57 lines
1.8 KiB
Python
Raw Normal View History

import torch
import Project_Model.Libs.Embedder as Embedder
from ..Classes import Encoder, Decoder, DeToken
class TrainingModel(torch.nn.Module):
def __init__(
self,
vocabulary_size: int,
latent_space: int = 256,
feed_forward_multiplier: int = 4,
attention_heads: int = 4,
layer_number: int = 2,
) -> None:
super().__init__()
feed_forward_latent_space = latent_space * feed_forward_multiplier
self.__encoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
self.__decoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
TMP_ENCODERS = [
Encoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
TMP_DECODERS = [
Decoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
self.__encoder = torch.nn.Sequential(*TMP_ENCODERS)
self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
self.__detokener = DeToken(latent_space, vocabulary_size)
def forward(self, args: tuple[list[list[int]], list[list[bool]], list[list[int]]]):
encoder_embedder_input, padding_input, decoder_embedder_input = args
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
padding_tensor = torch.tensor(padding_input, dtype=torch.bool)
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
encoder_output, _ = self.__encoder((encoder_tensor, padding_tensor))
decoder_output, _, _, _ = self.__decoder(
(decoder_tensor, encoder_tensor, encoder_tensor, None)
)
logits: torch.Tensor = self.__detokener(decoder_output)
return logits