WIP
This commit is contained in:
parent
b97282179d
commit
99b5198c9a
@ -4,55 +4,108 @@ from .Encoder import Encoder
|
||||
from ....Libs.Embedder import NanoSocratesEmbedder
|
||||
import torch
|
||||
|
||||
|
||||
class NanoSocratesCore(torch.nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
embedded_size: int,
|
||||
feed_forward_dim: int,
|
||||
encoder_layers: int,
|
||||
decoder_layers:int,
|
||||
attention_heads: int,
|
||||
vocab_size: int) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
sentence_length: int,
|
||||
vocab_size: int,
|
||||
embedding_size: int = 256,
|
||||
feed_forward_multiplier: int = 4,
|
||||
num_encoder_layers: int = 2,
|
||||
num_decoder_layers: int = 2,
|
||||
num_attention_heads: int = 4,
|
||||
) -> None:
|
||||
|
||||
feed_forward_dim = embedding_size * feed_forward_multiplier
|
||||
|
||||
self.__sentence_length = sentence_length
|
||||
|
||||
self.__encoder_sequence = torch.nn.Sequential(
|
||||
*[Encoder(embedded_size, feed_forward_dim, attention_heads) for _ in range(encoder_layers)]
|
||||
*[
|
||||
Encoder(embedding_size, feed_forward_dim, num_attention_heads)
|
||||
for _ in range(num_encoder_layers)
|
||||
]
|
||||
)
|
||||
|
||||
# * unpack the list so that each encoder has its own weights
|
||||
|
||||
self.__decoder_sequence = torch.nn.Sequential(
|
||||
*[Decoder(embedded_size, feed_forward_dim, attention_heads) for _ in range(decoder_layers)]
|
||||
*[
|
||||
Decoder(embedding_size, feed_forward_dim, num_attention_heads)
|
||||
for _ in range(num_decoder_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.__linear = torch.nn.Linear(embedded_size, vocab_size, bias=False)
|
||||
self.__linear = torch.nn.Linear(embedding_size, vocab_size)
|
||||
|
||||
self.__input_embeder = NanoSocratesEmbedder(vocab_size,embedded_size)
|
||||
self.__output_embedder = NanoSocratesEmbedder(vocab_size,embedded_size)
|
||||
self.__input_embeder = NanoSocratesEmbedder(vocab_size, embedding_size)
|
||||
self.__output_embedder = NanoSocratesEmbedder(vocab_size, embedding_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
encoder_input: list[list[int]],
|
||||
decoder_input: list[list[int]],
|
||||
encoder_padding_mask: list[list[int]],
|
||||
):
|
||||
|
||||
def forward(self, token_list, padding_mask = None):
|
||||
x = self.__input_embeder(token_list)
|
||||
x = self.__encoder_sequence(x, padding_mask)[0]
|
||||
if len(encoder_padding_mask) != len(encoder_input):
|
||||
raise Exception("Mismatch in received_dimensions")
|
||||
|
||||
# TODO: check for tensor in input to embedder
|
||||
# 1) Embed User-Input for encoders
|
||||
ENCODER_INPUT = self.__input_embeder(encoder_input)
|
||||
|
||||
# do while
|
||||
x = self.__decoder_sequence(x,x,x, padding_mask)[0]
|
||||
logits = self.__linear(x)
|
||||
log_prob = torch.softmax(logits, dim=-1)
|
||||
output = torch.argmax(log_prob)
|
||||
while self.keep_going(log_prob):
|
||||
# from log_prob again into x
|
||||
# 2) Encode User-Input
|
||||
ENCODER_OUTPUT, _ = self.__encoder_sequence(ENCODER_INPUT, encoder_padding_mask)
|
||||
del ENCODER_INPUT
|
||||
|
||||
exit_loop = False
|
||||
decoder_token_list = decoder_input[:]
|
||||
decoder_phase = 0
|
||||
|
||||
x = self.__decoder_sequence(x,x,x, padding_mask)[0]
|
||||
logits = self.__linear(x)
|
||||
log_prob = torch.softmax(logits, dim=-1)
|
||||
# argmax
|
||||
LOGITS_HISTORY: list[torch.Tensor] = []
|
||||
|
||||
return log_prob
|
||||
# 3) Autoregressive Output
|
||||
while not exit_loop:
|
||||
|
||||
# 3.0) Increment Counter
|
||||
decoder_phase += 1
|
||||
|
||||
# 3.1) Embed Decoder Input
|
||||
decoder_input = self.__output_embedder(decoder_token_list)
|
||||
|
||||
def keep_going(self, x: ) -> bool:
|
||||
# 3.2) Decode Decoder Input
|
||||
DECODER_OUTPUT, _, _, _ = self.__decoder_sequence(
|
||||
decoder_input, ENCODER_OUTPUT, ENCODER_OUTPUT
|
||||
)
|
||||
|
||||
# 3.3) Go back to Token space
|
||||
# TODO: change name
|
||||
LOGITS = self.__linear(DECODER_OUTPUT)
|
||||
del DECODER_OUTPUT
|
||||
|
||||
# 3.4) Transform in probabilities
|
||||
# TODO: change name
|
||||
TOKEN_PROBABILITIES = torch.softmax(LOGITS, dim=-1)
|
||||
del LOGITS
|
||||
|
||||
LOGITS_HISTORY.append(TOKEN_PROBABILITIES)
|
||||
|
||||
# 3.5) Take most probable tokens
|
||||
TOKEN_IDS = torch.argmax(TOKEN_PROBABILITIES, -1)
|
||||
|
||||
# TODO: check for dimensions and for efficiency
|
||||
DECODER_TOKEN_TENSOR = torch.tensor(decoder_token_list)
|
||||
DECODER_TOKEN_TENSOR[:, decoder_phase] = TOKEN_IDS
|
||||
decoder_token_list = DECODER_TOKEN_TENSOR.tolist()
|
||||
|
||||
del TOKEN_IDS
|
||||
del DECODER_TOKEN_TENSOR
|
||||
|
||||
# 3.6) Check if we generated all tokens
|
||||
if decoder_phase == self.__sentence_length - 1:
|
||||
exit_loop = True
|
||||
|
||||
return LOGITS_HISTORY
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user