This commit is contained in:
GassiGiuseppe 2025-10-17 16:38:12 +02:00
commit 86a063591e
19 changed files with 546 additions and 44 deletions

BIN
Assets/Model/curated/NanoSocrates.zip (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Assets/Model/curated/dec_optim(5).zip (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Assets/Model/curated/enc_optim(5).zip (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Assets/Model/curated/last_epoch(5).txt (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Assets/Model/curated/nano_optim(5).zip (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Assets/Model/curated/settings.txt (Stored with Git LFS) Normal file

Binary file not shown.

256
Playgrounds/evaluation.py Normal file
View File

@ -0,0 +1,256 @@
import torch
from pathlib import Path
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
import Project_Model.Libs.TransformerUtils as TUtils
import Project_Model.Libs.TorchShims as torch_shims
import Project_Model.Libs.Batch as Batch
# set a default device
DEVICE = torch_shims.get_default_device()
torch.set_default_device(DEVICE)
# Get paths
# MODEL_DIR = "Assets/Model/curated"
MODEL_DIR= "Assets/Dataset/Tmp"
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv")
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv")
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv")
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
MODEL_PATH = Path(f"{MODEL_DIR}/NanoSocrates.zip")
# BPE Init
SPECIAL_VOC = BPE.default_special_tokens()
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
# Constants
MASK_EXTRA_SPACE = 100
REAL_TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE
EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 4
SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 2
SOS_TOKEN = TOKENANO.encode("<SOS>")[0]
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
END_TOKEN = TOKENANO.encode("<EOS>")[0]
SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0]
REL_TOKEN = TOKENANO.encode("<PRED>")[0]
OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0]
MASK_TOKEN = TOKENANO.encode("<MASK>")[0]
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens())))
ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])
FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS
# Spanned_Masker
MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS)
TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
VALIDATION_BATCHER = Batch.Batcher(
VALIDATION_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER
)
TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER, debug=True)
# Model
NANOSOCRATES_TRAIN = Transformer.TrainingModel(
TOKEN_SPACE_SIZE,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
NANOSOCRATES = Transformer.NanoSocratesCore(
TOKEN_SPACE_SIZE,
SENTENCE_LENGTH,
SOS_TOKEN,
PAD_TOKEN,
END_TOKEN,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
if MODEL_PATH.is_file():
nanosocrates_dict = torch.load(MODEL_PATH, weights_only=True, map_location=DEVICE)
NANOSOCRATES_TRAIN.load_state_dict(nanosocrates_dict)
_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(
NANOSOCRATES, TOKEN_SPACE_SIZE, EMBEDDED_SIZE
)
NANOSOCRATES = TUtils.train2inference(
NANOSOCRATES_TRAIN,
NANOSOCRATES
)
NANOSOCRATES.eval()
ENCODER_ONLY.eval()
DECODER_ONLY.eval()
NANOSOCRATES_TRAIN.eval()
task_1_metrics = []
task_2_metrics = []
task_3_metrics = []
task_4_metrics = []
example_num = 0
with torch.no_grad():
for example in TEST_BATCHER.batch(1):
print(f"DOING Example: {example_num}")
