Merge branch 'dev.train' of https://repositories.communitynotfound.work/PoliBa-DeepLearning/NanoSocrates into dev.train
This commit is contained in:
@@ -28,6 +28,7 @@ class Batcher:
|
||||
tokenizer: BPE.TokeNanoCore,
|
||||
masker: SpannedMasker,
|
||||
seed: int = 0,
|
||||
debug = False
|
||||
) -> None:
|
||||
# ABSTRACT, TRIPLE
|
||||
# tasks:
|
||||
@@ -44,6 +45,7 @@ class Batcher:
|
||||
self._seed = seed
|
||||
# self._token_completation = TokenCompletationTransformer(sotl,eos)
|
||||
self._completation_task_token_truncator = truncate_rdf_list
|
||||
self.__debug = debug
|
||||
|
||||
def batch(self, batch_size) -> Generator[
|
||||
tuple[
|
||||
@@ -142,6 +144,7 @@ class Batcher:
|
||||
return out_X, out_Y, padding_X, padding_Y
|
||||
|
||||
def __rdf2txt_transformation(self, batch: pd.DataFrame):
|
||||
X: list[list[int]]
|
||||
task_token = self._tokenizer.encode(SpecialToken.RDF_TO_TEXT.value)
|
||||
out = batch.rename(columns={"RDFs": "X", "Abstract": "Y"})[["X", "Y"]]
|
||||
out["X"] = [task_token + x for x in out["X"]]
|
||||
@@ -157,7 +160,7 @@ class Batcher:
|
||||
X = []
|
||||
Y = []
|
||||
for rdf in batch["RDFs"]:
|
||||
x, y = self._masker.mask_sequence(rdf)
|
||||
x, y = self._masker.mask_sequence(rdf[:self.__max_length])
|
||||
X.append(x)
|
||||
Y.append(y)
|
||||
return self.__normalization(X, Y)
|
||||
@@ -181,7 +184,7 @@ class Batcher:
|
||||
|
||||
def __token_cmpletation_task_special_normalization(self, X: list[list[int]], Y: list[list[int]]
|
||||
) -> tuple[list[list[int]], list[list[int]], list[list[int]], list[list[int]]]:
|
||||
|
||||
|
||||
def continue_rdf_padding(sequence: list[int], pad_token: int):
|
||||
for i, x in enumerate(sequence):
|
||||
if x == pad_token:
|
||||
|
||||
@@ -83,7 +83,14 @@ class NanoSocratesCore(torch.nn.Module):
|
||||
x, padding = args
|
||||
|
||||
encoder_tensor = self.__encoder_embedder(x)
|
||||
BATCH, SEQ_LEN, _ = x.shape
|
||||
|
||||
BATCH: int
|
||||
|
||||
if len(x.shape) > 2:
|
||||
BATCH, SEQ_LEN, _ = x.shape
|
||||
else:
|
||||
_, SEQ_LEN = x.shape
|
||||
BATCH = 1
|
||||
|
||||
encoder_output, _ = self.__encoder((encoder_tensor, padding))
|
||||
|
||||
@@ -95,25 +102,32 @@ class NanoSocratesCore(torch.nn.Module):
|
||||
|
||||
while continue_generating:
|
||||
|
||||
decoder_in = self.__decoder_embedder(decoder_in)
|
||||
decoder_in_x = self.__decoder_embedder(decoder_in)
|
||||
|
||||
decoder_output, _, _, _, _, _ = self.__decoder(
|
||||
(decoder_in, encoder_output, encoder_output, padding, decoder_in_pad_mask, False)
|
||||
(decoder_in_x, encoder_output, encoder_output, padding, decoder_in_pad_mask, False)
|
||||
)
|
||||
|
||||
logits: torch.Tensor = self.__detokener(decoder_output)
|
||||
|
||||
logits = torch.softmax(logits, 2)
|
||||
|
||||
tokens = torch.argmax(logits)
|
||||
tokens = torch.argmax(logits, 2)
|
||||
|
||||
if token_idx < self.__sentence_len - 1:
|
||||
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
|
||||
decoder_in_pad_mask = decoder_in.eq(self.__pad)
|
||||
|
||||
if token_idx == self.__sentence_len - 1:
|
||||
continue_generating = False
|
||||
continue
|
||||
|
||||
