# Example 12 ## Kallman Full Decomposition $$ \begin{align*} A &= \begin{bmatrix} -4 & -3 & 0 & -2 \\ 6 & 5 & 0 & 2 \\ 4 & 1 & 1 & -6 \\ -1 & -1 & 0 & -3 \\ \end{bmatrix}\\ B &= \begin{bmatrix} -1 \\ 1 \\ 2 \\ 0 \\ \end{bmatrix}\\ C &= \begin{bmatrix} -3 & -2 & 0 & 1 \\ \end{bmatrix}\\ D &= \begin{bmatrix} 0 \end{bmatrix}\\ K_r &= \begin{bmatrix} -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ 2 & -1 & 2 & -1\\ 0 & 0 & 0 & 0 \end{bmatrix}\\ K_{no} &= \begin{bmatrix} -3 &-2 &0 &1\\ -1 &-2 &0 &-1\\ -7 &-6 &0 &1\\ -9 &-10& 0 &-1\\ \end{bmatrix}\\ \end{align*}\\ \text{To find all the bases, for $P_{K_r}$ you should find the}\\ \text{independent columns and find the system}\\ \text{For $P_{K_{no}}$ you should find the system by looking at}\\ \text{rows, solve it and then find some bases}\\ \begin{align*} P_{K_r} &= \begin{bmatrix} 0&1\\ 0&-1\\ 1&0\\ 0&0 \end{bmatrix}\\ X_r &= \begin{cases} x_1 =-x_2 \\ x_4 = 0 \end{cases}\\ X_{no} &= \begin{cases} -3x_1 - 2x_2 + x_4 = 0 \\ -x_1 -2x_2 -x_4 = 0 \end{cases} \rightarrow \\ &\rightarrow \begin{cases} x_1 = x_4 \\ x_1 = -x_2 \end{cases} \\ P_{K_{no}} &= \begin{bmatrix} 1 & 0\\ -1 & 0\\ 0 & 1 \\ 1 & 0 \end{bmatrix} \end{align*} \\ \text{Now, let's get all $X_r$ and $X_{no}$ elements}\\ \begin{align*} X_r &= \left\{ \alpha \begin{bmatrix} 0\\ 0\\ 1\\ 0 \end{bmatrix} + \beta \begin{bmatrix} 1\\ -1\\ 0\\ 0 \end{bmatrix} \right\}\\ X_{no} &= \left\{ \alpha \begin{bmatrix} 1 \\ -1\\ 0 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 0\\ 0\\ 1 \\ 0 \end{bmatrix} \right\} \end{align*}\\ $$ Now, let's get $X_1$, $X_2$, $X_3$, $X_4$ $$ \begin{align*} X_1 &= X_r \cap X_{no} = \begin{cases} x_1 =-x_2 \\ x_4 = 0 \\ x_1 = x_4 \end{cases}\\ X_1 &= \begin{bmatrix} 0 \\ 0 \\ x_3 \\ 0 \end{bmatrix}\\ 0 &= X_1^T X_1^\perp \rightarrow \\ &\rightarrow \begin{bmatrix} 0 & 0 & x_3 & 0 \end{bmatrix} \begin{bmatrix} x_a \\ x_b \\ x_c \\ x_d \end{bmatrix} = 0 \rightarrow \\ &\rightarrow\begin{cases} x_c = 0 \end{cases} \\ X_1^\perp &= \begin{bmatrix} x_a \\ x_b \\ 0 \\ x_d \end{bmatrix}\\ X_2 &= X_r \cap X_1^\perp = \begin{cases} x_1 = -x_2 \\ x_3 = 0 \\ x_4 = 0 \\ \end{cases}\\ X_2 &= \begin{bmatrix} x_1 \\ -x_1 \\ 0 \\ 0 \end{bmatrix}\\ X_3 &= X_{no} \cap X_1^\perp = \begin{cases} x_1 = -x_2 \\ x_1 = x_4 \\ x_3 = 0 \\ \end{cases}\\ X_3 &= \begin{bmatrix} x_1 \\ -x_1 \\ 0 \\ x_1 \end{bmatrix}\\ 0 &= X_2^T X_2^\perp = \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_a \\ x_b \\ x_c \\ x_d \end{bmatrix}\rightarrow \\ &\rightarrow\begin{cases} x_a - x_b = 0 \end{cases} \\ \\ 0 &= X_3^T X_3^\perp = \begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_a \\ x_b \\ x_c \\ x_d \end{bmatrix}\rightarrow \\ &\rightarrow\begin{cases} x_a - x_b + x_d = 0 \end{cases} \\ \\ X_4 &= X_1^\perp \cap X_2^\perp \cap X_3^\perp = \\ &= \begin{cases} x_3 = 0 \\ x_1 = x_2 \\ x_4 = 0\\ \end{cases} = \\ &= \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ 0 \end{bmatrix} \end{align*} $$ Now we find the change state matrix: $$ \begin{align*} Q^{-1} &= \begin{bmatrix} X_1 & X_2 & X_3 & X_4 \end{bmatrix} = \\ &= \begin{bmatrix} 0 & 1 & 1 & 1\\ 0 & -1 & -1 & 1\\ 1 & 0&0&0\\ 0&0&1&0 \end{bmatrix} \end{align*} $$ Compute: $$ \begin{align*} \hat{A} &= QAQ^{-1}\\ \hat{B} &= QB \\ \hat{C} &= CQ^{-1} \end{align*} $$