V0.0.1 Athene

This commit is contained in:
Christian Risi 2025-10-11 19:35:43 +02:00
parent 49946727d8
commit 160b7dbfc0
13 changed files with 1050 additions and 8240 deletions

BIN
Assets/Dataset/1-hop/small/holdout/evaluation.csv (Stored with Git LFS) Normal file

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:206f83b88b442f617575985ac88f4241071fa1b7d66b5935405178051511a369
3 size 1344466

BIN
Assets/Dataset/1-hop/small/holdout/test.csv (Stored with Git LFS) Normal file

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:6914b6b1f8f06f8cf73b96b9c27bf556f1ee93256f435b7da0be0df2af093d05
3 size 1334675

BIN
Assets/Dataset/1-hop/small/holdout/train.csv (Stored with Git LFS) Normal file

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:41e92da8af52ca1c83334ebea7312c63d37fdeacde425ba91b78f44a56e4fb88
3 size 10568092

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,509 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "adbef43f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Chris\\miniconda3\\envs\\deep_learning\\Lib\\site-packages\\torch\\utils\\_device.py:103: UserWarning: Aten Op fallback from XPU to CPU happends. This may have performance implications. If need debug the fallback ops please set environment variable `PYTORCH_DEBUG_XPU_FALLBACK=1` (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\build\\xpu\\ATen\\RegisterXPU_0.cpp:54528.)\n",
" return func(*args, **kwargs)\n",
"c:\\Users\\Chris\\miniconda3\\envs\\deep_learning\\Lib\\site-packages\\torch\\optim\\lr_scheduler.py:192: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate\n",
" warnings.warn(\n"
]
},
{
"ename": "IndexError",
"evalue": "list index out of range",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mIndexError\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 383\u001b[39m\n\u001b[32m 381\u001b[39m txt_min_train_losses = text_batch_losses[:][\u001b[32m0\u001b[39m]\n\u001b[32m 382\u001b[39m txt_avg_train_losses = text_batch_losses[:][\u001b[32m1\u001b[39m]\n\u001b[32m--> \u001b[39m\u001b[32m383\u001b[39m txt_max_train_losses = \u001b[43mtext_batch_losses\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m[\u001b[49m\u001b[32;43m2\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[32m 385\u001b[39m txt_min_loss = \u001b[38;5;28mmin\u001b[39m(txt_min_train_losses)\n\u001b[32m 386\u001b[39m txt_avg_min_loss = \u001b[38;5;28msum\u001b[39m(txt_min_train_losses) / \u001b[38;5;28mlen\u001b[39m(txt_min_train_losses)\n",
"\u001b[31mIndexError\u001b[39m: list index out of range"
]
}
],
"source": [
"import random\n",
"import sys\n",
"import torch\n",
"import pandas as pd\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"import Project_Model.Libs.TransformerUtils as TUtils\n",
"import Project_Model.Libs.TorchShims as torch_shims\n",
"import Project_Model.Libs.Batch as Batch\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"\n",
"\n",
"# set a default device\n",
"DEVICE = torch_shims.get_default_device()\n",
"torch.set_default_device(DEVICE)\n",
"\n",
"\n",
"# Get paths\n",
"VOCABULARY_PATH = Path(\"Assets/Model/small/bpe-small-16.json\")\n",
"TRAIN_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"VALIDATION_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"TEST_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"CHECKPOINT_PATH = Path(\"Assets/Dataset/Tmp/NanoSocrates.zip\")\n",
"\n",
"\n",
"# BPE Init\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"\n",
"# Constants\n",
"MASK_EXTRA_SPACE = 25\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_MULTIPLIER = 4\n",
"ATTENTION_HEADS = 8\n",
"SENTENCE_LENGTH = 256\n",
"NUMBER_OF_BLOCKS = 4\n",
"MAX_EPOCHS = int(1e3)\n",
"PRETRAIN_EPOCHS = int(2)\n",
"WARMUP_EPOCHS = int(4e3)\n",
"MINI_BATCH_SIZE = 10\n",
"VALIDATION_STEPS = 1\n",
"CHECKPOINT_STEPS = VALIDATION_STEPS * 4\n",
"PATIENCE = 4\n",
"CURRENT_EPOCH = 0\n",
"\n",
"SOS_TOKEN = TOKENANO.encode(\"<SOS>\")[0]\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"SUBJ_TOKEN = TOKENANO.encode(\"<SUBJ>\")[0]\n",
"REL_TOKEN = TOKENANO.encode(\"<PRED>\")[0]\n",
"OBJ_TOKEN = TOKENANO.encode(\"<OBJ>\")[0]\n",
"\n",