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
|
||||
continue_generating = False
|
||||
continue
|
||||
|
||||
if token_idx < self.__sentence_len - 1:
|
||||
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
|
||||
decoder_in_pad_mask = decoder_in.eq(self.__pad)
|
||||
|
||||
token_idx += 1
|
||||
|
||||
return decoder_in
|
||||
|
||||
@@ -130,7 +144,7 @@ class NanoSocratesCore(torch.nn.Module):
|
||||
|
||||
logits = torch.softmax(logits, 2)
|
||||
|
||||
tokens = torch.argmax(logits)
|
||||
tokens = torch.argmax(logits, 2)
|
||||
|
||||
return tokens
|
||||
|
||||
@@ -146,31 +160,56 @@ class NanoSocratesCore(torch.nn.Module):
|
||||
|
||||
while continue_generating:
|
||||
|
||||
decoder_in = self.__decoder_embedder(decoder_in)
|
||||
decoder_x = self.__decoder_embedder(decoder_in)
|
||||
|
||||
decoder_output, _, _, _, _, _ = self.__decoder(
|
||||
(decoder_in, decoder_in, decoder_in, decoder_in_prefix_mask, decoder_in_pad_mask, False)
|
||||
(decoder_x, decoder_in, decoder_in, decoder_in_prefix_mask, decoder_in_pad_mask, True)
|
||||
)
|
||||
|
||||
logits: torch.Tensor = self.__detokener(decoder_output)
|
||||
|
||||
logits = torch.softmax(logits, 2)
|
||||
|
||||
tokens = torch.argmax(logits)
|
||||
tokens = torch.argmax(logits, 2)
|
||||
|
||||
if token_idx < self.__sentence_len - 1:
|
||||
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
|
||||
decoder_in_pad_mask = decoder_in.eq(self.__pad)
|
||||
|
||||
if token_idx == self.__sentence_len - 1:
|
||||
continue_generating = False
|
||||
continue
|
||||
|
||||
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
|
||||
continue_generating = False
|
||||
continue
|
||||
|
||||
if token_idx < self.__sentence_len - 1:
|
||||
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
|
||||
decoder_in_pad_mask = decoder_in.eq(self.__pad)
|
||||
token_idx += 1
|
||||
|
||||
|
||||
|
||||
|
||||
return decoder_in
|
||||
|
||||
def take_pieces(self):
|
||||
|
||||
return (
|
||||
(self.__encoder_embedder, self.__encoder),
|
||||
(self.__encoder_embedder, self.__encoder, self.__encoder_detokener),
|
||||
(self.__decoder_embedder, self.__decoder, self.__detokener)
|
||||
)
|
||||
)
|
||||
|
||||
def load_pieces(
|
||||
self,
|
||||
encoder_embedder: Embedder.NanoSocratesEmbedder,
|
||||
decoder_embedder: Embedder.NanoSocratesEmbedder,
|
||||
encoder: torch.nn.Sequential,
|
||||
decoder: torch.nn.Sequential,
|
||||
encoder_detokener: DeToken,
|
||||
decoder_detokener: DeToken
|
||||
):
|
||||
self.__encoder_embedder = encoder_embedder
|
||||
self.__decoder_embedder = decoder_embedder
|
||||
self.__encoder = encoder
|
||||
self.__decoder = decoder
|
||||
self.__encoder_detokener = encoder_detokener
|
||||
self.__detokener = decoder_detokener
|
||||
@@ -1,9 +1,11 @@
|
||||
from .TrainingModel import TrainingModel
|
||||
from .NanoSocratEncoder import NanoSocratEncoder
|
||||
from .NanoSocraDecoder import NanoSocraDecoder
|
||||
from .NanoSocrates import NanoSocratesCore
|
||||
|
||||
__all__ = [
|
||||
"TrainingModel",
|
||||
"NanoSocratEncoder",
|
||||
"NanoSocraDecoder"
|
||||
"NanoSocraDecoder",
|
||||
"NanoSocratesCore"
|
||||
]
|
||||
@@ -1,6 +1,7 @@
|
||||
