# Canonical Forms In order to see if we are in one of these canonical forms, just write the equations from the block diagram, and find the associated $S(A, B, C, D)$. > [!TIP] > In order to find a rough diagram, use > [Horner Factorization](MODERN-CONTROL.md/#horner-factorization) to find > $a_i$ values. Then put all the $b_i$ to the right integrator by shifting them > as many left places, starting from the rightmost, for the number of > associated $s$ ## Control Canonical Form It is in such forms when: $$ A = \begin{bmatrix} - a_1 & -a_2 & -a_3 & \dots & -a_{n-1} &-a_n\\ 1 & 0 & 0 & \dots & 0 & 0\\ 0 & 1 & 0 & \dots & 0 & 0\\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & 0 \end{bmatrix} B = \begin{bmatrix} 1 \\ 0 \\ \dots \\ \dots \\ 0 \end{bmatrix} C = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix} $$ ## Modal Canonical Forms > [!CAUTION] > This form is the most difficult to find, as this varies drastically in cases > of double roots > $$ A = \begin{bmatrix} - a_1 & 0 & 0 & \dots & 0\\ 0 & -a_2 & 0 & \dots & 0\\ 0 & 0 & -a_3 & \dots & 0\\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & -a_n \end{bmatrix} B = \begin{bmatrix} 1 \\ 1 \\ \dots \\ \dots \\ 1 \end{bmatrix} C = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix} $$ ## Observable Canonical Form [^reference-input-pole-allocation]: [MIT | 06 January 2025 | pg. 2](https://ocw.mit.edu/courses/16-30-feedback-control-systems-fall-2010/c553561f63feaa6173e31994f45f0c60_MIT16_30F10_lec11.pdf)