"SPECIAL_TOKENS: set[int] = set(TOKENANO.encode(\"\".join(BPE.default_special_tokens())))\n",
"ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])\n",
"FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS\n",
"\n",
"\n",
"# Spanned_Masker\n",
"MASKER = Transformer.SpannedMasker(\n",
" TOKEN_SPACE_SIZE,\n",
" FORBIDDEN_TOKENS\n",
")\n",
"\n",
"TRAIN_BATCHER = Batch.Batcher(\n",
" TRAIN_DATASET_PATH,\n",
" SENTENCE_LENGTH,\n",
" TOKENANO,\n",
" MASKER\n",
")\n",
"VALIDATION_BATCHER = Batch.Batcher(\n",
" VALIDATION_DATASET_PATH,\n",
" SENTENCE_LENGTH,\n",
" TOKENANO,\n",
" MASKER\n",
")\n",
"TEST_BATCHER = Batch.Batcher(\n",
" TEST_DATASET_PATH,\n",
" SENTENCE_LENGTH,\n",
" TOKENANO,\n",
" MASKER\n",
")\n",
"\n",
"\n",
"# Model\n",
"NANOSOCRATES = Transformer.TrainingModel(\n",
" TOKEN_SPACE_SIZE,\n",
" EMBEDDED_SIZE,\n",
" FEED_FORWARD_MULTIPLIER,\n",
" ATTENTION_HEADS,\n",
" NUMBER_OF_BLOCKS\n",
")\n",
"_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(\n",
" NANOSOCRATES,\n",
" TOKEN_SPACE_SIZE,\n",
" EMBEDDED_SIZE\n",
")\n",
"\n",
"\n",
"# Training constants\n",
"cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)\n",
"nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters())\n",
"encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters())\n",
"decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters())\n",
"\n",
"nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)\n",
"encoder_only_scheduler = Transformer.WarmupLR(encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)\n",
"decoder_only_scheduler = Transformer.WarmupLR(decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)\n",
"\n",
"current_epoch = CURRENT_EPOCH\n",
"patience = 0\n",
"\n",
"\n",
"average_loss_validation = {\n",
" \"txt\": float(\"inf\"),\n",
" \"encoder_only\": float(\"inf\"),\n",
" \"decoder_only\": float(\"inf\")\n",
"}\n",
"\n",
"while current_epoch < MAX_EPOCHS:\n",
"\n",
" text_batch_losses = []\n",
" encoder_batch_losses = []\n",
" decoder_batch_losses = []\n",
"\n",
" for batch in TRAIN_BATCHER.batch(MINI_BATCH_SIZE):\n",
"\n",
" src_x, tgt_y, pad_x, pad_y, tasktype = batch\n",
"\n",
" enc_x = torch.tensor(src_x)\n",
" enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)\n",
" dec_x = Transformer.get_decoder_input(MINI_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH)\n",
" dec_x_pad = dec_x.eq(PAD_TOKEN)\n",
" tgt = torch.tensor(tgt_y)\n",
" tgt_pad = torch.tensor(pad_y, dtype=torch.bool)\n",
"\n",
" # Task 1 and Task 2\n",
" if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:\n",
"\n",
" BATCH_LOSS = []\n",
"\n",
" for token_idx in range(0, SENTENCE_LENGTH):\n",
"\n",
" nano_optim.zero_grad()\n",
"\n",
"\n",
"\n",
" pred_logits = NANOSOCRATES((\n",
" enc_x, enc_x_pad, dec_x, dec_x_pad\n",
" ))\n",
"\n",
" pred_logits = pred_logits[:, token_idx, :]\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
"\n",
" loss.backward()\n",
" nano_optim.step()\n",
"\n",
"\n",
" BATCH_LOSS.append(\n",
" loss.item()\n",
" )\n",
"\n",
" if token_idx < SENTENCE_LENGTH - 1:\n",
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
"\n",
" MIN_BATCH_LOSS = min(BATCH_LOSS)\n",
" MAX_BATCH_LOSS = max(BATCH_LOSS)\n",
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
"\n",
" text_batch_losses.append([MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS])\n",
" continue\n",
"\n",
"\n",
" # Pretrain first\n",
" if current_epoch < PRETRAIN_EPOCHS:\n",
" continue\n",
"\n",
"\n",
" # Task 3\n",
" if tasktype == Batch.TaskType.MASKING:\n",
"\n",
" encoder_only_optim.zero_grad()\n",
"\n",
" pred_logits = ENCODER_ONLY((\n",
" enc_x, enc_x_pad\n",
" ))\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt)\n",
"\n",
" loss.backward()\n",
" encoder_only_optim.step()\n",
"\n",
" encoder_batch_losses.append(\n",
" loss.item()\n",
" )\n",
"\n",
" continue\n",
"\n",
"\n",
" # Task 4\n",
" if tasktype == Batch.TaskType.COMPLETATION:\n",
"\n",
" BATCH_LOSS = []\n",
"\n",
" for token_idx in range(0, SENTENCE_LENGTH):\n",
"\n",
" decoder_only_optim.zero_grad()\n",
"\n",
" pred_logits = DECODER_ONLY((\n",
" enc_x, enc_x_pad\n",
" ))\n",
"\n",
" pred_logits = pred_logits[:, token_idx, :]\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
