Merge branch 'dev.etl' into dev

This commit is contained in:
GassiGiuseppe 2025-10-17 22:15:21 +02:00
commit cf3e35121b
12 changed files with 1001 additions and 4 deletions

View File

@ -1,7 +1,7 @@
import pandas as pd
# do not worry about circular dependencies, this class will never call something else
from Scripts.DataCleaning.filter import PipelineApplier
from Scripts.DataCleaning.legacy.filter import PipelineApplier
class RDF_mask_task_dataset():
"""

View File

@ -0,0 +1,29 @@
import pandas as pd
def split_csv_by_percent(csv_path, train=70, val=15, test=15, seed=42):
# 1) Read and shuffle rows with a fixed seed for reproducibility
df = pd.read_csv(csv_path).sample(frac=1, random_state=seed).reset_index(drop=True)
# 2) Turn the three inputs into proportions relative to their sum
total = train + val + test # eheh you got it there :p
n = len(df)
n_train = int(n * train / total) # floor to keep indices integral
n_val = int(n * val / total)
# 3) Give the remainder to test to ensure every row is assigned
# (this naturally absorbs any rounding loss)
train_df = df.iloc[:n_train].reset_index(drop=True)
val_df = df.iloc[n_train:n_train + n_val].reset_index(drop=True)
test_df = df.iloc[n_train + n_val:].reset_index(drop=True)
return train_df, val_df, test_df
# usage:
DATASET = "Assets/Dataset/Tmp/rdf_text.csv"
TRAIN = "Assets/Dataset/Tmp/hold_out/train.csv"
TEST = "Assets/Dataset/Tmp/hold_out/test.csv"
EVALUATION = "Assets/Dataset/Tmp/hold_out/evaluation.csv"
train_df, val_df, test_df = split_csv_by_percent(DATASET, train=80, val=10, test=10, seed=42)
train_df.to_csv(TRAIN)
val_df.to_csv(EVALUATION)
test_df.to_csv(TEST)