src_x, tgt_y, pad_x, pad_y, tasktype = example
enc_x = torch.tensor(src_x)
ACTUAL_BATCH_SIZE, _ = enc_x.shape
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x[:, 1:] = tgt[:, :-1]
dec_x_pad = dec_x.eq(PAD_TOKEN)
out: torch.Tensor = NANOSOCRATES.inference((enc_x, enc_x_pad), tasktype)
tokens: list[int] = out.tolist()[0]
tokens.append(END_TOKEN)
tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, tokens))
out_string = TOKENANO.decode(tokens)
exp_tokens: list[int] = tgt_y[0]
exp_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, exp_tokens))
exp_string = TOKENANO.decode(exp_tokens)
enc_tokens: list[int] = src_x[0]
enc_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, enc_tokens))
enc_string = TOKENANO.decode(enc_tokens)
print(f"PROMPT:\n{enc_string}")
print(f"EXPECTED:\n{exp_string}")
print(f"ACTUAL:\n{out_string}")
if tasktype == Batch.TaskType.RDF2TXT:
example_num += 1
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
pred = TUtils.remove_padding(tokens, PAD_TOKEN, END_TOKEN)
ref_str = TOKENANO.decode(ref)
pred_str = TOKENANO.decode(pred)
bleu, rouge, meteor = TUtils.rdf2txt([ref_str], [pred_str])
task_1_metrics.append(
[
bleu["bleu"], rouge["rougeL"], meteor["meteor"] # type: ignore
]
)
if tasktype == Batch.TaskType.TEXT2RDF:
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
pred = TUtils.remove_padding(tokens[1:], PAD_TOKEN, END_TOKEN)
ref, pred = TUtils.balance_paddings(ref, pred, PAD_TOKEN)
precision, recall = TUtils.txt2rdf(ref, pred)
task_2_metrics.append(
[
precision["precision"], recall["recall"] # type: ignore
]
)
if tasktype == Batch.TaskType.MASKING:
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
pred = TUtils.remove_padding(tokens, PAD_TOKEN, END_TOKEN)
ref, pred = TUtils.balance_paddings(ref, pred, PAD_TOKEN)
accuracy = TUtils.accuracy(ref, pred)
task_3_metrics.append(
accuracy["accuracy"] # type: ignore
)
if tasktype == Batch.TaskType.COMPLETATION:
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
pred = TUtils.remove_padding(tokens, PAD_TOKEN, END_TOKEN)
ref, pred = TUtils.balance_paddings(ref, pred, PAD_TOKEN)
precision, recall = TUtils.txt2rdf(ref, pred)
task_4_metrics.append(
[
precision["precision"], recall["recall"] # type: ignore
]
)
bleus = [row[0] for row in task_1_metrics]
rouges = [row[1] for row in task_1_metrics]
meteors = [row[2] for row in task_1_metrics]
prec_1 = [row[0] for row in task_2_metrics]
rec_1 = [row[1] for row in task_2_metrics]
acc = task_3_metrics
prec_2 = [row[0] for row in task_4_metrics]
rec_2 = [row[1] for row in task_4_metrics]
BLEU = TUtils.average(bleus)
ROUGE = TUtils.average(rouges)
METEOR = TUtils.average(meteors)
PREC_1 = TUtils.average(prec_1)
REC_1 = TUtils.average(rec_1)
F1_1 = TUtils.f1(PREC_1, REC_1)
ACC = TUtils.average(acc)
PREC_2 = TUtils.average(prec_2)
REC_2 = TUtils.average(rec_2)
F1_2 = TUtils.f1(PREC_2, REC_2)
SEPARATOR = "**************************************************************************"
OUTPUT = "".join([
f"{SEPARATOR}\n",
"*\tRDF2TXT:\n",
f"*\t\tBLEU: {BLEU} - ROUGE: {ROUGE} - METEOR: {METEOR}\n"
f"{SEPARATOR}\n",
"*\tTXT2RDF:\n",
f"*\t\tPRECISION: {PREC_1} - RECALL: {REC_1} - F1: {F1_1}\n"
f"{SEPARATOR}\n",
"*\tRDF Completion 1:\n",
f"*\t\tACCURACY: {ACC}\n"
f"{SEPARATOR}\n",
"*\tRDF Completion 2:\n",
f"*\t\tPRECISION: {PREC_2} - RECALL: {REC_2} - F1: {F1_2}\n"
f"{SEPARATOR}\n",
""
])
print(OUTPUT)
print("\nDEBUG")
print(task_1_metrics)
print(task_2_metrics)
print(task_3_metrics)
print(task_4_metrics)