"\n",
" loss.backward()\n",
" decoder_only_optim.step()\n",
"\n",
" BATCH_LOSS.append(\n",
" loss.item()\n",
" )\n",
"\n",
" if token_idx < SENTENCE_LENGTH - 1:\n",
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
"\n",
"\n",
" MIN_BATCH_LOSS = min(BATCH_LOSS)\n",
" MAX_BATCH_LOSS = max(BATCH_LOSS)\n",
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
"\n",
" decoder_batch_losses.append([MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS])\n",
"\n",
" continue\n",
"\n",
"\n",
" nano_scheduler.step()\n",
" encoder_only_scheduler.step()\n",
" decoder_only_scheduler.step()\n",
"\n",
" current_epoch += 1\n",
"\n",
" if current_epoch % VALIDATION_STEPS == 0:\n",
"\n",
" txt_avg_batch_losses = []\n",
" enc_avg_batch_losses = []\n",
" dec_avg_batch_losses = []\n",
"\n",
" for batch in VALIDATION_BATCHER.batch(MINI_BATCH_SIZE):\n",
"\n",
" src_x, tgt_y, pad_x, pad_y, tasktype = batch\n",
"\n",
" enc_x = torch.tensor(src_x)\n",
" enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)\n",
" dec_x = Transformer.get_decoder_input(MINI_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH)\n",
" dec_x_pad = dec_x.eq(PAD_TOKEN)\n",
" tgt = torch.tensor(tgt_y)\n",
" tgt_pad = torch.tensor(pad_y, dtype=torch.bool)\n",
"\n",
" # Task 1 and Task 2\n",
" if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:\n",
"\n",
" BATCH_LOSS = []\n",
"\n",
" for token_idx in range(0, SENTENCE_LENGTH):\n",
"\n",
"\n",
"\n",
" pred_logits = NANOSOCRATES((\n",
" enc_x, enc_x_pad, dec_x, dec_x_pad\n",
" ))\n",
"\n",
" pred_logits = pred_logits[:, token_idx, :]\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
"\n",
"\n",
" BATCH_LOSS.append(\n",
" loss.item()\n",
" )\n",
"\n",
" if token_idx < SENTENCE_LENGTH - 1:\n",
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
"\n",
"\n",
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
" txt_avg_batch_losses.append(AVG_BATCH_LOSS)\n",
"\n",
" continue\n",
"\n",
"\n",
" # Pretrain first\n",
" if current_epoch < PRETRAIN_EPOCHS:\n",
" continue\n",
"\n",
"\n",
" # Task 3\n",
" if tasktype == Batch.TaskType.MASKING:\n",
"\n",
" pred_logits = ENCODER_ONLY((\n",
" enc_x, enc_x_pad\n",
" ))\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt)\n",
"\n",
" enc_avg_batch_losses.append(\n",
" loss.item()\n",
" )\n",
"\n",
" continue\n",
"\n",
"\n",
" # Task 4\n",
" if tasktype == Batch.TaskType.COMPLETATION:\n",
"\n",
" BATCH_LOSS = []\n",
"\n",
" for token_idx in range(0, SENTENCE_LENGTH):\n",
"\n",
" pred_logits = DECODER_ONLY((\n",
" enc_x, enc_x_pad\n",
" ))\n",
"\n",
" pred_logits = pred_logits[:, token_idx, :]\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
"\n",
" BATCH_LOSS.append(\n",
" loss.item()\n",
" )\n",
"\n",
" if token_idx < SENTENCE_LENGTH - 1:\n",
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
"\n",
"\n",
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
"\n",
" dec_avg_batch_losses.append(AVG_BATCH_LOSS)\n",
"\n",
" continue\n",
"\n",
" txt_avg_loss = sum(txt_avg_batch_losses) / len(txt_avg_batch_losses)\n",
" enc_avg_loss = float(\"inf\")\n",
" dec_avg_loss = float(\"inf\")\n",
"\n",
" if current_epoch >= PRETRAIN_EPOCHS:\n",
" enc_avg_loss = sum(enc_avg_batch_losses) / len(enc_avg_batch_losses)\n",
" dec_avg_loss = sum(dec_avg_batch_losses) / len(dec_avg_batch_losses)\n",
"\n",
" if current_epoch < PRETRAIN_EPOCHS:\n",
"\n",
" if txt_avg_loss < average_loss_validation[\"txt\"]:\n",
" average_loss_validation[\"txt\"] = txt_avg_loss\n",
" else:\n",
" patience += 1\n",
" else:\n",
"\n",
" counter = 0\n",
"\n",
" if txt_avg_loss > average_loss_validation[\"txt\"]:\n",
" counter += 1\n",
"\n",
" if txt_avg_loss > average_loss_validation[\"encoder_only\"]:\n",
" counter += 1\n",
"\n",
" if txt_avg_loss > average_loss_validation[\"decoder_only\"]:\n",
" counter += 1\n",
"\n",
" if counter > 1:\n",
" patience += 1\n",
"\n",
" txt_min_train_losses = text_batch_losses[:][0]\n",
" txt_avg_train_losses = text_batch_losses[:][1]\n",
" txt_max_train_losses = text_batch_losses[:][2]\n",
"\n",
" txt_min_loss = min(txt_min_train_losses)\n",
" txt_avg_min_loss = sum(txt_min_train_losses) / len(txt_min_train_losses)\n",