from enum import Enum, auto
|
||||
|
||||
class TaskType(Enum):
|
||||
TEXT2RDF = auto()
|
||||
RDF2TEXT = auto()
|
||||
MASK = auto()
|
||||
COMPLETATION = auto()
|
||||
@@ -1,8 +1,14 @@
|
||||
from .model_utils import decompose_nano_socrates, create_standalone_model
|
||||
from .model_utils import decompose_nano_socrates, create_standalone_model, train2inference
|
||||
from .ModelType import ModelType
|
||||
from .decode_batch import decode_batch
|
||||
from .metrics import precision, recall, accuracy, f1, meteor, bleu, rouge, average, rdf2txt, txt2rdf, rdf_completion_1, rdf_completion_2, remove_padding, balance_paddings
|
||||
|
||||
__all__ = [
|
||||
"ModelType",
|
||||
"decompose_nano_socrates",
|
||||
"create_standalone_model"
|
||||
"create_standalone_model",
|
||||
"decode_batch",
|
||||
"train2inference",
|
||||
"precision", "recall", "accuracy", "f1", "meteor", "bleu", "rouge", "average",
|
||||
"rdf2txt", "txt2rdf", "rdf_completion_1", "rdf_completion_2", "remove_padding", "balance_paddings"
|
||||
]
|
||||
16
Project_Model/Libs/TransformerUtils/decode_batch.py
Normal file
16
Project_Model/Libs/TransformerUtils/decode_batch.py
Normal file
@@ -0,0 +1,16 @@
|
||||
import torch
|
||||
import Project_Model.Libs.BPE as BPE
|
||||
|
||||
def decode_batch(batch: torch.Tensor, tokenizer: BPE.TokeNanoCore ,uknonw_token: int) -> list[str]:
|
||||
|
||||
strings = []
|
||||
|
||||
BATCH, _ = batch.shape
|
||||
|
||||
for i in range(0, BATCH):
|
||||
|
||||
tokens: list[int] = batch.tolist()[i]
|
||||
tokens = list(map(lambda x: uknonw_token if x > tokenizer.vocabulary_size else x, tokens))
|
||||
strings.append(tokenizer.decode(tokens))
|
||||
|
||||
return strings
|
||||
100
Project_Model/Libs/TransformerUtils/metrics.py
Normal file
100
Project_Model/Libs/TransformerUtils/metrics.py
Normal file
@@ -0,0 +1,100 @@
|
||||
import evaluate as eval
|
||||
|
||||
BLEU = eval.load("bleu")
|
||||
ROUGE = eval.load("rouge")
|
||||
METEOR = eval.load("meteor")
|
||||
|
||||
def precision(ref: list[int], pred: list[int]):
|
||||
metric = eval.load("precision")
|
||||
return metric.compute(predictions=pred, references=ref, average="weighted", zero_division=0)
|
||||
|
||||
|
||||
def recall(ref: list[int], pred: list[int]):
|
||||
metric = eval.load("recall")
|
||||
return metric.compute(predictions=pred, references=ref, average="weighted", zero_division=0)
|
||||
|
||||
|
||||
def accuracy(ref: list[int], pred: list[int]):
|
||||
metric = eval.load("accuracy")
|
||||
return metric.compute(predictions=pred, references=ref)
|
||||
|
||||
|
||||
def meteor(ref: list[str], pred: list[str]):
|
||||
metric = METEOR
|
||||
return metric.compute(predictions=pred, references=ref)
|
||||
|
||||
|
||||
def bleu(ref: list[str], pred: list[str]):
|
||||
metric = BLEU
|
||||
return metric.compute(predictions=pred, references=ref)
|
||||
|
||||
|
||||
def rouge(ref: list[str], pred: list[str]):
|
||||
metric = ROUGE
|
||||
return metric.compute(predictions=pred, references=ref)
|
||||
|
||||
|
||||
def f1(precision: float, recall: float):
|
||||
divisor = max((precision + recall), 1E-5)
|
||||
return (2 * recall * precision) / divisor
|
