Fixed several bugs for task 4
This commit is contained in:
parent
e0f8a36aa5
commit
07130ff489
@ -57,7 +57,7 @@ MINI_BATCH_SIZE = 80
|
||||
VALIDATION_STEPS = 5
|
||||
CHECKPOINT_STEPS = VALIDATION_STEPS * 4
|
||||
PATIENCE = 4
|
||||
CURRENT_EPOCH = 0 if not LAST_EPOCH_PATH.is_file() else int(LAST_EPOCH_PATH.read_text())
|
||||
CURRENT_EPOCH = -1 if not LAST_EPOCH_PATH.is_file() else int(LAST_EPOCH_PATH.read_text())
|
||||
VERBOSE = True
|
||||
LEARNING_RATE = 1.5
|
||||
|
||||
@ -228,7 +228,7 @@ while current_epoch < MAX_EPOCHS:
|
||||
|
||||
decoder_only_optim.zero_grad()
|
||||
|
||||
pred_logits = DECODER_ONLY((dec_x, dec_x_pad))
|
||||
pred_logits = DECODER_ONLY((dec_x, enc_x_pad, dec_x_pad))
|
||||
pred_logits = pred_logits.permute(0, 2, 1)
|
||||
|
||||
loss: torch.Tensor = decoder_ce(pred_logits, tgt)
|
||||
@ -316,7 +316,7 @@ while current_epoch < MAX_EPOCHS:
|
||||
|
||||
|
||||
|
||||
pred_logits = DECODER_ONLY((dec_x, dec_x_pad))
|
||||
pred_logits = DECODER_ONLY((dec_x, enc_x_pad, dec_x_pad))
|
||||
|
||||
pred_logits = pred_logits.permute(0, 2, 1)
|
||||
|
||||
|
||||
@ -9,6 +9,7 @@ class NanoSocraDecoder(torch.nn.Module):
|
||||
decoder_embedder: Embedder.NanoSocratesEmbedder,
|
||||
decoder_layers: torch.nn.Sequential,
|
||||
detokener: DeToken
|
||||
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
@ -17,14 +18,14 @@ class NanoSocraDecoder(torch.nn.Module):
|
||||
self.__decoder = decoder_layers
|
||||
self.__detokener = detokener
|
||||
|
||||
def forward(self, args: tuple[torch.Tensor, torch.Tensor]):
|
||||
def forward(self, args: tuple[torch.Tensor,torch.Tensor, torch.Tensor]):
|
||||
|
||||
decoder_embedder_input, tgt_padding = args
|
||||
decoder_embedder_input, prefix_mask, tgt_padding = args
|
||||
|
||||
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
|
||||
|
||||
decoder_output, _, _, _, _, _ = self.__decoder(
|
||||
(decoder_tensor, decoder_tensor, decoder_tensor, tgt_padding, tgt_padding, True)
|
||||
(decoder_tensor, decoder_tensor, decoder_tensor, prefix_mask, tgt_padding, True)
|
||||
)
|
||||
|
||||
logits: torch.Tensor = self.__detokener(decoder_output)
|
||||
|
||||
176
Project_Model/Libs/Transformer/Models/NanoSocrates.py
Normal file
176
Project_Model/Libs/Transformer/Models/NanoSocrates.py
Normal file
@ -0,0 +1,176 @@
|
||||
import torch
|
||||
import Project_Model.Libs.Embedder as Embedder
|
||||
from ..Classes import Encoder, Decoder, DeToken
|
||||
from ..Utils import get_decoder_input
|
||||
from Project_Model.Libs.Batch import TaskType
|
||||
|
||||
|
||||
class NanoSocratesCore(torch.nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocabulary_size: int,
|
||||
sentence_max_length: int,
|
||||
sos: int,
|
||||
pad: int,
|
||||
eos: int,
|
||||
latent_space: int = 256,
|
||||
feed_forward_multiplier: int = 4,
|
||||
attention_heads: int = 4,
|
||||
layer_number: int = 2,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.__sos = sos
|
||||
self.__pad = pad
|
||||
self.__eos = eos
|
||||
self.__sentence_len = sentence_max_length
|
||||
|
||||
feed_forward_latent_space = latent_space * feed_forward_multiplier
|
||||
|
||||
self.__encoder_embedder = Embedder.NanoSocratesEmbedder(
|
||||
vocabulary_size, latent_space
|
||||
)
|
||||
self.__decoder_embedder = Embedder.NanoSocratesEmbedder(
|
||||
vocabulary_size, latent_space
|
||||
)
|
||||
|
||||
TMP_ENCODERS = [
|
||||
Encoder(latent_space, feed_forward_latent_space, attention_heads)
|
||||
] * layer_number
|
||||
|
||||
TMP_DECODERS = [
|
||||
Decoder(latent_space, feed_forward_latent_space, attention_heads)
|
||||
] * layer_number
|
||||
|
||||
self.__encoder = torch.nn.Sequential(*TMP_ENCODERS)
|
||||
self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
|
||||
|
||||
self.__detokener = DeToken(latent_space, vocabulary_size)
|
||||
self.__encoder_detokener = DeToken(latent_space, vocabulary_size)
|
||||
|
||||
def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
|
||||
|
||||
encoder_embedder_input, src_padding, decoder_embedder_input, tgt_padding = args
|
||||
|
||||
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
|
||||
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
|
||||
|
||||
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
|
||||
|
||||
decoder_output, _, _, _, _, _ = self.__decoder(
|
||||
(decoder_tensor, encoder_output, encoder_output, src_padding, tgt_padding, False)
|
||||
)
|
||||
|
||||
logits: torch.Tensor = self.__detokener(decoder_output)
|
||||
|