" txt_max_loss = max(txt_max_train_losses)\n",
" txt_avg_max_loss = sum(txt_max_train_losses) / len(txt_max_train_losses)\n",
" txt_avg_loss = sum(txt_avg_train_losses) / len(txt_avg_train_losses)\n",
"\n",
" enc_avg_train_loss = float(\"inf\")\n",
"\n",
" dec_min_loss = float(\"inf\")\n",
" dec_avg_min_loss = float(\"inf\")\n",
" dec_max_loss = float(\"inf\")\n",
" dec_avg_max_loss = float(\"inf\")\n",
" dec_avg_loss = float(\"inf\")\n",
"\n",
" if current_epoch >= PRETRAIN_EPOCHS:\n",
" enc_avg_train_loss = sum(encoder_batch_losses) / len(encoder_batch_losses)\n",
"\n",
" dec_min_train_losses = decoder_batch_losses[:][0]\n",
" dec_avg_train_losses = decoder_batch_losses[:][1]\n",
" dec_max_train_losses = decoder_batch_losses[:][2]\n",
"\n",
" dec_min_loss = min(dec_min_train_losses)\n",
" dec_avg_min_loss = sum(dec_min_train_losses) / len(dec_min_train_losses)\n",
" dec_max_loss = max(dec_max_train_losses)\n",
" dec_avg_max_loss = sum(dec_max_train_losses) / len(dec_max_train_losses)\n",
" dec_avg_loss = sum(dec_avg_train_losses) / len(dec_avg_train_losses)\n",
"\n",
"\n",
" SEPARATOR = \"===========================================================================================\"\n",
" DEBUG_TEXT = \"\".join([\n",
" f\"{SEPARATOR}\\n\",\n",
" f\"EPOCH {current_epoch}\"\n",
" f\"{SEPARATOR}\\n\",\n",
" f\"Train Losses:\\n\"\n",
" f\"\\tMin Losses:\\n\"\n",
" f\"\\t\\tmin_txt: {txt_min_loss} - avg_txt: {txt_avg_min_loss}\\n\"\n",
" f\"\\t\\tmin_dec: {dec_min_loss} - avg_dec: {dec_avg_min_loss}\\n\"\n",
" f\"\\tMax Losses:\\n\"\n",
" f\"\\t\\tmax_txt: {txt_max_loss} - avg_txt: {txt_avg_max_loss}\\n\"\n",
" f\"\\t\\tmax_dec: {dec_min_loss} - avg_dec: {dec_avg_max_loss}\\n\"\n",
" f\"\\tAvg Losses:\\n\"\n",
" f\"\\t\\tavg_txt: {txt_avg_loss} - avg_enc: {enc_avg_loss} - avg_dec: {dec_avg_loss}\\n\"\n",
" f\"{SEPARATOR}\\n\",\n",
" f\"Validation Losses:\\n\"\n",
" f\"\\ttxt_loss: {txt_avg_loss} - masking_loss: {enc_avg_loss} - prediction: {dec_avg_loss}\"\n",
" f\"{SEPARATOR}\\n\",\n",
" ])\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" # Warn about patience\n",
" if patience == PATIENCE:\n",
" print(\n",
" \"Model is likely overfitting, so let's stop here\"\n",
" )\n",
"\n",
" # SAVE MODEL\n",
" if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:\n",
" print(f\"Saving model at {CHECKPOINT_PATH.as_posix()}\")\n",
" torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,410 @@
import random
import sys
import torch
import pandas as pd
from pathlib import Path
import Project_Model.Libs.Embedder as Embedder
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
import Project_Model.Libs.TransformerUtils as TUtils
import Project_Model.Libs.TorchShims as torch_shims
import Project_Model.Libs.Batch as Batch
# set a fixed seed
torch.manual_seed(0)
random.seed(0)
# set a default device
DEVICE = torch_shims.get_default_device()
torch.set_default_device(DEVICE)
# Get paths
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv")
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv")
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv")
CHECKPOINT_PATH = Path("Assets/Dataset/Tmp/NanoSocrates.zip")
# BPE Init
SPECIAL_VOC = BPE.default_special_tokens()
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
# Constants
MASK_EXTRA_SPACE = 100
REAL_TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE
EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 8
SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 4
MAX_EPOCHS = int(1e3)
PRETRAIN_EPOCHS = int(10)
WARMUP_EPOCHS = int(4e3)
MINI_BATCH_SIZE = 100
VALIDATION_STEPS = 5
CHECKPOINT_STEPS = VALIDATION_STEPS * 4
PATIENCE = 4
CURRENT_EPOCH = 0
SOS_TOKEN = TOKENANO.encode("<SOS>")[0]
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
END_TOKEN = TOKENANO.encode("<END>")[0]
SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0]
REL_TOKEN = TOKENANO.encode("<PRED>")[0]
OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0]
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens())))
ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])
FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS
# Spanned_Masker
MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS)
TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
VALIDATION_BATCHER = Batch.Batcher(
VALIDATION_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER
)
TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
# Model
NANOSOCRATES = Transformer.TrainingModel(
TOKEN_SPACE_SIZE,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(
NANOSOCRATES, TOKEN_SPACE_SIZE, EMBEDDED_SIZE
)
# Training constants
nano_cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
encoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
decoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters())
encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters())
decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters())
nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)
encoder_only_scheduler = Transformer.WarmupLR(
encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE
)
decoder_only_scheduler = Transformer.WarmupLR(
decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE
)
current_epoch = CURRENT_EPOCH
patience = 0
average_loss_validation = {
"txt": float("inf"),
"encoder_only": float("inf"),
"decoder_only": float("inf"),
}
while current_epoch < MAX_EPOCHS:
NANOSOCRATES.train()
ENCODER_ONLY.train()
DECODER_ONLY.train()
text_batch_losses = []
encoder_batch_losses = []
decoder_batch_losses = []
for batch in TRAIN_BATCHER.batch(MINI_BATCH_SIZE):
src_x, tgt_y, pad_x, pad_y, tasktype = batch
enc_x = torch.tensor(src_x)
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
MINI_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x_pad = dec_x.eq(PAD_TOKEN)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
# Task 1 and Task 2
if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:
BATCH_LOSS = []
for token_idx in range(0, SENTENCE_LENGTH):
nano_optim.zero_grad()
pred_logits = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
pred_logits = pred_logits[:, token_idx, :]
loss: torch.Tensor = nano_cross_entropy(pred_logits, tgt[:, token_idx])
loss.backward()
nano_optim.step()
BATCH_LOSS.append(loss.item())
if token_idx < SENTENCE_LENGTH - 1:
dec_x[:, token_idx + 1] = tgt[:, token_idx]
MIN_BATCH_LOSS = min(BATCH_LOSS)
MAX_BATCH_LOSS = max(BATCH_LOSS)
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
text_batch_losses.append([MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS])
continue
# Pretrain first
if current_epoch < PRETRAIN_EPOCHS:
continue
# Task 3
if tasktype == Batch.TaskType.MASKING:
encoder_only_optim.zero_grad()
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
print(torch.max(tgt))
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
loss.backward()
encoder_only_optim.step()
encoder_batch_losses.append(loss.item())
continue
# Task 4
if tasktype == Batch.TaskType.COMPLETATION:
BATCH_LOSS = []
for token_idx in range(0, SENTENCE_LENGTH):
decoder_only_optim.zero_grad()
pred_logits = DECODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits[:, token_idx, :]
loss: torch.Tensor = decoder_ce(pred_logits, tgt[:, token_idx])
loss.backward()
decoder_only_optim.step()
BATCH_LOSS.append(loss.item())
if token_idx < SENTENCE_LENGTH - 1:
dec_x[:, token_idx + 1] = tgt[:, token_idx]
MIN_BATCH_LOSS = min(BATCH_LOSS)
MAX_BATCH_LOSS = max(BATCH_LOSS)
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
decoder_batch_losses.append(
[MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS]
)
continue
nano_scheduler.step()
encoder_only_scheduler.step()
decoder_only_scheduler.step()
current_epoch += 1
if current_epoch % VALIDATION_STEPS == 0:
NANOSOCRATES.eval()
ENCODER_ONLY.eval()
DECODER_ONLY.eval()
txt_avg_batch_losses = []
enc_avg_batch_losses = []
dec_avg_batch_losses = []
for batch in VALIDATION_BATCHER.batch(MINI_BATCH_SIZE):
src_x, tgt_y, pad_x, pad_y, tasktype = batch
enc_x = torch.tensor(src_x)
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
MINI_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x_pad = dec_x.eq(PAD_TOKEN)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
# Task 1 and Task 2
if (
tasktype == Batch.TaskType.RDF2TXT
or tasktype == Batch.TaskType.TEXT2RDF
):
BATCH_LOSS = []
for token_idx in range(0, SENTENCE_LENGTH):
