WIP Batcher added class to fourth task

This commit is contained in:
GassiGiuseppe 2025-10-08 00:39:16 +02:00
parent 7027414342
commit 159266a603
2 changed files with 56 additions and 8 deletions

View File

@ -3,10 +3,11 @@ from pathlib import Path
import Project_Model.Libs.BPE as BPE
#from BPE import TokeNanoCore as Tokenizer
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Project_Model.Libs.Transformer.Classes.SpannedMasker import SpannedMasker
import random
class Batcher:
def __init__(self, dataset_path: str, batch_size:int, tokenizer: BPE.TokeNanoCore) -> None:
def __init__(self, dataset_path: str, batch_size:int, tokenizer: BPE.TokeNanoCore, masker: SpannedMasker) -> None:
# ABSTRACT, TRIPLE
# tasks:
# rdf2text: X: TRIPLE, Y: ABSTRACT
@ -17,6 +18,7 @@ class Batcher:
self._dataset_path = dataset_path
self._batch_size = batch_size
self._tokenizer = tokenizer
self._masker = masker
def get_batch(self):
for batch in pd.read_csv(self._dataset_path, chunksize= int(self._batch_size/3)): #now we support 3 task
@ -27,13 +29,14 @@ class Batcher:
tokenized_batch = pd.DataFrame()
# bho = batch.map(lambda x: self._tokenizer.encode(x))
tokenized_batch[["Abstract","RDFs"]] = batch[["Abstract","RDFs"]].map(
lambda t: self._tokenizer.encode_incomplete_string(t))
lambda t: self._tokenizer.encode(t))
# ??? i hope this works, later will be tested
rdf2txt_batch = self.__rdf2txt_transformation(tokenized_batch)
txt2rdf_batch = self.__txt2rdf_transformation(tokenized_batch)
mask_batch = self.__masking_trasformation(tokenized_batch)
output = pd.concat([rdf2txt_batch,txt2rdf_batch],ignore_index=True)
output = pd.concat([rdf2txt_batch,txt2rdf_batch,mask_batch],ignore_index=True)
output.sample(frac=1).reset_index(drop=True)
yield output
@ -60,18 +63,30 @@ class Batcher:
batch = batch.rename(columns={ "Abstract": "X","RDFs": "Y"})
return batch[["X", "Y"]]# .sample(frac=1).reset_index(drop=True)
#def __masking()
def __masking_trasformation(self, batch: pd.DataFrame):
# mask_sequence: List[int] -> Tuple[List[int], List[int]]
xy_tuples = batch["RDFs"].apply(self._masker.mask_sequence) # Series of (X, Y)
output = batch.copy()
# Expand into two columns preserving the original index
output[["X", "Y"]] = pd.DataFrame(xy_tuples.tolist(), index=batch.index)
return output[["X", "Y"]]
DATASET_PATH = "Assets/Dataset/Tmp/rdf_text.csv"
VOCABULARY_path = "Assets/Dataset/Tmp/trimmed.json"
VOCABULARY = BPE.load_nanos_vocabulary(Path(VOCABULARY_path))
SPECIAL_TOKEN_LIST = [token.value for token in SpecialToken]
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_TOKEN_LIST)
SPECIAL_LIST = BPE.default_special_tokens()
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_LIST)
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(SPECIAL_LIST)))
MASKER = SpannedMasker(TOKENANO.vocabulary_size,SPECIAL_TOKENS)
prova = "<ABS>Cactus Flower is a 1969 American screwball comedy film directed by Gene Saks, and starring Walter Matthau, Ingrid Bergman and Goldie Hawn, who won an Academy Award for her performance.The screenplay was adapted by I. A. L. Diamond from the 1965 Broadway play of the same title written by Abe Burrows, which, in turn, is based on the French play Fleur de cactus by Pierre Barillet and Jean-Pierre Gredy. Cactus Flower was the ninth highest-grossing film of 1969."
print(TOKENANO.encode(prova))
batcher = Batcher(DATASET_PATH,3,TOKENANO)
batcher = Batcher(DATASET_PATH,9,TOKENANO,MASKER)
for batch in batcher.get_batch():
print(batch)

View File

@ -0,0 +1,33 @@
class TokenCompletationTransformer:
def __init__(self,SOTL_token,EOS_token, input_percent:float = 0.5) -> None:
self.__SOTL_token = SOTL_token
self.__EOS_token = EOS_token
self.__input_percent = input_percent
pass
def get_completation_tuple(
self,
token_sequence: list[int],
)-> tuple[list[int], list[int]]:
# split the sequence by encoded(<SOTL>), dont take the first, firts pertenge in as X the other as Y
sotl_count =int( token_sequence.count(self.__SOTL_token) * self.__input_percent)
sotl_index = 0
percent_index = 0
while sotl_index < sotl_count:
token = token_sequence[percent_index]
if token == self.__SOTL_token:
sotl_index += 1
percent_index+=1
percent_index = percent_index -1
x_list = token_sequence[:percent_index]
x_list.append(self.__EOS_token)
y_list = token_sequence[percent_index:]
return (x_list,y_list)