This commit is contained in:
Christian Risi 2025-10-07 16:38:08 +02:00
parent b97282179d
commit 99b5198c9a

View File

@ -4,55 +4,108 @@ from .Encoder import Encoder
from ....Libs.Embedder import NanoSocratesEmbedder from ....Libs.Embedder import NanoSocratesEmbedder
import torch import torch
class NanoSocratesCore(torch.nn.Module): class NanoSocratesCore(torch.nn.Module):
def __init__(self, def __init__(
embedded_size: int, self,
feed_forward_dim: int, sentence_length: int,
encoder_layers: int, vocab_size: int,
decoder_layers:int, embedding_size: int = 256,
attention_heads: int, feed_forward_multiplier: int = 4,
vocab_size: int) -> None: num_encoder_layers: int = 2,
num_decoder_layers: int = 2,
num_attention_heads: int = 4,
) -> None:
feed_forward_dim = embedding_size * feed_forward_multiplier
self.__sentence_length = sentence_length
self.__encoder_sequence = torch.nn.Sequential( self.__encoder_sequence = torch.nn.Sequential(
*[Encoder(embedded_size, feed_forward_dim, attention_heads) for _ in range(encoder_layers)] *[
) Encoder(embedding_size, feed_forward_dim, num_attention_heads)
for _ in range(num_encoder_layers)
#* unpack the list so that each encoder has its own weights ]
)
# * unpack the list so that each encoder has its own weights
self.__decoder_sequence = torch.nn.Sequential( self.__decoder_sequence = torch.nn.Sequential(
*[Decoder(embedded_size, feed_forward_dim, attention_heads) for _ in range(decoder_layers)] *[
Decoder(embedding_size, feed_forward_dim, num_attention_heads)
for _ in range(num_decoder_layers)
]
)
self.__linear = torch.nn.Linear(embedding_size, vocab_size)
self.__input_embeder = NanoSocratesEmbedder(vocab_size, embedding_size)
self.__output_embedder = NanoSocratesEmbedder(vocab_size, embedding_size)
def forward(
self,
encoder_input: list[list[int]],
decoder_input: list[list[int]],
encoder_padding_mask: list[list[int]],
):
if len(encoder_padding_mask) != len(encoder_input):
raise Exception("Mismatch in received_dimensions")
# TODO: check for tensor in input to embedder
# 1) Embed User-Input for encoders
ENCODER_INPUT = self.__input_embeder(encoder_input)
# 2) Encode User-Input
ENCODER_OUTPUT, _ = self.__encoder_sequence(ENCODER_INPUT, encoder_padding_mask)
del ENCODER_INPUT
exit_loop = False
decoder_token_list = decoder_input[:]
decoder_phase = 0
LOGITS_HISTORY: list[torch.Tensor] = []
# 3) Autoregressive Output
while not exit_loop:
# 3.0) Increment Counter
decoder_phase += 1
# 3.1) Embed Decoder Input
decoder_input = self.__output_embedder(decoder_token_list)
# 3.2) Decode Decoder Input
DECODER_OUTPUT, _, _, _ = self.__decoder_sequence(
decoder_input, ENCODER_OUTPUT, ENCODER_OUTPUT
) )
self.__linear = torch.nn.Linear(embedded_size, vocab_size, bias=False)
self.__input_embeder = NanoSocratesEmbedder(vocab_size,embedded_size) # 3.3) Go back to Token space
self.__output_embedder = NanoSocratesEmbedder(vocab_size,embedded_size) # TODO: change name
LOGITS = self.__linear(DECODER_OUTPUT)
del DECODER_OUTPUT
# 3.4) Transform in probabilities
# TODO: change name
TOKEN_PROBABILITIES = torch.softmax(LOGITS, dim=-1)
del LOGITS
def forward(self, token_list, padding_mask = None): LOGITS_HISTORY.append(TOKEN_PROBABILITIES)
x = self.__input_embeder(token_list)
x = self.__encoder_sequence(x, padding_mask)[0]
# 3.5) Take most probable tokens
TOKEN_IDS = torch.argmax(TOKEN_PROBABILITIES, -1)
# do while # TODO: check for dimensions and for efficiency
x = self.__decoder_sequence(x,x,x, padding_mask)[0] DECODER_TOKEN_TENSOR = torch.tensor(decoder_token_list)
logits = self.__linear(x) DECODER_TOKEN_TENSOR[:, decoder_phase] = TOKEN_IDS
log_prob = torch.softmax(logits, dim=-1) decoder_token_list = DECODER_TOKEN_TENSOR.tolist()
output = torch.argmax(log_prob)
while self.keep_going(log_prob):
# from log_prob again into x
del TOKEN_IDS
del DECODER_TOKEN_TENSOR
x = self.__decoder_sequence(x,x,x, padding_mask)[0] # 3.6) Check if we generated all tokens
logits = self.__linear(x) if decoder_phase == self.__sentence_length - 1:
log_prob = torch.softmax(logits, dim=-1) exit_loop = True
# argmax
return log_prob
def keep_going(self, x: ) -> bool:
return LOGITS_HISTORY