# Control Formulary ## Settling time $ T_s = \frac{\ln(a_{\%})}{\zeta \omega_{n}} $ - $\zeta$ := Damping ratio - $\omega_{n}$ := Natural frequency ## Overshoot $ \mu_{p}^{\%} = 100 e^{ \left( \frac{- \zeta \pi}{\sqrt{1 - \zeta^{2}}} \right) } $ ## Reachable Space $X_r = Span(K_c)$ $X = X_r \bigoplus X_{r}^{\perp} = X_r \bigoplus X_{nr}$ > [!TIP] > Since $X_{nr} = X_r^{\perp}$ we can find a set of perpendicular > vectors by finding $Ker(X_r^{T})$ ## Non Observable Space $X_no = Kern(K_o)$ $X = X_no \bigoplus X_{no}^{\perp} = X_no \bigoplus X_{o}$ > [!TIP] > Since $X_{o} = X_no^{\perp}$ we can find a set of perpendicular > vectors by finding $Ker(X_{no}^{T})$ ## Sensitivity Function This function tells us how much `disturbances` in our system affects our $G(s)$ (here $T$):\ $ S = \frac{dG}{dT} \frac{G}{T} $ Once found $S$ we do a `Bode Plot` of it to see how much we differ from our original `system`