Added Probabilistic View in chapter 10
This commit is contained in:
parent
8fdfd57c73
commit
09f6f9951a
@ -111,3 +111,53 @@ similar to a point, nor too far apart from each other***
|
|||||||
$$
|
$$
|
||||||
L(x) = ||x - \hat{x}||^{2}_{2} + KL[N(\mu_{x}, \Sigma_{x}), N(0, 1)]
|
L(x) = ||x - \hat{x}||^{2}_{2} + KL[N(\mu_{x}, \Sigma_{x}), N(0, 1)]
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
### Probabilistic View
|
||||||
|
|
||||||
|
- $\mathcal{X}$: Set of our data
|
||||||
|
- $\mathcal{Y}$: Latent variable set
|
||||||
|
- $p(x|y)$: Probabilistic encoder, tells us the distribution of $x$ given $y$
|
||||||
|
- $p(y|x)$: Probabilistic decoder, tells us the distribution of $y$ given $x$
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> Bayesian a Posteriori Probability
|
||||||
|
> $$
|
||||||
|
> \underbrace{p(A|B)}_{\text{Posterior}} = \frac{
|
||||||
|
> \overbrace{p(B|A)}^{\text{Likelihood}}
|
||||||
|
> \overbrace{\cdot p(A)}^{\text{Prior}}
|
||||||
|
> }{
|
||||||
|
> \underbrace{p(B)}_{\text{Marginalization}}
|
||||||
|
> }
|
||||||
|
> = \frac{p(B|A) \cdot p(A)}{\int{p(B|u)p(u)du}}
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> - **Posterior**: Probability of A being true given B
|
||||||
|
> - **Likelihood**: Probability of B being true
|
||||||
|
given A
|
||||||
|
> - **Prior**: Probability of A being true (knowledge)
|
||||||
|
> - **Marginalization**: Probability of B being true
|
||||||
|
|
||||||
|
By making the assumption of the probability of
|
||||||
|
$y$ of being a gaussian with 0 mean and identity
|
||||||
|
deviation, and assuming $x$ and $y$ independent
|
||||||
|
and identically distributed:
|
||||||
|
|
||||||
|
- $p(y) = \mathcal{N}(0, I) \rightarrow p(x|y) = \mathcal{N}(f(y), cI)$
|
||||||
|
|
||||||
|
Since we technically need an integral over the denominator, we use
|
||||||
|
**approximate techniques** such as **Variational INference**
|
||||||
|
|
||||||
|
### Variational Inference
|
||||||
|
|
||||||
|
<!-- TODO: See PDF 10 pgs 59 to 65-->
|
||||||
|
|
||||||
|
### Reparametrization Trick
|
||||||
|
|
||||||
|
Since $y$ is **technically sampled**, this makes it impossible
|
||||||
|
to backpropagate the `mean` and `std-dev`, thus we add another
|
||||||
|
variable, sampled from a *standard gaussian* $\zeta$, so that
|
||||||
|
we have
|
||||||
|
|
||||||
|
$$
|
||||||
|
y = \sigma_x \cdot \zeta + \mu_x
|
||||||
|
$$
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user