87 lines
2.4 KiB
Python
87 lines
2.4 KiB
Python
|
|
import torch
|
|||
|
|
import torch.nn as nn
|
|||
|
|
from .FeedForwardNetwork import FeedForwardNetwork
|
|||
|
|
from .TorchMultiHeadAttention import TorchMultiHeadAttention as MultiHeadAttention
|
|||
|
|
|
|||
|
|
|
|||
|
|
class Decoder(nn.Module):
|
|||
|
|
|
|||
|
|
def __init__(
|
|||
|
|
self,
|
|||
|
|
embedding_dimension: int,
|
|||
|
|
feed_forward_hidden_layer_dimension: int,
|
|||
|
|
number_of_attention_heads: int,
|
|||
|
|
) -> None:
|
|||
|
|
super().__init__()
|
|||
|
|
|
|||
|
|
self.__masked_attention = MultiHeadAttention(
|
|||
|
|
embedding_dimension, number_of_attention_heads, dropout=0.1
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
self.__layer_norm_1 = nn.LayerNorm(embedding_dimension)
|
|||
|
|
|
|||
|
|
self.__cross_attention = MultiHeadAttention(
|
|||
|
|
embedding_dimension, number_of_attention_heads, dropout=0.1
|
|||
|
|
)
|
|||
|
|
self.__layer_norm_2 = nn.LayerNorm(embedding_dimension)
|
|||
|
|
|
|||
|
|
self.__dropout = nn.Dropout(0.1)
|
|||
|
|
|
|||
|
|
self.__feed_forward_network = FeedForwardNetwork(
|
|||
|
|
embedding_dimension, feed_forward_hidden_layer_dimension
|
|||
|
|
)
|
|||
|
|
self.__layer_norm_3 = nn.LayerNorm(embedding_dimension)
|
|||
|
|
|
|||
|
|
def forward(self, x, k_x, v_x, attention_mask) -> torch.Tensor: # k_x = v_x . While x_q = x
|
|||
|
|
|
|||
|
|
# 1) Masked Attention
|
|||
|
|
MASKED_ATTENTION = self.__masked_attention(
|
|||
|
|
x, x, x, attention_mask=attention_mask
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
# 2) Dropout
|
|||
|
|
DROPPED_MASKED_ATTENTION = self.__dropout(
|
|||
|
|
MASKED_ATTENTION
|
|||
|
|
)
|
|||
|
|
del MASKED_ATTENTION
|
|||
|
|
|
|||
|
|
# 3) Residual Connection
|
|||
|
|
x = x + DROPPED_MASKED_ATTENTION
|
|||
|
|
del DROPPED_MASKED_ATTENTION
|
|||
|
|
|
|||
|
|
# 4) Layer Normalization
|
|||
|
|
x = self.__layer_norm_1(x)
|
|||
|
|
|
|||
|
|
# 5) Encoder–decoder (cross) attention
|
|||
|
|
CROSS_ATTENTION = self.__cross_attention(x, k_x, v_x)
|
|||
|
|
|
|||
|
|
# 6) Dropout
|
|||
|
|
DROPPED_CROSS_ATTENTION = self.__dropout(CROSS_ATTENTION)
|
|||
|
|
del CROSS_ATTENTION
|
|||
|
|
|
|||
|
|
# 7) Residual Connection
|
|||
|
|
x = x + DROPPED_CROSS_ATTENTION
|
|||
|
|
del DROPPED_CROSS_ATTENTION
|
|||
|
|
|
|||
|
|
# 8) Layer Normalization
|
|||
|
|
x = self.__layer_norm_2(x)
|
|||
|
|
|
|||
|
|
# 9) Position-wise feed-forward
|
|||
|
|
FEED_FORWARD = self.__feed_forward_network(x)
|
|||
|
|
|
|||
|
|
# 10) Dropout
|
|||
|
|
DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
|
|||
|
|
del FEED_FORWARD
|
|||
|
|
|
|||
|
|
# 11) Residual Connection
|
|||
|
|
x = x + DROPPED_FEED_FORWARD
|
|||
|
|
del DROPPED_FEED_FORWARD
|
|||
|
|
|
|||
|
|
# 12) Layer Normalization
|
|||
|
|
x = self.__layer_norm_3(x)
|
|||
|
|
|
|||
|
|
return x
|
|||
|
|
|
|||
|
|
|
|||
|
|
# use eval to disable dropout ecc
|