View File

@ -0,0 +1,381 @@
# This file deletes in the pipeline the unwanted relationship by different rules
# -----------------------------------------------------------------------------
# SQL-FIRST VERSION
# -----------------------------------------------------------------------------
# In the original (pandas) version this module:
# - stored frequency filters in DataFrames,
# - filtered/cleaned DataFrames in-memory,
# - added special tokens via string ops,
# - rebuilt one row per movie using groupby/aggregation.
#
# In this rewrite:
# - Every transformation RETURNS a SQLAlchemy `Select` object instead of a DataFrame.
# - Your pipeline can pass this `Select` (a "dataview") from one stage to the next,
# composing more SQL lazily. Nothing is executed until you call `session.execute(...)`.
# - Frequency filters are represented as SUBSELECTS, applied with `WHERE IN (subquery)`.
#
# Notes:
# - We keep the same CLASS and METHOD NAMES to preserve call sites.
# - Method comments/docstrings from your original file are carried over and updated
# to reflect Select-based behavior and return types.
# - We drop pandas/numpy/sqlite3 imports because filtering is pushed into SQL.
# - `GROUP_CONCAT` is used for the rebuild phase (SQLite-compatible). For other DBs,
# swap with an equivalent string-agg function.
# -----------------------------------------------------------------------------
from __future__ import annotations
from typing import Optional
from sqlalchemy import select, func, literal
from sqlalchemy.sql import Select
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
class PipelineApplier():
"""
SQL-first pipeline applier.
In the pandas version, frequency filters were stored as DataFrames (self.MOVIE_FILTER / self.REL_FILTER)
and every method worked with/returned pandas.DataFrame. In this SQLAlchemy rewrite:
- self.MOVIE_FILTER and self.REL_FILTER become *subselects* (Select objects) that yield a single
column each (MovieID or RelationshipURI). These subselects can be applied via `WHERE IN (subquery)`.
- Every method that previously returned a DataFrame now returns a *Select* that represents the same
logical transformation, but pushed into the database engine.
- Comments and docstrings are updated to reflect SQL semantics while preserving your original intent.
"""
def __init__(self):
# In the pandas version these were DataFrames storing allowed keys.
# Here they are Select objects (single-column subselects) or None.
# Expected column names:
# - self.MOVIE_FILTER: "MovieID"
# - self.REL_FILTER: "RelationshipURI"
self.MOVIE_FILTER: Optional[Select] = None
self.REL_FILTER: Optional[Select] = None
# -------------------------------------------------------------------------
# Relationship deletion
# -------------------------------------------------------------------------
def delete_relationship_by_str(self, RDF: Select, uri: str) -> Select:
"""
Return a Select where rows having the given relationship URI are removed.
Original signature (pandas):
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame
Updated behavior:
- RDF is a Select with columns: MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
- We apply a WHERE clause: RelationshipURI != <uri>
- Returns a Select you can continue composing.
Args:
RDF (Select): a selectable representing the RDF joined view
uri (str): RelationshipURI to exclude
Returns:
Select: filtered selectable (no execution yet)
"""
sc = RDF.selected_columns
return RDF.where(sc.RelationshipURI != literal(uri))
# -------------------------------------------------------------------------
# Frequency filter: MOVIE
# -------------------------------------------------------------------------
def generate_frequency_movie_filter(self, MOVIE_COUNT: Select, min_treshold: int, max_treshold: int):
"""
You MUST call this before filtering by movie frequency [filter_by_frequency_movie_id()],
since this method creates such filter.
Original behavior:
- Input MOVIE_COUNT as DataFrame ["MovieID","Count"]
- Keep rows where Count in [min_treshold, max_treshold)
- Store the filtered keys in self.MOVIE_FILTER
Updated behavior (SQL):
- MOVIE_COUNT is a Select that yields ["MovieID","Count"].
- We build and store a *subselect* of allowed MovieID (single column) to be used by WHERE IN.
- No query is executed here; we only create a new Select.
Args:
MOVIE_COUNT (Select): yields columns MovieID, Count
min_treshold (int):
max_treshold (int):
"""
sc = MOVIE_COUNT.selected_columns
filtered = MOVIE_COUNT.where(sc.Count >= min_treshold).where(sc.Count < max_treshold)
# Keep only the key column so it can be used in an IN (subquery)
self.MOVIE_FILTER = select(filtered.selected_columns.MovieID)
# -------------------------------------------------------------------------
# Frequency filter: RELATIONSHIP
# -------------------------------------------------------------------------
def generate_frequency_relationship_filter(self, REL_COUNT: Select, min_treshold: int, max_treshold: int):
"""
Original behavior:
- Input REL_COUNT as DataFrame ["RelationshipURI","Count"]
- Keep rows where Count in [min_treshold, max_treshold)
- Store the filtered keys in self.REL_FILTER
Updated behavior (SQL):
- REL_COUNT is a Select that yields ["RelationshipURI","Count"].
- We build and store a *subselect* of allowed RelationshipURI (single column) to be used by WHERE IN.
- No query is executed here; we only create a new Select.
Args:
REL_COUNT (Select): yields columns RelationshipURI, Count
min_treshold (int):
max_treshold (int):
"""
sc = REL_COUNT.selected_columns
filtered = REL_COUNT.where(sc.Count >= min_treshold).where(sc.Count < max_treshold)
self.REL_FILTER = select(filtered.selected_columns.RelationshipURI)
# -------------------------------------------------------------------------
# Apply frequency filters
# -------------------------------------------------------------------------
def filter_by_frequency_movie_id(self, RDF: Select) -> Select:
"""
Original behavior (pandas):
RDF = RDF[RDF["MovieID"].isin(self.MOVIE_FILTER["MovieID"])]
Updated behavior (SQL):
- If self.MOVIE_FILTER is present, apply: WHERE MovieID IN ( <subselect> )
- Otherwise, return RDF unchanged.
Args:
RDF (Select): current dataset
Returns:
Select: filtered dataset (or unchanged if no filter exists)
"""
if self.MOVIE_FILTER is None:
return RDF
sc = RDF.selected_columns
return RDF.where(sc.MovieID.in_(self.MOVIE_FILTER))
def filter_by_frequency_relationship(self, RDF: Select) -> Select:
"""
Original behavior (pandas):
RDF = RDF[RDF["RelationshipURI"].isin(self.REL_FILTER["RelationshipURI"])]
Updated behavior (SQL):
- If self.REL_FILTER is present, apply: WHERE RelationshipURI IN ( <subselect> )
- Otherwise, return RDF unchanged.
Args:
RDF (Select): current dataset
Returns:
Select: filtered dataset (or unchanged if no filter exists)
"""