View File

@ -24,9 +24,9 @@ torch.set_default_device(DEVICE)
# Get paths # Get paths
CHECKPOINT_DIR = "Assets/Dataset/Tmp" CHECKPOINT_DIR = "Assets/Dataset/Tmp"
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json") VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv") TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv") VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv") TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
CHECKPOINT_PATH = Path(f"{CHECKPOINT_DIR}/NanoSocrates.zip") CHECKPOINT_PATH = Path(f"{CHECKPOINT_DIR}/NanoSocrates.zip")
NANO_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/nano_optim.zip") NANO_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/nano_optim.zip")
@ -51,19 +51,20 @@ REAL_TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE
EMBEDDED_SIZE = 256 EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4 FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 8 ATTENTION_HEADS = 4
SENTENCE_LENGTH = 256 SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 4 NUMBER_OF_BLOCKS = 2
MAX_EPOCHS = int(3e3) MAX_EPOCHS = int(300)
PRETRAIN_EPOCHS = int(300) PRETRAIN_EPOCHS = int(20)
WARMUP_EPOCHS = int(1e3) WARMUP_EPOCHS = int(30)
MINI_BATCH_SIZE = 80 MINI_BATCH_SIZE = 20
VALIDATION_STEPS = 5 VALIDATION_STEPS = 10
CHECKPOINT_STEPS = VALIDATION_STEPS * 4 CHECKPOINT_STEPS = VALIDATION_STEPS
PATIENCE = 4 PATIENCE = 4
CURRENT_EPOCH = -1 if not LAST_EPOCH_PATH.is_file() else int(LAST_EPOCH_PATH.read_text()) CURRENT_EPOCH = -1 if not LAST_EPOCH_PATH.is_file() else int(LAST_EPOCH_PATH.read_text())
VERBOSE = True VERBOSE = False
LEARNING_RATE = 1.5 LEARNING_RATE = 0.05
LABEL_SMOOTHING = 0.01
SOS_TOKEN = TOKENANO.encode("<SOS>")[0] SOS_TOKEN = TOKENANO.encode("<SOS>")[0]
@ -72,6 +73,7 @@ END_TOKEN = TOKENANO.encode("<END>")[0]
SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0] SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0]
REL_TOKEN = TOKENANO.encode("<PRED>")[0] REL_TOKEN = TOKENANO.encode("<PRED>")[0]
OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0] OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0]
MASK_TOKEN = TOKENANO.encode("<MASK>")[0]
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens()))) SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens())))
ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN]) ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])
@ -79,7 +81,7 @@ FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS
# Spanned_Masker # Spanned_Masker
MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS) MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS, average_span=4)
TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER) TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
VALIDATION_BATCHER = Batch.Batcher( VALIDATION_BATCHER = Batch.Batcher(
@ -107,9 +109,9 @@ _, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(
# Training constants # Training constants
nano_cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN) nano_cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN, label_smoothing=LABEL_SMOOTHING)
encoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN) encoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN, label_smoothing=LABEL_SMOOTHING)
decoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN) decoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN, label_smoothing=LABEL_SMOOTHING)
nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters(), LEARNING_RATE) nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters(), LEARNING_RATE)
encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters(), LEARNING_RATE) encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters(), LEARNING_RATE)
decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters(), LEARNING_RATE) decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters(), LEARNING_RATE)
@ -179,6 +181,24 @@ while current_epoch < MAX_EPOCHS:
dec_x[:, 1:] = tgt[:, :-1] dec_x[:, 1:] = tgt[:, :-1]
dec_x_pad = dec_x.eq(PAD_TOKEN) dec_x_pad = dec_x.eq(PAD_TOKEN)
if VERBOSE:
for s in TUtils.decode_batch(enc_x, TOKENANO, MASK_TOKEN):
print("Input")
print(s)
for s in TUtils.decode_batch(enc_x_pad, TOKENANO, MASK_TOKEN):
print("Encoder Padding mask")
print(s)
for s in TUtils.decode_batch(tgt, TOKENANO, MASK_TOKEN):
print("Desired Output")
print(s)
a_dx = dec_x[:,:]
a_dx[:, -1]= END_TOKEN
for s in TUtils.decode_batch(a_dx, TOKENANO, MASK_TOKEN):
print("Decoder Input")
print(s)
if VERBOSE: if VERBOSE:
print(f"\tBATCH {batch_counter} Starting") print(f"\tBATCH {batch_counter} Starting")
@ -346,24 +366,45 @@ while current_epoch < MAX_EPOCHS:
average_loss_validation["txt"] = txt_avg_loss average_loss_validation["txt"] = txt_avg_loss
else: else:
patience += 1 patience += 1
if VERBOSE:
print(f"losing a patience, current irritation: {patience}")
else: else:
counter = 0 counter = 0
if txt_avg_loss > average_loss_validation["txt"]: if txt_avg_loss > average_loss_validation["txt"]:
counter += 1
if txt_avg_loss > average_loss_validation["encoder_only"]: if VERBOSE:
print("txt average is higher than lowest")
counter += 1 counter += 1
else:
average_loss_validation["txt"] = txt_avg_loss
if txt_avg_loss > average_loss_validation["decoder_only"]: if enc_avg_loss > average_loss_validation["encoder_only"]:
if VERBOSE:
print("masking average is higher than lowest")
counter += 1 counter += 1
else:
average_loss_validation["encoder_only"] = enc_avg_loss
if dec_avg_loss > average_loss_validation["decoder_only"]:
if VERBOSE:
print("decoding only average is higher than lowest")
counter += 1
else:
average_loss_validation["decoder_only"] = dec_avg_loss
if counter > 1: if counter > 1:
patience += 1 patience += 1
if VERBOSE:
print(f"losing a patience, current irritation: {patience}")
if counter == 0: if counter == 0:
patience = max(0, patience - 1) patience = max(0, patience - 1)
if VERBOSE:
print(f"all good, gaining a patience, current irritation: {patience}")
txt_train_avg_loss = sum(text_batch_losses) / len(text_batch_losses) txt_train_avg_loss = sum(text_batch_losses) / len(text_batch_losses)