||||
|
||||
|
||||
def average(array: list[float]):
|
||||
return sum(array) / len(array)
|
||||
|
||||
|
||||
def rdf2txt(ref: list[str], pred: list[str]):
|
||||
|
||||
b_m = bleu(ref, pred)
|
||||
r_m = rouge(ref, pred)
|
||||
m_m = meteor(ref, pred)
|
||||
|
||||
return (b_m, r_m, m_m)
|
||||
|
||||
def txt2rdf(ref: list[int], pred: list[int]):
|
||||
|
||||
p_m = precision(ref, pred)
|
||||
r_m = recall(ref, pred)
|
||||
|
||||
return (p_m, r_m)
|
||||
|
||||
def rdf_completion_1(ref: list[int], pred: list[int]):
|
||||
|
||||
a_m = accuracy(ref, pred)
|
||||
|
||||
return a_m
|
||||
|
||||
|
||||
def rdf_completion_2(ref: list[int], pred: list[int]):
|
||||
|
||||
p_m = precision(ref, pred)
|
||||
r_m = recall(ref, pred)
|
||||
|
||||
return (p_m, r_m)
|
||||
|
||||
|
||||
def remove_padding(seq: list[int], pad_token: int, end_token: int):
|
||||
clean_seq = list(filter(lambda x: x != pad_token, seq))
|
||||
|
||||
if clean_seq[-1] == end_token:
|
||||
return clean_seq
|
||||
|
||||
clean_seq.append(
|
||||
end_token
|
||||
)
|
||||
|
||||
return clean_seq
|
||||
|
||||
|
||||
def balance_paddings(seq_1: list[int], seq_2: list[int], pad_token: int):
|
||||
SEQ_1_LEN = len(seq_1)
|
||||
SEQ_2_LEN = len(seq_2)
|
||||
|
||||
if SEQ_1_LEN > SEQ_2_LEN:
|
||||
PAD = [pad_token] * (SEQ_1_LEN - SEQ_2_LEN)
|
||||
seq_2.extend(PAD)
|
||||
|
||||
if SEQ_2_LEN > SEQ_1_LEN:
|
||||
seq_2 = seq_2[:SEQ_1_LEN]
|
||||
|
||||
return (seq_1, seq_2)
|
||||
@@ -1,13 +1,13 @@
|
||||
import torch
|
||||
from Project_Model.Libs.Embedder import NanoSocratesEmbedder
|
||||
from Project_Model.Libs.Transformer import TrainingModel, NanoSocraDecoder, NanoSocratEncoder, DeToken, Encoder, Decoder
|
||||
from Project_Model.Libs.Transformer import TrainingModel,NanoSocratesCore, NanoSocraDecoder, NanoSocratEncoder, DeToken, Encoder, Decoder
|
||||
from .ModelType import ModelType
|
||||
|
||||
|
||||
|
||||
def decompose_nano_socrates(
|
||||
model: TrainingModel, vocabulary_size: int, embedding_size: int
|
||||
) -> tuple[TrainingModel, NanoSocratEncoder, NanoSocraDecoder]:
|
||||
model: TrainingModel | NanoSocratesCore , vocabulary_size: int, embedding_size: int
|
||||
) -> tuple[TrainingModel | NanoSocratesCore, NanoSocratEncoder, NanoSocraDecoder]:
|
||||
|
||||
encoder_pieces, decoder_pieces = model.take_pieces()
|
||||
encoder_embedder, encoder, encoder_detokener = encoder_pieces
|
||||
@@ -19,6 +19,26 @@ def decompose_nano_socrates(
|
||||
NanoSocraDecoder(decoder_embedder, decoder, decoder_detokener),
|
||||
)
|
||||
|
||||
def train2inference(
|
||||
train_model: TrainingModel,
|
||||
inference_model: NanoSocratesCore
|
||||
) -> NanoSocratesCore:
|
||||
|
||||
encoder_pieces, decoder_pieces = train_model.take_pieces()
|
||||
enc_emb, encoder, enc_det = encoder_pieces
|
||||
dec_emb, decoder, dec_det = decoder_pieces
|
||||
inference_model.load_pieces(
|
||||
enc_emb,
|
||||
dec_emb,
|
||||
encoder,
|
||||
decoder,
|
||||
enc_det,
|
||||
dec_det
|
||||
)
|
||||
|
||||
return inference_model
|
||||
|
||||
|
||||
|
||||
def create_standalone_model(
|
||||
model_type: ModelType,
|
||||
|
||||
Reference in New Issue
Block a user