73 lines
2.6 KiB
Python
Raw Normal View History

import torch
import Project_Model.Libs.Embedder as Embedder
from ..Classes import Encoder, Decoder, DeToken
class TrainingModel(torch.nn.Module):
def __init__(
self,
vocabulary_size: int,
latent_space: int = 256,
feed_forward_multiplier: int = 4,
attention_heads: int = 4,
layer_number: int = 2,
) -> None:
super().__init__()
feed_forward_latent_space = latent_space * feed_forward_multiplier
self.__encoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
self.__decoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
2025-10-08 22:51:36 +02:00
# do NOT share layer weights
enc_layers = [
Encoder(latent_space, feed_forward_latent_space, attention_heads)
2025-10-08 22:51:36 +02:00
for _ in range(layer_number)
]
dec_layers = [
Decoder(latent_space, feed_forward_latent_space, attention_heads)
2025-10-08 22:51:36 +02:00
for _ in range(layer_number)
]
2025-10-08 22:51:36 +02:00
self.__encoder = torch.nn.Sequential(*enc_layers)
self.__decoder = torch.nn.Sequential(*dec_layers)
self.__detokener = DeToken(latent_space, vocabulary_size)
2025-10-08 22:51:36 +02:00
def forward(
self,
args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
):
# returns logits for the LAST decoder position only -> [B, V]
(
encoder_embedder_input, # [B,S] encoder tokens
encoder_padding_mask, # [B,S] True where encoder is PAD
decoder_embedder_prefix, # [B,Tp] decoder prefix (e.g., <SOS> + tokens so far)
decoder_padding_mask, # [B,Tp] True where decoder prefix has PAD
) = args
2025-10-08 22:51:36 +02:00
# 1) embeddings
encoder_tensor = self.__encoder_embedder(encoder_embedder_input) # [B,S,E]
decoder_tensor = self.__decoder_embedder(decoder_embedder_prefix) # [B,Tp,E]
2025-10-08 22:51:36 +02:00
# 2) encode
encoder_output, _ = self.__encoder((encoder_tensor, encoder_padding_mask)) # [B,S,E], [B,S]
2025-10-08 22:51:36 +02:00
# 3) decode (causal mask is built inside the decoder)
decoder_output, _, _, _, _ = self.__decoder(
(decoder_tensor, encoder_output, encoder_output,
decoder_padding_mask, encoder_padding_mask)
) # [B,Tp,E], ...
2025-10-08 22:51:36 +02:00
# 4) project only the last time step
last_hidden = decoder_output[:, -1:, :] # [B,1,E]
step_logits = self.__detokener(last_hidden) # [B,1,V]
step_logits = step_logits[:, -1, :] # [B,V]
2025-10-08 22:51:36 +02:00
return step_logits # logits for one token