View File

@ -28,6 +28,7 @@ class Batcher:
tokenizer: BPE.TokeNanoCore, tokenizer: BPE.TokeNanoCore,
masker: SpannedMasker, masker: SpannedMasker,
seed: int = 0, seed: int = 0,
debug = False
) -> None: ) -> None:
# ABSTRACT, TRIPLE # ABSTRACT, TRIPLE
# tasks: # tasks:
@ -44,6 +45,7 @@ class Batcher:
self._seed = seed self._seed = seed
# self._token_completation = TokenCompletationTransformer(sotl,eos) # self._token_completation = TokenCompletationTransformer(sotl,eos)
self._completation_task_token_truncator = truncate_rdf_list self._completation_task_token_truncator = truncate_rdf_list
self.__debug = debug
def batch(self, batch_size) -> Generator[ def batch(self, batch_size) -> Generator[
tuple[ tuple[
@ -142,6 +144,7 @@ class Batcher:
return out_X, out_Y, padding_X, padding_Y return out_X, out_Y, padding_X, padding_Y
def __rdf2txt_transformation(self, batch: pd.DataFrame): def __rdf2txt_transformation(self, batch: pd.DataFrame):
X: list[list[int]]
task_token = self._tokenizer.encode(SpecialToken.RDF_TO_TEXT.value) task_token = self._tokenizer.encode(SpecialToken.RDF_TO_TEXT.value)
out = batch.rename(columns={"RDFs": "X", "Abstract": "Y"})[["X", "Y"]] out = batch.rename(columns={"RDFs": "X", "Abstract": "Y"})[["X", "Y"]]
out["X"] = [task_token + x for x in out["X"]] out["X"] = [task_token + x for x in out["X"]]
@ -157,7 +160,7 @@ class Batcher:
X = [] X = []
Y = [] Y = []
for rdf in batch["RDFs"]: for rdf in batch["RDFs"]:
x, y = self._masker.mask_sequence(rdf) x, y = self._masker.mask_sequence(rdf[:self.__max_length])
X.append(x) X.append(x)
Y.append(y) Y.append(y)
return self.__normalization(X, Y) return self.__normalization(X, Y)

