new faster pipeline
This commit is contained in:
129
Scripts/DataCleaning/pipeline/pipeline.py
Normal file
129
Scripts/DataCleaning/pipeline/pipeline.py
Normal file
@@ -0,0 +1,129 @@
|
||||
from movie_filter import MovieFilter
|
||||
from relationship_filter import RelationshipFilter
|
||||
from rdf_filter import RdfFilter
|
||||
from cleaner import PipelineApplier
|
||||
|
||||
from Scripts.DataCleaning.data_output_models.bpe_corpus import BPE_corpus
|
||||
from Scripts.DataCleaning.data_output_models.rdf_text_tasks import RDF_text_task_dataset
|
||||
from Scripts.DataCleaning.data_output_models.rdf_completation_task import RDF_completation_task_dataset
|
||||
from Scripts.DataCleaning.data_output_models.debug_csv import Debug_csv
|
||||
|
||||
import pandas as pd
|
||||
|
||||
RELATIONSHIP_FILTER_LIST = [
|
||||
"dbp-dbp:wikiPageUsesTemplate","w3:2000/01/rdf-schema#label","dbp-dbo:abstract",
|
||||
"dbp-dbo:wikiPageID","dbp-dbo:wikiPageRevisionID", "dbp-dbo:wikiPageDisambiguates",
|
||||
"w3:2002/07/owl#sameAs","dbp-dbp:image","dbp-dbo:wikiPageLength", "w3:2000/01/rdf-schema#comment",
|
||||
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type",
|
||||
"dbp-dbp:id","dbp-dbp:totalWidth", "w3:ns/prov#wasDerivedFrom", "dbp-dbp:n", "dbp-dbp:alt",
|
||||
"dbp-dbo:soundRecording", "dbp-dbp:align", "dbp-dbp:format", "dbp-dbp:n",
|
||||
"dbp-dbp:filename", "dbp-dbp:wikt", "foaf:isPrimaryTopicOf", "dbp-dbp:quote", "foaf:homepage",
|
||||
"dbp-dbp:wordnet_type", "dbp-dbp:length"
|
||||
]
|
||||
|
||||
|
||||
class Pipeline():
|
||||
|
||||
def __init__(self) -> None:
|
||||
self._movie_filter = MovieFilter()
|
||||
self._relationship_filter = RelationshipFilter()
|
||||
self._rdf_filter = RdfFilter()
|
||||
self._pipeline = PipelineApplier()
|
||||
|
||||
self.task_bpe_corpus = BPE_corpus("./Assets/Dataset/Tmp/corpus.txt")
|
||||
self.task_rdf_text = RDF_text_task_dataset("./Assets/Dataset/Tmp/rdf_text.csv")
|
||||
self.task_rdf_completation = RDF_completation_task_dataset("./Assets/Dataset/Tmp/rdf_completation.csv")
|
||||
|
||||
self._movie_filter.frequency_filter(50,3000)
|
||||
self._relationship_filter.frequency_filter(50, 2395627) # from 2718 to 3069
|
||||
self._relationship_filter.delete_relationship_uri_by_list(RELATIONSHIP_FILTER_LIST)
|
||||
|
||||
def other_filter(self):
|
||||
self._movie_filter.relation_filter("purl:dc/terms/subject",5,100)
|
||||
self._movie_filter.relation_filter("dbp-dbo:director",1,100)
|
||||
|
||||
def _get_cleaned_movie_rows(self):
|
||||
movie_ids = self._movie_filter.get_movie_id()
|
||||
rel_ids = self._relationship_filter.get_relationship_id()
|
||||
|
||||
for RDF in self._rdf_filter.yield_movie_abbreviated_rdfs(movie_ids,rel_ids):
|
||||
RDF = self._pipeline.drop_na_from_dataset(RDF)
|
||||
RDF = self._pipeline.regex_on_objects(RDF)
|
||||
RDF = self._pipeline.rdf_add_special_token(RDF)
|
||||
|
||||
if RDF.empty:
|
||||
continue
|
||||
yield RDF
|
||||
|
||||
|
||||
def execute_task_bpe_corpus(self):
|
||||
for RDF in self._get_cleaned_movie_rows():
|
||||
RDF = self._pipeline.rebuild_by_movie(RDF)
|
||||
RDF = RDF[["Triple","Abstract"]]
|
||||
self.task_bpe_corpus.write_from_df(RDF)
|
||||
self._end_file_handler()
|
||||
|
||||
|
||||
def execute_tasks_rdf_text(self):
|
||||
for RDF in self._get_cleaned_movie_rows():
|
||||
RDF = self._pipeline.rebuild_by_movie(RDF)
|
||||
self.task_rdf_text.write(RDF)
|
||||
self._end_file_handler()
|
||||
|
||||
|
||||
def execute_task_rdf_completation(self):
|
||||
for RDF in self._get_cleaned_movie_rows():
|
||||
RDF["Triple"] = self._pipeline.build_triple(RDF)
|
||||
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
|
||||
self._end_file_handler()
|
||||
|
||||
|
||||
def _end_file_handler(self):
|
||||
self.task_bpe_corpus.close()
|
||||
self.task_rdf_text.close()
|
||||
self.task_rdf_completation.close()
|
||||
|
||||
|
||||
def execute_all_task(self):
|
||||
for RDF in self._get_cleaned_movie_rows():
|
||||
completation_RDF = RDF.copy()
|
||||
completation_RDF["Triple"] = self._pipeline.build_triple(completation_RDF)
|
||||
self.task_rdf_completation.write(completation_RDF[["MovieID","Triple"]])
|
||||
|
||||
RDF = self._pipeline.rebuild_by_movie(RDF)
|
||||
|
||||
self.task_rdf_text.write(RDF)
|
||||
self.task_bpe_corpus.write_from_df(RDF[["Triple","Abstract"]])
|
||||
|
||||
self._end_file_handler()
|
||||
|
||||
|
||||
def use_toy_dataset(self):
|
||||
# CHOOSEN MOVIE:
|
||||
# The Dark Knight : 117248
|
||||
# Inception : 147074
|
||||
# The Avengers : 113621
|
||||
# Cast Away : 1123
|
||||
# The Departed : 117586
|
||||
# American Psycho : 90177
|
||||
# Avatar : 71587
|
||||
# Django Unchained : 138952
|
||||
# Spirited Away : 144137
|
||||
# Knives Out : 148025
|
||||
movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
|
||||
self._movie_filter.MOVIE_FILTER = pd.DataFrame({"MovieID": movie_list})
|
||||
|
||||
def generate_csv_debug_file(self, debug_path:str):
|
||||
debug_csv = Debug_csv(debug_path)
|
||||
|
||||
for RDF in self._get_cleaned_movie_rows():
|
||||
debug_csv.write(RDF)
|
||||
|
||||
debug_csv.close()
|
||||
|
||||
|
||||
pipe = Pipeline()
|
||||
pipe.use_toy_dataset()
|
||||
pipe.other_filter()
|
||||
# pipe.execute_all_task()
|
||||
pipe.generate_csv_debug_file("Assets/Dataset/Tmp/debug.csv")
|
||||
Reference in New Issue
Block a user