if self.REL_FILTER is None:
return RDF
sc = RDF.selected_columns
return RDF.where(sc.RelationshipURI.in_(self.REL_FILTER))
# -------------------------------------------------------------------------
# Token prefixing (SubjectURI/RelationshipURI/ObjectURI)
# -------------------------------------------------------------------------
def rdf_add_special_token(self, RDF: Select) -> Select:
"""
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI,
OBJ to ObjectURI, REL to RelationshipURI. Check
Scripts/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
It only adds the special token of the three elements of the RDF; no other special token.
Original behavior (pandas):
- String concatenation with columns in a DataFrame.
- Returned a new DataFrame.
Updated behavior (SQL):
- Build projected columns using SQL string concatenation.
- Return a new Select with the same output column names:
["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"].
Args:
RDF (Select): current dataset
Returns:
Select: projected dataset with tokenized SubjectURI/RelationshipURI/ObjectURI
"""
sc = RDF.selected_columns
subj_tok = literal(SpecialToken.SUBJECT.value) + sc.SubjectURI
rel_tok = literal(SpecialToken.RELATIONSHIP.value) + sc.RelationshipURI
obj_tok = literal(SpecialToken.OBJECT.value) + sc.ObjectURI
return RDF.with_only_columns(
sc.MovieID.label("MovieID"),
subj_tok.label("SubjectURI"),
rel_tok.label("RelationshipURI"),
obj_tok.label("ObjectURI"),
sc.Abstract.label("Abstract"),
)
# -------------------------------------------------------------------------
# NA/empty drop on key columns (SubjectURI, RelationshipURI, ObjectURI)
# -------------------------------------------------------------------------
def drop_na_from_dataset(self, RDF: Select) -> Select:
"""
Dataset has SubjectURI, RelationshipURI, ObjectURI. We want to drop rows
where any of these is empty or NULL.
Original behavior (pandas):
- Replace '' with NaN and dropna on the three columns.
Updated behavior (SQL):
- Apply WHERE clauses checking for NOT NULL and not empty string.
Args:
RDF (Select): current dataset
Returns:
Select: dataset filtered to non-empty SubjectURI/RelationshipURI/ObjectURI
"""
sc = RDF.selected_columns
return RDF.where(
(sc.SubjectURI.is_not(None)) & (sc.SubjectURI != "") &
(sc.RelationshipURI.is_not(None)) & (sc.RelationshipURI != "") &
(sc.ObjectURI.is_not(None)) & (sc.ObjectURI != "")
)
# -------------------------------------------------------------------------
# Rebuild by movie (one row per movie)
# -------------------------------------------------------------------------
def rebuild_by_movie(self, RDF: Select) -> Select:
"""
To execute this method you have to have iterated by movie_id conceptually,
because as design we want at the end one row for each movie.
Original behavior (pandas):
- Build per-row "Triple" as SubjectURI + RelationshipURI + ObjectURI,
wrapped with START_TRIPLE/END_TRIPLE.
- Group by ["MovieID", "Abstract"] and join ("".join) all Triple strings into one.
- Prefix the whole list with START_TRIPLE_LIST and Abstract with ABSTRACT.
- Return DataFrame [["MovieID","Triple","Abstract"]].
Updated behavior (SQL):
- Build per-row Triple using SQL string concatenation and constants.
- Use GROUP_CONCAT (empty separator) to aggregate per-movie.
- Prefix with START_TRIPLE_LIST and ABSTRACT in SQL.
- Return a Select with columns: ["MovieID","Triple","Abstract"].
Args:
RDF (Select): current dataset with columns
MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
Returns:
Select: aggregated dataset with one row per movie
"""
sc = RDF.selected_columns
# Per-row triple with START/END_TRIPLE tokens
row_triple = (
literal(SpecialToken.START_TRIPLE.value) +
(sc.SubjectURI + sc.RelationshipURI + sc.ObjectURI) +
literal(SpecialToken.END_TRIPLE.value)
).label("Triple")
# Prefixed abstract
abstract_tok = (literal(SpecialToken.ABSTRACT.value) + sc.Abstract).label("Abstract")
# Subquery of per-row triples / abstracts
row_view = RDF.with_only_columns(
sc.MovieID.label("MovieID"),
row_triple,
abstract_tok,
).subquery()
# Concatenate all triples for each movie (SQLite syntax; adjust for other DBs)
triple_concat = (
literal(SpecialToken.START_TRIPLE_LIST.value) +
func.group_concat(row_view.c.Triple, literal(""))
).label("Triple")
return (
select(
row_view.c.MovieID.label("MovieID"),
triple_concat,
row_view.c.Abstract.label("Abstract"),
)
.group_by(row_view.c.MovieID, row_view.c.Abstract)
)
# -------------------------------------------------------------------------
# Build triple(s) projection
# -------------------------------------------------------------------------
@staticmethod
def build_triple(RDF: Select) -> Select:
"""
Obtains joined RDF triple in one element, together with START and END special tokens.
Original behavior (pandas):
- Returned a Series/DataFrame column "Triple" built from three string columns.
Updated behavior (SQL):
- Returns a Select with a single column "Triple" built in SQL.
Args:
RDF (Select): at least columns ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
Select: a projection containing one column named "Triple"
"""
sc = RDF.selected_columns
triple = (
literal(SpecialToken.START_TRIPLE.value) +
(sc.SubjectURI + sc.RelationshipURI + sc.ObjectURI) +
literal(SpecialToken.END_TRIPLE.value)
).label("Triple")
return RDF.with_only_columns(triple)
@staticmethod
def build_incomplete_triple(RDF: Select) -> Select:
"""
Method helper used for the third task: "Predicting a masked component within an RDF triple".
Obtains joined RDF triple in one element, together with START and END special tokens.
The MISSING element will be replaced by the special token <MASK>.
Original behavior (pandas):
- Created a Series "Triple" using fallback values for missing columns.
Updated behavior (SQL):
- Uses COALESCE to replace NULLs with <MASK> directly in SQL.
- Returns a Select with a single column "Triple".
Args:
RDF (Select): 2 of the following columns present ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
Select: projection with column "Triple"
"""
sc = RDF.selected_columns
mask = literal(SpecialToken.MASK.value)
triple = (
literal(SpecialToken.START_TRIPLE.value) +
(func.coalesce(sc.SubjectURI, mask) +
func.coalesce(sc.RelationshipURI, mask) +
func.coalesce(sc.ObjectURI, mask)) +
literal(SpecialToken.END_TRIPLE.value)
).label("Triple")
return RDF.with_only_columns(triple)
@staticmethod
def build_for_mask_task(RDF_incomplete: Select, MISSING) -> None:
"""
Currently not used.
Original intention:
Given two DataFrames (one incomplete RDF and another with just the missing component),
apply special tokens accordingly.
Updated note:
This stub remains for API parity. If needed in the future, it can be implemented
as a Select-building helper that merges/COALESCEs columns from different selects.
"""
return None

