# Example 3 ## Double Mass Cart ![double mass cart](./../../Images/Examples/Example-3/double-cart.png) ### Formulas - Resulting forces for cart 1:\ $ m_1 \ddot{p}_1 = k_2(p_2 - p_1) + b_2( \dot{p}_2 - \dot{p}_1) - k_1 p_1 - b_1 \dot{p}_1 $ - Resulting forces for cart 2:\ $ m_2 \ddot{p}_2 = F - k_2(p_2 - p_1) - b_2( \dot{p}_2 - \dot{p}_1) $ ### Reasoning We now have 2 different accelerations. The highest order of derivatives is 2 for 2 variables, hence we need 4 variables in the `state`: $$ x = \begin{bmatrix} x_1 = p_1\\ x_2 = p_2\\ x_3 = \dot{p}_1\\ x_4 = \dot{p}_2 \end{bmatrix} \dot{x} = \begin{bmatrix} \dot{x}_1 = \dot{p}_1 = x_3 \\ \dot{x}_2 = \dot{p}_2 = x_4\\ \dot{x}_3 = \ddot{p}_1 = \frac{1}{m_1} \left[ k_2(x_2 - x_1) + b_2( x_4 - x_3) - k_1 x_1 - b_1 x_3 \right]\\ \dot{x}_4 = \ddot{p}_2 = \frac{1}{m_2} \left[ F - k_2(x_2 - x_1) - b_2( x_4 - x_3) \right]\\ \end{bmatrix} $$ Let's write our $S(A, B, C, D)$: $$ A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ % 3rd row - \frac{k_2 - k_1}{m_1} & \frac{k_2}{m_1} & -\frac{b_2 + b_1}{m_1} & \frac{b_2}{m_1} \\ % 4th row \frac{k_2}{m_12} & - \frac{k_2}{m_2} & \frac{b_2}{m_2} & - \frac{b_2}{m_2} \\ \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix} $$ ## Suspended Mass > [!NOTE] > For those of you the followed CNS course, refer to professor > PDF for this excercise, as it has some unclear initial conditions > > However, in the formulas section, I'll take straight up his own ![suspended mass](./../../Images/Examples/Example-3/suspended-mass.png) ### Formulas - Resulting forces for mass:\ $ m \ddot{p} = -k(p - r) -b(\dot{p} - \dot{r}) $ ### Reasoning $$ x = \begin{bmatrix} x_1 = p \\ x_2 = \dot{x}_1 \end{bmatrix} \dot{x} = \begin{bmatrix} \dot{x}_1 = x_2 \\ \dot{x}_2 = \frac{1}{m} \left[-k(x_1 - r) -b(x_2 - \dot{r}) \right] \end{bmatrix} $$ > [!WARNING] > Info here are wrong Let's write our $S(A, B, C, D)$: $$ A = \begin{bmatrix} 0 & 1\\ -\frac{k}{m} & - \frac{b}{m} \end{bmatrix} B = \begin{bmatrix} 0 \\ \frac{k + sb}{m} \end{bmatrix} C = \begin{bmatrix} 1 & 0 \end{bmatrix} D = \begin{bmatrix} 0 & 0 \end{bmatrix} $$