# Relation to Classical Control ## A Brief Recap of Discrete Control Let's say we want to control something ***Physical***, hence intrinsically ***time continuous***, we can model our control in the `z` domain and make our $G_c(z)$. But how do we connect these systems: ![scheme of how digital control interconnects with classical control](../Images/Relation-to-classical-control/digital-control.png) #### Contraints - $T_s$: Sampling time - $f_s \geq 2f_m$: Sampling Frequency must be at least 2 times the max frequency of the system #### Parts of the system 1. Take `reference` and `output` and compute the `error` 2. Pass this signal into an `antialiasing filter` to avoid ***aliases*** 3. Trasform the `Laplace Transform` in a `Z-Transform` by using the following relation:\ $z = e^{sT}$ 4. Control everything through a `control block` engineered through `digital control` 5. Transform the `digital signal` to an `analogic signal` through the use of a `holder` (in this case a `zero order holder`) 6. Pass the signal to our `analogic plant` (which is our physical system) 7. Take the `output` and pass it in `retroaction` ### Zero Order Holder It has the following formula: $$ ZoH = \frac{1}{s} \left( 1 - e^{sT}\right) $$ #### Commands: - `c2d(sysc, Ts [, method | opts] )`[^matlab-c2d]: Converts `LTI` systems into `Discrete` ones ## Relation between $S(A, B, C, D)$ to $G(s)$ ### From $S(A, B, C, D)$ to $G(s)$ Be this our $S(A, B, C, D)$ system: $$ \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \;\;\;\; \text{Dynamic of the system}\\ y(t) = C{x}(t) + Du(t) \;\;\;\; \text{Static of the outputs} \end{cases} $$ now let's make from this a `Laplace Transform`: $$ \begin{align*} & \begin{cases} sX(s) - x(0)= AX(s) + BU(s) \\ Y(s) = CX(s) + DU(s) \end{cases} \longrightarrow && \text{Normal Laplace Transformation}\\ & \longrightarrow \begin{cases} sX(s) = AX(s) + BU(s) \\ Y(s) = CX(s) + DU(s) \end{cases} \longrightarrow && \text{Usually $x(0)$ is 0}\\ & \longrightarrow \begin{cases} X(s) \left(sI -A \right) =BU(s) \\ Y(s) = CX(s) + DU(s) \end{cases} \longrightarrow && \text{$sI$ is technically equal to $s$}\\ & \longrightarrow \begin{cases} X(s) = \left(sI - A\right)^{-1}BU(s) \\ Y(s) = CX(s) + DU(s) \end{cases} \longrightarrow && \\ & \longrightarrow \begin{cases} X(s) = \left(sI - A\right)^{-1}BU(s) \\ Y(s) = C\left(sI - A\right)^{-1}BU(s) + DU(s) \end{cases} \longrightarrow && \text{Substitute for $X(s)$}\\ & \longrightarrow \begin{cases} X(s) = \left(sI - A\right)^{-1}BU(s) \\ Y(s) = \left(C\left(sI - A\right)^{-1}B + D\right)U(s) \end{cases} \longrightarrow && \text{Group for $U(s)$}\\ & \longrightarrow \begin{cases} X(s) = \left(sI - A\right)^{-1}BU(s) \\ \frac{Y(s)}{U(s)} = \left(C\left(sI - A\right)^{-1}B + D\right) \end{cases} \longrightarrow && \text{Get $G(s)$ from definition}\\ \longrightarrow \;& G(s) = \left(C\left(sI - A\right)^{-1}B + D\right) && \text{Formal definition of $G(s)$}\\ \end{align*} $$ #### Properties - Since $G(s)$ can be ***technically*** a matrix, this may represent a `MIMO System` - The system is ***always*** `proper` (so it's denominator is of an order higher of the numerator) - If $D$ is $0$, then the system is `strictly proper` and ***realizable*** - While each $S(A_i, B_i, C_i, D_i)$ can be transformed into a ***single*** $G(s)$, this isn't true viceversa. - Any particular $S(A_a, B_a, C_a, D_a)$ is called `realization` - $det(sI - A)$ := Characteristic Polinome - $det(sI - A) = 0$ := Characteristic Equation - $eig(A)$ := Solutions of the Characteristic Equation and `poles` of the system - If the system is `SISO` and this means that $C \in \R^{1,x}$, $B \in \R^{x,1}$ and $D \in \R$, meaning that: $$ \begin{align*} G(s) &= \left(C\left(sI - A\right)^{-1}B + D\right) =\\ &= \left(C \frac{Adj\left(sI - A\right)}{det\left(sI - A\right)}B + D\right) = && \text{Decompose the inverse in its formula}\\ &= \frac{n(s)}{det\left(sI - A\right)} \in \R \end{align*} $$ > [!NOTE] > As you can see here, by decomposing the inverse matrix in its formula it's > easy to see that the divisor is a `scalar`, a `number`. > > Moreover, because of how $B$ and $C$ are composed, the result of this Matrix > multiplication is a `scalar` too, hence we can write this as a single formula. > > Another thing to notice, regardless if this is a `MIMO` or `SISO` system is > that at the divisor we have all `eigenvalues` of A as `poles` by > [definition](../Formularies/GEOMETRY-FORMULARY.md/#eigenvalues) > ### Transforming a State-Space into Another one We basically need to use some non singular `Permutation Matrices`: $$ \begin{align*} &A_1, B_1, C_1, D_1 \\ &A_2 = PAP^{-1} \\ &B_2 = PB \\ &C_2 = CP^{-1} \\ &D_2 = D_1 \end{align*} $$ [^matlab-c2d]: [Matlab Official Docs | c2d | 05 January 2025](https://it.mathworks.com/help/control/ref/dynamicsystem.c2d.html)