# Kallman Decomposition ## Some background - $X_r = R(K_c)$ : Reachable space is the range of the `controllable matrix` - $X_{no} = Ker(K_o)$ : Not observable Space is the kernel of the `observability matrix` - $X = X_r \bigoplus X_{nr}$ : Each possible state is sum of bases of `reachable` and `not-reachable states` ## Full Decomposition > [!TIP] > Follow [Example 12](./Examples/EXAMPLE-12.md/#kallman-full-decomposition) To understand this part - $X_1 = X_r \cap X_{nr}$ : `Reachable` but `Not-Observable` space - $X_2 =$ Complement of $X_1$ to cover $X_r$ : Both `Reachable` and `Observable` - $X_3 =$ Complement of $X_1$ to cover $X_{no}$ : Both `Not-Reachable` and `Not-Observable` - $X_4 =$ Complement of all the others to cover $X$ : Bot `Not-Reachable` and `Observable` From here we have these blocks: $$ \begin{align*} \hat{A} &= \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} & \hat{A}_{13} & \hat{A}_{14} \\ 0 & \hat{A}_{22} & 0 & \hat{A}_{24} \\ 0 & 0 & \hat{A}_{33} & \hat{A}_{34} \\ 0 & 0 & 0 & \hat{A}_{44} \end{bmatrix}\\ \hat{B} &= \begin{bmatrix} \hat{B}_{1} \\ \hat{B}_{2} \\ 0 \\ 0 \end{bmatrix}\\ \hat{C} &= \begin{bmatrix} 0 & \hat{C}_{2} & 0 & \hat{C}_{4} \end{bmatrix} \end{align*} $$ Now, the eigenvalues of $\hat{A} = \cup_i^4 \hat{A}_{ii}$ and: - $eig(\hat{A}_{11})$: `Reachable` and `Not-Observable` - $eig(\hat{A}_{22})$: `Reachable` and `Not-Observable` - $eig(\hat{A}_{33})$: `Not-Reachable` and `Not-Observable` - $eig(\hat{A}_{44})$: `Not-Reachable` and `Observable`