View File

@ -83,7 +83,14 @@ class NanoSocratesCore(torch.nn.Module):
x, padding = args x, padding = args
encoder_tensor = self.__encoder_embedder(x) encoder_tensor = self.__encoder_embedder(x)
BATCH: int
if len(x.shape) > 2:
BATCH, SEQ_LEN, _ = x.shape BATCH, SEQ_LEN, _ = x.shape
else:
_, SEQ_LEN = x.shape
BATCH = 1
encoder_output, _ = self.__encoder((encoder_tensor, padding)) encoder_output, _ = self.__encoder((encoder_tensor, padding))
@ -95,25 +102,32 @@ class NanoSocratesCore(torch.nn.Module):
while continue_generating: while continue_generating:
decoder_in = self.__decoder_embedder(decoder_in) decoder_in_x = self.__decoder_embedder(decoder_in)
decoder_output, _, _, _, _, _ = self.__decoder( decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_in, encoder_output, encoder_output, padding, decoder_in_pad_mask, False) (decoder_in_x, encoder_output, encoder_output, padding, decoder_in_pad_mask, False)
) )
logits: torch.Tensor = self.__detokener(decoder_output) logits: torch.Tensor = self.__detokener(decoder_output)
logits = torch.softmax(logits, 2) logits = torch.softmax(logits, 2)
tokens = torch.argmax(logits) tokens = torch.argmax(logits, 2)
if token_idx < self.__sentence_len - 1:
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
decoder_in_pad_mask = decoder_in.eq(self.__pad)
if token_idx == self.__sentence_len - 1:
continue_generating = False
continue
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos: if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
continue_generating = False continue_generating = False
continue continue
if token_idx < self.__sentence_len - 1:
decoder_in[:,token_idx + 1] = tokens[:,token_idx] token_idx += 1
decoder_in_pad_mask = decoder_in.eq(self.__pad)
return decoder_in return decoder_in
@ -130,7 +144,7 @@ class NanoSocratesCore(torch.nn.Module):
logits = torch.softmax(logits, 2) logits = torch.softmax(logits, 2)
tokens = torch.argmax(logits) tokens = torch.argmax(logits, 2)
return tokens return tokens
@ -146,31 +160,56 @@ class NanoSocratesCore(torch.nn.Module):
while continue_generating: while continue_generating:
decoder_in = self.__decoder_embedder(decoder_in) decoder_x = self.__decoder_embedder(decoder_in)
decoder_output, _, _, _, _, _ = self.__decoder( decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_in, decoder_in, decoder_in, decoder_in_prefix_mask, decoder_in_pad_mask, False) (decoder_x, decoder_in, decoder_in, decoder_in_prefix_mask, decoder_in_pad_mask, True)
) )
logits: torch.Tensor = self.__detokener(decoder_output) logits: torch.Tensor = self.__detokener(decoder_output)
logits = torch.softmax(logits, 2) logits = torch.softmax(logits, 2)
tokens = torch.argmax(logits) tokens = torch.argmax(logits, 2)
if token_idx < self.__sentence_len - 1:
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
decoder_in_pad_mask = decoder_in.eq(self.__pad)
if token_idx == self.__sentence_len - 1:
continue_generating = False
continue
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos: if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
continue_generating = False continue_generating = False
continue continue
if token_idx < self.__sentence_len - 1: token_idx += 1
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
decoder_in_pad_mask = decoder_in.eq(self.__pad)
return decoder_in return decoder_in
def take_pieces(self): def take_pieces(self):
return ( return (
(self.__encoder_embedder, self.__encoder), (self.__encoder_embedder, self.__encoder, self.__encoder_detokener),
(self.__decoder_embedder, self.__decoder, self.__detokener) (self.__decoder_embedder, self.__decoder, self.__detokener)
) )
def load_pieces(
self,
encoder_embedder: Embedder.NanoSocratesEmbedder,
decoder_embedder: Embedder.NanoSocratesEmbedder,
encoder: torch.nn.Sequential,
decoder: torch.nn.Sequential,
encoder_detokener: DeToken,
decoder_detokener: DeToken
):
self.__encoder_embedder = encoder_embedder
self.__decoder_embedder = decoder_embedder
self.__encoder = encoder
self.__decoder = decoder
self.__encoder_detokener = encoder_detokener
self.__detokener = decoder_detokener