||||
return logits
|
||||
|
||||
def inference(self, input: tuple[torch.Tensor, torch.Tensor], task_type: TaskType) -> torch.Tensor:
|
||||
|
||||
if task_type == TaskType.MASKING:
|
||||
return self.__masking(input)
|
||||
|
||||
if task_type == TaskType.COMPLETATION:
|
||||
return self.__continue_rdf(input)
|
||||
|
||||
return self.__text_generation(input)
|
||||
|
||||
|
||||
|
||||
def __text_generation(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
|
||||
|
||||
x, padding = args
|
||||
|
||||
encoder_tensor = self.__encoder_embedder(x)
|
||||
BATCH, SEQ_LEN, _ = x.shape
|
||||
|
||||
encoder_output, _ = self.__encoder((encoder_tensor, padding))
|
||||
|
||||
decoder_in = get_decoder_input(BATCH, self.__sos, self.__pad, SEQ_LEN)
|
||||
decoder_in_pad_mask = decoder_in.eq(self.__pad)
|
||||
|
||||
continue_generating = True
|
||||
token_idx = 0
|
||||
|
||||
while continue_generating:
|
||||
|
||||
decoder_in = self.__decoder_embedder(decoder_in)
|
||||
|
||||
decoder_output, _, _, _, _, _ = self.__decoder(
|
||||
(decoder_in, encoder_output, encoder_output, padding, decoder_in_pad_mask, False)
|
||||
)
|
||||
|
||||
logits: torch.Tensor = self.__detokener(decoder_output)
|
||||
|
||||
logits = torch.softmax(logits, 2)
|
||||
|
||||
tokens = torch.argmax(logits)
|
||||
|
||||
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
|
||||
continue_generating = False
|
||||
continue
|
||||
|
||||
if token_idx < self.__sentence_len - 1:
|
||||
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
|
||||
decoder_in_pad_mask = decoder_in.eq(self.__pad)
|
||||
|
||||
return decoder_in
|
||||
|
||||
|
||||
def __masking(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
|
||||
|
||||
x, padding = args
|
||||
|
||||
encoder_tensor = self.__encoder_embedder(x)
|
||||
x, _ = self.__encoder((encoder_tensor, padding))
|
||||
|
||||
logits: torch.Tensor = self.__encoder_detokener(x)
|
||||
del x
|
||||
|
||||
logits = torch.softmax(logits, 2)
|
||||
|
||||
tokens = torch.argmax(logits)
|
||||
|
||||
return tokens
|
||||
|
||||
|
||||
def __continue_rdf(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
|
||||
|
||||
decoder_in, _ = args
|
||||
decoder_in_prefix_mask = decoder_in.eq(self.__pad)
|
||||
decoder_in_pad_mask = decoder_in.eq(self.__pad)
|
||||
|
||||
continue_generating = True
|
||||
token_idx = 0
|
||||
|
||||
while continue_generating:
|
||||
|
||||
decoder_in = self.__decoder_embedder(decoder_in)
|
||||
|
||||
decoder_output, _, _, _, _, _ = self.__decoder(
|
||||
(decoder_in, decoder_in, decoder_in, decoder_in_prefix_mask, decoder_in_pad_mask, False)
|
||||
)
|
||||
|
||||
logits: torch.Tensor = self.__detokener(decoder_output)
|
||||
|
||||
logits = torch.softmax(logits, 2)
|
||||
|
||||
tokens = torch.argmax(logits)
|
||||
|
||||
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
|
||||
continue_generating = False
|
||||
continue
|
||||
|
||||
if token_idx < self.__sentence_len - 1:
|
||||
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
|
||||
decoder_in_pad_mask = decoder_in.eq(self.__pad)
|
||||
|
||||
return decoder_in
|
||||
|
||||
def take_pieces(self):
|
||||
|
||||
return (
|
||||
(self.__encoder_embedder, self.__encoder),
|
||||
(self.__decoder_embedder, self.__decoder, self.__detokener)
|
||||
)
|
||||
@ -36,6 +36,7 @@ class TrainingModel(torch.nn.Module):
|
||||
self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
|
||||
|
||||
self.__detokener = DeToken(latent_space, vocabulary_size)
|
||||
self.__encoder_detokener = DeToken(latent_space, vocabulary_size)
|
||||
|
||||
def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
|
||||
|
||||
@ -57,6 +58,6 @@ class TrainingModel(torch.nn.Module):
|
||||
def take_pieces(self):
|
||||
|
||||
return (
|
||||
(self.__encoder_embedder, self.__encoder),
|
||||
(self.__encoder_embedder, self.__encoder, self.__encoder_detokener),
|
||||
(self.__decoder_embedder, self.__decoder, self.__detokener)
|
||||
)
|
||||
@ -10,8 +10,7 @@ def decompose_nano_socrates(
|
||||
) -> tuple[TrainingModel, NanoSocratEncoder, NanoSocraDecoder]:
|
||||
|
||||
encoder_pieces, decoder_pieces = model.take_pieces()
|
||||
encoder_embedder, encoder = encoder_pieces
|
||||
encoder_detokener = DeToken(embedding_size, vocabulary_size)
|
||||
encoder_embedder, encoder, encoder_detokener = encoder_pieces
|
||||
decoder_embedder, decoder, decoder_detokener = decoder_pieces
|
||||
|
||||
return (
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user