pred_logits = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
pred_logits = pred_logits[:, token_idx, :]
loss: torch.Tensor = nano_cross_entropy(pred_logits, tgt[:, token_idx])
BATCH_LOSS.append(loss.item())
if token_idx < SENTENCE_LENGTH - 1:
dec_x[:, token_idx + 1] = tgt[:, token_idx]
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
txt_avg_batch_losses.append(AVG_BATCH_LOSS)
continue
# Pretrain first
if current_epoch < PRETRAIN_EPOCHS:
continue
# Task 3
if tasktype == Batch.TaskType.MASKING:
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
enc_avg_batch_losses.append(loss.item())
continue
# Task 4
if tasktype == Batch.TaskType.COMPLETATION:
BATCH_LOSS = []
for token_idx in range(0, SENTENCE_LENGTH):
pred_logits = DECODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits[:, token_idx, :]
loss: torch.Tensor = decoder_ce(pred_logits, tgt[:, token_idx])
BATCH_LOSS.append(loss.item())
if token_idx < SENTENCE_LENGTH - 1:
dec_x[:, token_idx + 1] = tgt[:, token_idx]
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
dec_avg_batch_losses.append(AVG_BATCH_LOSS)
continue
txt_avg_loss = sum(txt_avg_batch_losses) / len(txt_avg_batch_losses)
enc_avg_loss = float("inf")
dec_avg_loss = float("inf")
if current_epoch >= PRETRAIN_EPOCHS:
enc_avg_loss = sum(enc_avg_batch_losses) / len(enc_avg_batch_losses)
dec_avg_loss = sum(dec_avg_batch_losses) / len(dec_avg_batch_losses)
if current_epoch < PRETRAIN_EPOCHS:
if txt_avg_loss < average_loss_validation["txt"]:
average_loss_validation["txt"] = txt_avg_loss
else:
patience += 1
else:
counter = 0
if txt_avg_loss > average_loss_validation["txt"]:
counter += 1
if txt_avg_loss > average_loss_validation["encoder_only"]:
counter += 1
if txt_avg_loss > average_loss_validation["decoder_only"]:
counter += 1
if counter > 1:
patience += 1
txt_min_train_losses = [row[0] for row in text_batch_losses]
txt_avg_train_losses = [row[1] for row in text_batch_losses]
txt_max_train_losses = [row[2] for row in text_batch_losses]
txt_min_loss = min(txt_min_train_losses)
txt_avg_min_loss = sum(txt_min_train_losses) / len(txt_min_train_losses)
txt_max_loss = max(txt_max_train_losses)
txt_avg_max_loss = sum(txt_max_train_losses) / len(txt_max_train_losses)
txt_avg_loss = sum(txt_avg_train_losses) / len(txt_avg_train_losses)
enc_avg_train_loss = float("inf")
dec_min_loss = float("inf")
dec_avg_min_loss = float("inf")
dec_max_loss = float("inf")
dec_avg_max_loss = float("inf")
dec_avg_loss = float("inf")
if current_epoch >= PRETRAIN_EPOCHS:
enc_avg_train_loss = sum(encoder_batch_losses) / len(encoder_batch_losses)
dec_min_train_losses = [row[0] for row in decoder_batch_losses]
dec_avg_train_losses = [row[1] for row in decoder_batch_losses]
dec_max_train_losses = [row[2] for row in decoder_batch_losses]
dec_min_loss = min(dec_min_train_losses)
dec_avg_min_loss = sum(dec_min_train_losses) / len(dec_min_train_losses)
dec_max_loss = max(dec_max_train_losses)
dec_avg_max_loss = sum(dec_max_train_losses) / len(dec_max_train_losses)
dec_avg_loss = sum(dec_avg_train_losses) / len(dec_avg_train_losses)
SEPARATOR = "================================================================================================================"
DEBUG_TEXT = "".join(
[
f"{SEPARATOR}\n",
f"EPOCH {current_epoch}\n",
f"{SEPARATOR}\n",
f"Train Losses:\n",
f"\tMin Losses:\n",
f"\t\tmin_txt: {txt_min_loss} - avg_txt: {txt_avg_min_loss}\n",
f"\t\tmin_dec: {dec_min_loss} - avg_dec: {dec_avg_min_loss}\n",
f"\tMax Losses:\n",
f"\t\tmax_txt: {txt_max_loss} - avg_txt: {txt_avg_max_loss}\n",
f"\t\tmax_dec: {dec_min_loss} - avg_dec: {dec_avg_max_loss}\n",
f"\tAvg Losses:\n",
f"\t\tavg_txt: {txt_avg_loss} - avg_enc: {enc_avg_loss} - avg_dec: {dec_avg_loss}\n",
f"{SEPARATOR}\n",
f"Validation Losses:\n",
f"\ttxt_loss: {txt_avg_loss} - masking_loss: {enc_avg_loss} - prediction: {dec_avg_loss}\n",
f"{SEPARATOR}\n",
]
)
print(DEBUG_TEXT)
# Warn about patience
if patience == PATIENCE:
print("Model is likely overfitting, so let's stop here")
# SAVE MODEL
if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:
print(f"Saving model at {CHECKPOINT_PATH.as_posix()}")
torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)

