215 lines
6.3 KiB
Python
Raw Normal View History

2025-10-12 16:30:30 +02:00
import torch
import Project_Model.Libs.Embedder as Embedder
from ..Classes import Encoder, Decoder, DeToken
from ..Utils import get_decoder_input
from Project_Model.Libs.Batch import TaskType
class NanoSocratesCore(torch.nn.Module):
def __init__(
self,
vocabulary_size: int,
sentence_max_length: int,
sos: int,
pad: int,
eos: int,
latent_space: int = 256,
feed_forward_multiplier: int = 4,
attention_heads: int = 4,
layer_number: int = 2,
) -> None:
super().__init__()
self.__sos = sos
self.__pad = pad
self.__eos = eos
self.__sentence_len = sentence_max_length
feed_forward_latent_space = latent_space * feed_forward_multiplier
self.__encoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
self.__decoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
TMP_ENCODERS = [
Encoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
TMP_DECODERS = [
Decoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
self.__encoder = torch.nn.Sequential(*TMP_ENCODERS)
self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
self.__detokener = DeToken(latent_space, vocabulary_size)
self.__encoder_detokener = DeToken(latent_space, vocabulary_size)
def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
encoder_embedder_input, src_padding, decoder_embedder_input, tgt_padding = args
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_tensor, encoder_output, encoder_output, src_padding, tgt_padding, False)
)
logits: torch.Tensor = self.__detokener(decoder_output)
return logits
def inference(self, input: tuple[torch.Tensor, torch.Tensor], task_type: TaskType) -> torch.Tensor:
if task_type == TaskType.MASKING:
return self.__masking(input)
if task_type == TaskType.COMPLETATION:
return self.__continue_rdf(input)
return self.__text_generation(input)
def __text_generation(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
x, padding = args
encoder_tensor = self.__encoder_embedder(x)
2025-10-16 19:20:23 +02:00
BATCH: int
if len(x.shape) > 2:
BATCH, SEQ_LEN, _ = x.shape
else:
_, SEQ_LEN = x.shape
BATCH = 1
2025-10-12 16:30:30 +02:00
encoder_output, _ = self.__encoder((encoder_tensor, padding))
decoder_in = get_decoder_input(BATCH, self.__sos, self.__pad, SEQ_LEN)
decoder_in_pad_mask = decoder_in.eq(self.__pad)
continue_generating = True
token_idx = 0
while continue_generating:
2025-10-16 19:20:23 +02:00
decoder_in_x = self.__decoder_embedder(decoder_in)
2025-10-12 16:30:30 +02:00
decoder_output, _, _, _, _, _ = self.__decoder(
2025-10-16 19:20:23 +02:00
(decoder_in_x, encoder_output, encoder_output, padding, decoder_in_pad_mask, False)
2025-10-12 16:30:30 +02:00
)
logits: torch.Tensor = self.__detokener(decoder_output)
logits = torch.softmax(logits, 2)
2025-10-16 19:20:23 +02:00
tokens = torch.argmax(logits, 2)
if token_idx < self.__sentence_len - 1:
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
decoder_in_pad_mask = decoder_in.eq(self.__pad)
if token_idx == self.__sentence_len - 1:
continue_generating = False
continue
2025-10-12 16:30:30 +02:00
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
continue_generating = False
continue
2025-10-16 19:20:23 +02:00
token_idx += 1
2025-10-12 16:30:30 +02:00
return decoder_in
def __masking(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
x, padding = args
encoder_tensor = self.__encoder_embedder(x)
x, _ = self.__encoder((encoder_tensor, padding))
logits: torch.Tensor = self.__encoder_detokener(x)
del x
logits = torch.softmax(logits, 2)
2025-10-16 19:20:23 +02:00
tokens = torch.argmax(logits, 2)
2025-10-12 16:30:30 +02:00
return tokens
def __continue_rdf(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
decoder_in, _ = args
decoder_in_prefix_mask = decoder_in.eq(self.__pad)
decoder_in_pad_mask = decoder_in.eq(self.__pad)
continue_generating = True
token_idx = 0
while continue_generating:
2025-10-16 19:20:23 +02:00
decoder_x = self.__decoder_embedder(decoder_in)
2025-10-12 16:30:30 +02:00
decoder_output, _, _, _, _, _ = self.__decoder(
2025-10-16 19:20:23 +02:00
(decoder_x, decoder_in, decoder_in, decoder_in_prefix_mask, decoder_in_pad_mask, True)
2025-10-12 16:30:30 +02:00
)
logits: torch.Tensor = self.__detokener(decoder_output)
logits = torch.softmax(logits, 2)
2025-10-16 19:20:23 +02:00
tokens = torch.argmax(logits, 2)
if token_idx < self.__sentence_len - 1:
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
decoder_in_pad_mask = decoder_in.eq(self.__pad)
if token_idx == self.__sentence_len - 1:
continue_generating = False
continue
2025-10-12 16:30:30 +02:00
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
continue_generating = False
continue
2025-10-16 19:20:23 +02:00
token_idx += 1
2025-10-12 16:30:30 +02:00
return decoder_in
def take_pieces(self):
return (
2025-10-16 19:20:23 +02:00
(self.__encoder_embedder, self.__encoder, self.__encoder_detokener),
2025-10-12 16:30:30 +02:00
(self.__decoder_embedder, self.__decoder, self.__detokener)
2025-10-16 19:20:23 +02:00
)
def load_pieces(
self,
encoder_embedder: Embedder.NanoSocratesEmbedder,
decoder_embedder: Embedder.NanoSocratesEmbedder,
encoder: torch.nn.Sequential,
decoder: torch.nn.Sequential,
encoder_detokener: DeToken,
decoder_detokener: DeToken
):
self.__encoder_embedder = encoder_embedder
self.__decoder_embedder = decoder_embedder
self.__encoder = encoder
self.__decoder = decoder
self.__encoder_detokener = encoder_detokener
self.__detokener = decoder_detokener