diff --git a/docs/Chapters/11-CRYPTOGRAPHY-WITH-STATE-OBSERVER.md b/docs/Chapters/11-CRYPTOGRAPHY-WITH-STATE-OBSERVER.md index e69de29..0a24a16 100644 --- a/docs/Chapters/11-CRYPTOGRAPHY-WITH-STATE-OBSERVER.md +++ b/docs/Chapters/11-CRYPTOGRAPHY-WITH-STATE-OBSERVER.md @@ -0,0 +1,56 @@ +# Chryptography with Chaotic Systems + +## Deterministic Chaotic Systems +These are `non-linear` differential equations that are +***very*** sensitive to initial conditions. One of the most +famous is the `Lorentz-Attractor`. + +Since we cannot get back to these initial conditions, these are +***unpredictable systems***. + +>[!NOTE] +> $s(x)$ is a sync message added to the other `system` to get it +> produce the same `output` as the `first one`. +> +> Here it is represented its effect in `red`. +> +> In `yellow` you see a simple gain factor coming from the same +> $s(x)$ + +Let's say we have 2 of these `systems`: +$$ +\begin{align*} + x(t); z(t) &\triangleq \text{chaotic systems}\\ + e(t) = x(t) - z(t) \rightarrow 0 + &\triangleq \text{synchronization} \\ + s(x) = f(x) + Kx &\triangleq \text{synchronization signal} + + +\end{align*}\\ + +\begin{cases} + \dot{x}(t) = Ax(t) + Bf(x) + c\\ + \dot{z}(t) = Az(t) + Bf(z) + c + \textcolor{red}{+ Bf(x) - Bf(z)}\\ + \dot{e}(t) = \dot{x}(t) - \dot{z}(t) +\end{cases}\\ + +\begin{align*} + \dot{e}(t) &= \dot{x}(t) - \dot{z}(t) = \\ + &= Ax(t) + Bf(x) + c - Az(t) - Bf(z) - c = \\ + &= A(x(t) - z(t))+ B(f(x) - f(z)) = \\ + &= Ae(t)+ B(f(x) - f(z)) = \\ + &= Ae(t)+ B(f(x) - f(z)\textcolor{red}{-f(x) + f(z)}) = \\ + &= Ae(t) \longrightarrow e(t) \rightarrow 0 + \text{ if } eig(A)\in \R^- \\ + + &= Ae(t) \textcolor{yellow}{-BKx + BKz} = (A - BK)e +\end{align*} +$$ + +At the end of all, you can basically add a message into +$\hat{s}(x) = s(x) + m(t)$ and after getting the new value $z(t)$ +I can extract from here the message: +$$ +\hat{s}(x) - f(z) -Kz = f(x) + Kx + m(t) - f(x) - Kx = m(t) +$$ \ No newline at end of file diff --git a/docs/Chapters/8-SMITH-PREDICTOR.md b/docs/Chapters/8-SMITH-PREDICTOR.md index e69de29..202d02f 100644 --- a/docs/Chapters/8-SMITH-PREDICTOR.md +++ b/docs/Chapters/8-SMITH-PREDICTOR.md @@ -0,0 +1,38 @@ +# Smith Predictor +Once you have your system with `pure delays`, desing $G_c$ +as if $G_p$ ha no `delay` at all. The resulting system +should be something similar to: $\frac{G_cG_p}{1 + G_cG_p}$. + +Now consider the real delay of the system and desing $\hat{G}_c$ +so that the new $\hat{G}(s) = G(s)e^{-sT}$: +$$ +\begin{align*} + \frac{\hat{G}_cG_pe^{-sT}}{1 + \hat{G}_cG_pe^{-sT}} + &= \frac{G_cG_p}{1 + G_cG_p}e^{-sT} \rightarrow \\ + + + \rightarrow + \frac{\hat{G}_c}{1 + \hat{G}_cG_pe^{-sT}} + &= \frac{G_c}{1 + G_cG_p} \rightarrow \\ + + + \rightarrow + \hat{G}_c + \hat{G}_c G_cG_p + &= G_c + G_c\hat{G}_cG_pe^{-sT} \rightarrow \\ + + + \rightarrow + \hat{G}_c \left[ + 1 + G_cG_p(1 - e^{-sT}) + \right] + &= G_c \rightarrow \\ + + + \rightarrow + \hat{G}_c + + + &= \frac{ G_c}{ 1 + G_cG_p(1 - e^{-sT})} +\end{align*} + +$$ \ No newline at end of file diff --git a/docs/Chapters/EXTRAS.md b/docs/Chapters/EXTRAS.md index 8d20a10..f4e550e 100644 --- a/docs/Chapters/EXTRAS.md +++ b/docs/Chapters/EXTRAS.md @@ -47,4 +47,6 @@ If $| rank_k(p) - rank_{k-1}(p)| < \epsilon$ we will stop iterating. At time $k = 0$ all pages have the same importance that is -$rank_0(p) = \frac{1}{n}$ \ No newline at end of file +$rank_0(p) = \frac{1}{n}$ + +## Economic System