View File

@ -3,18 +3,32 @@ import sys
from typing import Any, Generator
import pandas as pd
from pathlib import Path
from Project_Model.Libs.Batch.Enums.TaskType import TaskType
from ..Enums import TaskType
import Project_Model.Libs.BPE as BPE
# from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Project_Model.Libs.Transformer import SpannedMasker, truncate_rdf_list, normalize_sequence
from TokenCompletation import TokenCompletationTransformer
from Project_Model.Libs.Transformer import (
SpannedMasker,
truncate_rdf_list,
normalize_sequence,
)
from Project_Model.Libs.BPE import SpecialToken
MAX_LENGHT = 128
class Batcher:
def __init__(self, dataset_path: Path, tokenizer: BPE.TokeNanoCore, masker: SpannedMasker, seed:int = 0) -> None:
def __init__(
self,
dataset_path: Path,
max_length: int,
tokenizer: BPE.TokeNanoCore,
masker: SpannedMasker,
seed: int = 0,
) -> None:
# ABSTRACT, TRIPLE
# tasks:
# rdf2text: X: TRIPLE, Y: ABSTRACT
@ -26,15 +40,22 @@ class Batcher:
self._dataset_path = dataset_path
self._tokenizer = tokenizer
self._masker = masker
self.__max_length = max_length
self._seed = seed
# self._token_completation = TokenCompletationTransformer(sotl,eos)
self._completation_task_token_truncator = truncate_rdf_list
def batch(self, batch_size)-> Generator[tuple[list[list[int]], list[list[int]], list[list[int]],list[list[int]], TaskType],Any,Any]:
def batch(self, batch_size) -> Generator[
tuple[
list[list[int]],
list[list[int]],
list[list[int]],
list[list[int]],
TaskType
],
Any,
Any,
]:
"""
Yields: X,Y,padding_X
"""
@ -45,18 +66,34 @@ class Batcher:
tokenized_batch = pd.DataFrame()
# encode
tokenized_batch[["Abstract","RDFs"]] = (
batch[["Abstract","RDFs"]]
.map(lambda t: self._tokenizer.encode(t))
tokenized_batch[["Abstract", "RDFs"]] = batch[["Abstract", "RDFs"]].map(
lambda t: self._tokenizer.encode(t)
)
X, Y, padding_X, padding_Y = self.__rdf2txt_transformation(tokenized_batch)
yield X, Y, padding_X, padding_Y, TaskType.RDF2TXT
X,Y, padding_X, padding_Y, = self.__txt2rdf_transformation(tokenized_batch)
(
X,
Y,
padding_X,
padding_Y,
) = self.__txt2rdf_transformation(tokenized_batch)
yield X, Y, padding_X, padding_Y, TaskType.TEXT2RDF
X,Y, padding_X, padding_Y, = self.__masking_trasformation(tokenized_batch)
(
X,
Y,
padding_X,
padding_Y,
) = self.__masking_trasformation(tokenized_batch)
yield X, Y, padding_X, padding_Y, TaskType.MASKING
X,Y, padding_X, padding_Y, = self.__token_completation_task(tokenized_batch, RNG.randint(0,sys.maxsize))
(
X,
Y,
padding_X,
padding_Y,
) = self.__token_completation_task(
tokenized_batch, RNG.randint(0, sys.maxsize)
)
yield X, Y, padding_X, padding_Y, TaskType.COMPLETATION
# output = pd.concat([rdf2txt_batch,txt2rdf_batch,completation_batch],ignore_index=True)
@ -64,7 +101,6 @@ class Batcher:
# self.decode_debug(output)
# yield output
def __random_subset_rdfs(self, batch: pd.DataFrame, seed=0):
# WIP
rng = random.Random(seed)
@ -72,20 +108,16 @@ class Batcher:
def to_list(x):
return x.split(SpecialToken.START_TRIPLE.value)[1:]
batch["RDFs"] = batch["RDFs"].map(
to_list
)
batch["RDFs"] = batch["RDFs"].map(to_list)
def decode_debug(self, batch: pd.DataFrame):
decoded = pd.DataFrame()
decoded[["X","Y"]] = (
batch[["X","Y"]]
.map(lambda t: self._tokenizer.decode(t))
)
decoded[["X", "Y"]] = batch[["X", "Y"]].map(lambda t: self._tokenizer.decode(t))
print(decoded)
def __normalization(self, X:list[list[int]], Y: list[list[int]])-> tuple[list[list[int]], list[list[int]], list[list[int]], list[list[int]]]:
def __normalization(
self, X: list[list[int]], Y: list[list[int]]
) -> tuple[list[list[int]], list[list[int]], list[list[int]], list[list[int]]]:
pad_token = self._tokenizer.encode(SpecialToken.PAD.value)[0]
end_token = self._tokenizer.encode(SpecialToken.END_OF_SEQUENCE.value)[0]
out_X = []
@ -94,32 +126,33 @@ class Batcher:
padding_Y = []
for x in X:
out_x, padding_x = normalize_sequence(x,MAX_LENGHT,pad_token,end_token,True)
out_x, padding_x = normalize_sequence(
x, self.__max_length, pad_token, end_token, True
)
out_X.append(out_x)
padding_X.append(padding_x)
for y in Y:
out_y, padding_y = normalize_sequence(y,MAX_LENGHT,pad_token,end_token,True)
out_y, padding_y = normalize_sequence(
y, self.__max_length, pad_token, end_token, True
)
out_Y.append(out_y)
padding_Y.append(padding_y)
return out_X, out_Y, padding_X, padding_Y
def __rdf2txt_transformation(self, batch: pd.DataFrame):
task_token = self._tokenizer.encode(SpecialToken.RDF_TO_TEXT.value)
out = batch.rename(columns={"RDFs": "X", "Abstract": "Y"})[["X", "Y"]]
out["X"] = [task_token + x for x in out["X"]]
return self.__normalization(out["X"].to_list(), out["Y"].to_list())
def __txt2rdf_transformation(self, batch: pd.DataFrame):
task_token = self._tokenizer.encode(SpecialToken.TEXT_TO_RDF.value)
out = batch.rename(columns={"Abstract": "X", "RDFs": "Y"})[["X", "Y"]]
out["X"] = [task_token + x for x in out["X"]]
return self.__normalization(out["X"].to_list(), out["Y"].to_list())
def __masking_trasformation(self, batch: pd.DataFrame):
X = []
Y = []
@ -129,27 +162,29 @@ class Batcher:
Y.append(y)
return self.__normalization(X, Y)
def __token_completation_task(self, batch: pd.DataFrame, minibatch_seed: int):
continue_triple_token = self._tokenizer.encode(SpecialToken.CONTINUE_RDF.value)[0]
continue_triple_token = self._tokenizer.encode(SpecialToken.CONTINUE_RDF.value)[
0
]
eot = self._tokenizer.encode(SpecialToken.END_TRIPLE.value)[0]
X = []
Y = []
for rdf in batch["RDFs"]:
x,y = self._completation_task_token_truncator(rdf, 0.5, continue_triple_token, eot, minibatch_seed)
x, y = self._completation_task_token_truncator(
rdf, 0.5, continue_triple_token, eot, minibatch_seed
)
X.append(x)
Y.append(y)
return self.__normalization(X, Y)
if __name__ == "__main__":
DATASET_PATH = Path("Assets/Dataset/Tmp/rdf_text.csv")
VOCABULARY_path = "Assets/Dataset/Tmp/trimmed.json"
from pathlib import Path
VOCABULARY = BPE.load_nanos_vocabulary(Path(VOCABULARY_path))
SPECIAL_LIST = BPE.default_special_tokens()
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_LIST)