View File

@ -1,9 +1,11 @@
from .TrainingModel import TrainingModel from .TrainingModel import TrainingModel
from .NanoSocratEncoder import NanoSocratEncoder from .NanoSocratEncoder import NanoSocratEncoder
from .NanoSocraDecoder import NanoSocraDecoder from .NanoSocraDecoder import NanoSocraDecoder
from .NanoSocrates import NanoSocratesCore
__all__ = [ __all__ = [
"TrainingModel", "TrainingModel",
"NanoSocratEncoder", "NanoSocratEncoder",
"NanoSocraDecoder" "NanoSocraDecoder",
"NanoSocratesCore"
] ]

View File

@ -1,6 +1,7 @@
from enum import Enum, auto from enum import Enum, auto
class TaskType(Enum): class TaskType(Enum):
TEXT2RDF = auto()
RDF2TEXT = auto() RDF2TEXT = auto()
MASK = auto() MASK = auto()
COMPLETATION = auto() COMPLETATION = auto()

View File

@ -1,8 +1,14 @@
from .model_utils import decompose_nano_socrates, create_standalone_model from .model_utils import decompose_nano_socrates, create_standalone_model, train2inference
from .ModelType import ModelType from .ModelType import ModelType
from .decode_batch import decode_batch
from .metrics import precision, recall, accuracy, f1, meteor, bleu, rouge, average, rdf2txt, txt2rdf, rdf_completion_1, rdf_completion_2, remove_padding, balance_paddings
__all__ = [ __all__ = [
"ModelType", "ModelType",
"decompose_nano_socrates", "decompose_nano_socrates",
"create_standalone_model" "create_standalone_model",
"decode_batch",
"train2inference",
"precision", "recall", "accuracy", "f1", "meteor", "bleu", "rouge", "average",
"rdf2txt", "txt2rdf", "rdf_completion_1", "rdf_completion_2", "remove_padding", "balance_paddings"
] ]

View File

@ -0,0 +1,16 @@
import torch
import Project_Model.Libs.BPE as BPE
def decode_batch(batch: torch.Tensor, tokenizer: BPE.TokeNanoCore ,uknonw_token: int) -> list[str]:
strings = []
BATCH, _ = batch.shape
for i in range(0, BATCH):
tokens: list[int] = batch.tolist()[i]
tokens = list(map(lambda x: uknonw_token if x > tokenizer.vocabulary_size else x, tokens))
strings.append(tokenizer.decode(tokens))
return strings

