (***known***),
|
||||
> powered to the correspondent power
|
||||
37
docs/Formularies/PHYSICS-FORMULARY.md
Normal file
37
docs/Formularies/PHYSICS-FORMULARY.md
Normal file
@@ -0,0 +1,37 @@
|
||||
# Physics Formulary
|
||||
|
||||
> [!TIP]
|
||||
>
|
||||
> You'll often see $\vec{v}$ and $\vec{\dot x}$, and $\vec{a}$ and
|
||||
> $\vec{\ddot{x}}$.
|
||||
>
|
||||
> These are equal, but the latter forms, express better the relation
|
||||
> between state space variables
|
||||
|
||||
## Hooke's Law (AKA Spring Formula)
|
||||
$\vec{F} = -k\vec{x}$
|
||||
- $k$: Spring Constant
|
||||
- $\vec{x}$: vector of spring stretch from rest position
|
||||
|
||||
## Fluid drag
|
||||
$\vec{F_D} = \frac{1}{2}b\vec{v}^2C_{D}A$
|
||||
- $b$: density of fluid
|
||||
- $v$: speed of object ***relative*** to the fluid
|
||||
- $C_D$: drag coefficient
|
||||
- $A$: cross section area
|
||||
|
||||
### Stokes Drag
|
||||
$\vec{F_D} = -6 \pi R\mu \vec{v}$
|
||||
- $\mu$: dynamic viscosity
|
||||
- $R$: radius (in meters) of the sphere
|
||||
- $\vec{v}$: flow velocity ***relative*** to the fluid
|
||||
|
||||
### Simplified Fluid Drag (Simplified Stokes Equation)
|
||||
$\vec{F_D} = -b \vec{v}$
|
||||
- $b$: simplified coefficient that has everything else
|
||||
- $\vec{v}$: flow velocity ***relative*** to the fluid
|
||||
##
|
||||
|
||||
## Newton force
|
||||
|
||||
|
||||
Reference in New Issue
Block a user