View File

@ -0,0 +1,2 @@
from .Batcher import Batcher
from .TokenCompletation import TokenCompletationTransformer

View File

@ -0,0 +1,5 @@
from .TaskType import TaskType
__all__ = [
"TaskType"
]

View File

@ -0,0 +1,5 @@
from .Classes import *
from .Enums import *
from . import Classes
from . import Enums

View File

@ -10,7 +10,7 @@ class SpannedMasker:
max_vocabulary: int,
forbidden_tokens: set[int],
change_token_probability: float = 0.15,
average_span: int = 1,
average_span: int = 2,
seed: int = random.randint(0, sys.maxsize),
) -> None:

View File

@ -4,6 +4,7 @@ from .post_tokenization import truncate_sequence, pad_sequence, normalize_sequen
from .inference_masking import inference_masking
from .truncate_rdf_list import truncate_rdf_list
from .decode_out import tensor2token
from .decoder_input import get_decoder_input
__all__ = [
@ -17,4 +18,5 @@ __all__ = [
"inference_masking",
"truncate_rdf_list",
"tensor2token",
"get_decoder_input"
]

View File

@ -1,5 +1,5 @@
import torch
from Project_Model.Libs.Transformer import normalize_sequence
from ..Utils import normalize_sequence
# from Project_Model.Libs.Embedder import NanoSocratesEmbedder as Embedder