# Smith Predictor Once you have your system with `pure delays`, desing $G_c$ as if $G_p$ ha no `delay` at all. The resulting system should be something similar to: $\frac{G_cG_p}{1 + G_cG_p}$. Now consider the real delay of the system and desing $\hat{G}_c$ so that the new $\hat{G}(s) = G(s)e^{-sT}$: $$ \begin{align*} \frac{\hat{G}_cG_pe^{-sT}}{1 + \hat{G}_cG_pe^{-sT}} &= \frac{G_cG_p}{1 + G_cG_p}e^{-sT} \rightarrow \\ \rightarrow \frac{\hat{G}_c}{1 + \hat{G}_cG_pe^{-sT}} &= \frac{G_c}{1 + G_cG_p} \rightarrow \\ \rightarrow \hat{G}_c + \hat{G}_c G_cG_p &= G_c + G_c\hat{G}_cG_pe^{-sT} \rightarrow \\ \rightarrow \hat{G}_c \left[ 1 + G_cG_p(1 - e^{-sT}) \right] &= G_c \rightarrow \\ \rightarrow \hat{G}_c &= \frac{ G_c}{ 1 + G_cG_p(1 - e^{-sT})} \end{align*} $$