Refactoring
This commit is contained in:
86
Project_Model/Libs/Transformer/Classes/Decoder.py
Normal file
86
Project_Model/Libs/Transformer/Classes/Decoder.py
Normal file
@@ -0,0 +1,86 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from .FeedForwardNetwork import FeedForwardNetwork
|
||||
from .TorchMultiHeadAttention import TorchMultiHeadAttention as MultiHeadAttention
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dimension: int,
|
||||
feed_forward_hidden_layer_dimension: int,
|
||||
number_of_attention_heads: int,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.__masked_attention = MultiHeadAttention(
|
||||
embedding_dimension, number_of_attention_heads, dropout=0.1
|
||||
)
|
||||
|
||||
self.__layer_norm_1 = nn.LayerNorm(embedding_dimension)
|
||||
|
||||
self.__cross_attention = MultiHeadAttention(
|
||||
embedding_dimension, number_of_attention_heads, dropout=0.1
|
||||
)
|
||||
self.__layer_norm_2 = nn.LayerNorm(embedding_dimension)
|
||||
|
||||
self.__dropout = nn.Dropout(0.1)
|
||||
|
||||
self.__feed_forward_network = FeedForwardNetwork(
|
||||
embedding_dimension, feed_forward_hidden_layer_dimension
|
||||
)
|
||||
self.__layer_norm_3 = nn.LayerNorm(embedding_dimension)
|
||||
|
||||
def forward(self, x, k_x, v_x, attention_mask) -> torch.Tensor: # k_x = v_x . While x_q = x
|
||||
|
||||
# 1) Masked Attention
|
||||
MASKED_ATTENTION = self.__masked_attention(
|
||||
x, x, x, attention_mask=attention_mask
|
||||
)
|
||||
|
||||
# 2) Dropout
|
||||
DROPPED_MASKED_ATTENTION = self.__dropout(
|
||||
MASKED_ATTENTION
|
||||
)
|
||||
del MASKED_ATTENTION
|
||||
|
||||
# 3) Residual Connection
|
||||
x = x + DROPPED_MASKED_ATTENTION
|
||||
del DROPPED_MASKED_ATTENTION
|
||||
|
||||
# 4) Layer Normalization
|
||||
x = self.__layer_norm_1(x)
|
||||
|
||||
# 5) Encoder–decoder (cross) attention
|
||||
CROSS_ATTENTION = self.__cross_attention(x, k_x, v_x)
|
||||
|
||||
# 6) Dropout
|
||||
DROPPED_CROSS_ATTENTION = self.__dropout(CROSS_ATTENTION)
|
||||
del CROSS_ATTENTION
|
||||
|
||||
# 7) Residual Connection
|
||||
x = x + DROPPED_CROSS_ATTENTION
|
||||
del DROPPED_CROSS_ATTENTION
|
||||
|
||||
# 8) Layer Normalization
|
||||
x = self.__layer_norm_2(x)
|
||||
|
||||
# 9) Position-wise feed-forward
|
||||
FEED_FORWARD = self.__feed_forward_network(x)
|
||||
|
||||
# 10) Dropout
|
||||
DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
|
||||
del FEED_FORWARD
|
||||
|
||||
# 11) Residual Connection
|
||||
x = x + DROPPED_FEED_FORWARD
|
||||
del DROPPED_FEED_FORWARD
|
||||
|
||||
# 12) Layer Normalization
|
||||
x = self.__layer_norm_3(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
# use eval to disable dropout ecc
|
||||
Reference in New Issue
Block a user