View File

@ -0,0 +1,100 @@
import evaluate as eval
BLEU = eval.load("bleu")
ROUGE = eval.load("rouge")
METEOR = eval.load("meteor")
def precision(ref: list[int], pred: list[int]):
metric = eval.load("precision")
return metric.compute(predictions=pred, references=ref, average="weighted", zero_division=0)
def recall(ref: list[int], pred: list[int]):
metric = eval.load("recall")
return metric.compute(predictions=pred, references=ref, average="weighted", zero_division=0)
def accuracy(ref: list[int], pred: list[int]):
metric = eval.load("accuracy")
return metric.compute(predictions=pred, references=ref)
def meteor(ref: list[str], pred: list[str]):
metric = METEOR
return metric.compute(predictions=pred, references=ref)
def bleu(ref: list[str], pred: list[str]):
metric = BLEU
return metric.compute(predictions=pred, references=ref)
def rouge(ref: list[str], pred: list[str]):
metric = ROUGE
return metric.compute(predictions=pred, references=ref)
def f1(precision: float, recall: float):
divisor = max((precision + recall), 1E-5)
return (2 * recall * precision) / divisor
def average(array: list[float]):
return sum(array) / len(array)
def rdf2txt(ref: list[str], pred: list[str]):
b_m = bleu(ref, pred)
r_m = rouge(ref, pred)
m_m = meteor(ref, pred)
return (b_m, r_m, m_m)
def txt2rdf(ref: list[int], pred: list[int]):
p_m = precision(ref, pred)
r_m = recall(ref, pred)
return (p_m, r_m)
def rdf_completion_1(ref: list[int], pred: list[int]):
a_m = accuracy(ref, pred)
return a_m
def rdf_completion_2(ref: list[int], pred: list[int]):
p_m = precision(ref, pred)
r_m = recall(ref, pred)
return (p_m, r_m)
def remove_padding(seq: list[int], pad_token: int, end_token: int):
clean_seq = list(filter(lambda x: x != pad_token, seq))
if clean_seq[-1] == end_token:
return clean_seq
clean_seq.append(
end_token
)
return clean_seq
def balance_paddings(seq_1: list[int], seq_2: list[int], pad_token: int):
SEQ_1_LEN = len(seq_1)
SEQ_2_LEN = len(seq_2)
if SEQ_1_LEN > SEQ_2_LEN:
PAD = [pad_token] * (SEQ_1_LEN - SEQ_2_LEN)
seq_2.extend(PAD)
if SEQ_2_LEN > SEQ_1_LEN:
seq_2 = seq_2[:SEQ_1_LEN]
return (seq_1, seq_2)

View File

@ -1,13 +1,13 @@
import torch import torch
from Project_Model.Libs.Embedder import NanoSocratesEmbedder from Project_Model.Libs.Embedder import NanoSocratesEmbedder
from Project_Model.Libs.Transformer import TrainingModel, NanoSocraDecoder, NanoSocratEncoder, DeToken, Encoder, Decoder from Project_Model.Libs.Transformer import TrainingModel,NanoSocratesCore, NanoSocraDecoder, NanoSocratEncoder, DeToken, Encoder, Decoder
from .ModelType import ModelType from .ModelType import ModelType
def decompose_nano_socrates( def decompose_nano_socrates(
model: TrainingModel, vocabulary_size: int, embedding_size: int model: TrainingModel | NanoSocratesCore , vocabulary_size: int, embedding_size: int
) -> tuple[TrainingModel, NanoSocratEncoder, NanoSocraDecoder]: ) -> tuple[TrainingModel | NanoSocratesCore, NanoSocratEncoder, NanoSocraDecoder]:
encoder_pieces, decoder_pieces = model.take_pieces() encoder_pieces, decoder_pieces = model.take_pieces()
encoder_embedder, encoder, encoder_detokener = encoder_pieces encoder_embedder, encoder, encoder_detokener = encoder_pieces
@ -19,6 +19,26 @@ def decompose_nano_socrates(
NanoSocraDecoder(decoder_embedder, decoder, decoder_detokener), NanoSocraDecoder(decoder_embedder, decoder, decoder_detokener),
) )
def train2inference(
train_model: TrainingModel,
inference_model: NanoSocratesCore
) -> NanoSocratesCore:
encoder_pieces, decoder_pieces = train_model.take_pieces()
enc_emb, encoder, enc_det = encoder_pieces
dec_emb, decoder, dec_det = decoder_pieces
inference_model.load_pieces(
enc_emb,
dec_emb,
encoder,
decoder,
enc_det,
dec_det
)
return inference_model
def create_standalone_model( def create_standalone_model(
model_type: ModelType, model_type: ModelType,