View File

@ -0,0 +1,148 @@
# This file deletes in the pipeline the unwanted relationship by different rules
import pandas as pd
import sqlite3 # kept for compatibility
import numpy as np
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class PipelineApplier:
def __init__(self):
# Fast internal caches for O(1) membership checks
self._MOVIE_FILTER_SET = set()
self._REL_FILTER_SET = set()
# ------------------------------
# Filters
# ------------------------------
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame:
# Vectorized boolean mask
return RDF.loc[RDF["RelationshipURI"] != uri]
def generate_frequency_movie_filter(self, MOVIE_COUNT: pd.DataFrame, min_threshold: int, max_threshold: int):
"""
You MUST call this before filter the dataset by movie frequency [filter_by_frequency_movie_id()],
since this method creates such filter.
Args:
MOVIE_COUNT (pd.DataFrame): ["MovieID","Count"]
"""
sel = (MOVIE_COUNT["Count"] >= min_threshold) & (MOVIE_COUNT["Count"] < max_threshold)
self._MOVIE_FILTER_SET = set(MOVIE_COUNT.loc[sel, "MovieID"].tolist())
def generate_frequency_relationship_filter(self, REL_COUNT: pd.DataFrame, min_threshold: int, max_threshold: int):
sel = (REL_COUNT["Count"] >= min_threshold) & (REL_COUNT["Count"] < max_threshold)
self._REL_FILTER_SET = set(REL_COUNT.loc[sel, "RelationshipURI"].tolist())
def filter_by_frequency_movie_id(self, RDF: pd.DataFrame) -> pd.DataFrame:
# Set-backed isin is the fastest path
return RDF.loc[RDF["MovieID"].isin(self._MOVIE_FILTER_SET)]
def filter_by_frequency_relationship(self, RDF: pd.DataFrame) -> pd.DataFrame:
return RDF.loc[RDF["RelationshipURI"].isin(self._REL_FILTER_SET)]
# ------------------------------
# Cleaning & preprocessing
# ------------------------------
def rdf_add_special_token(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""
Adds RDF special token to SubjectURI / RelationshipURI / ObjectURI.
Returns a new DataFrame (no inplace modification of the caller's object).
"""
subj = np.char.add(SpecialToken.SUBJECT.value, RDF["SubjectURI"].to_numpy(dtype=object))
rel = np.char.add(SpecialToken.RELATIONSHIP.value, RDF["RelationshipURI"].to_numpy(dtype=object))
obj = np.char.add(SpecialToken.OBJECT.value, RDF["ObjectURI"].to_numpy(dtype=object))
return RDF.assign(SubjectURI=subj, RelationshipURI=rel, ObjectURI=obj)
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""
Replace '' with NaN only on key columns, then drop rows missing any of them.
"""
cols = ["SubjectURI", "RelationshipURI", "ObjectURI"]
rdf = RDF.copy()
for c in cols:
m = rdf[c] == ""
if m.any():
rdf.loc[m, c] = np.nan
return rdf.dropna(subset=cols)
# ------------------------------
# Building triples
# ------------------------------
@staticmethod
def build_triple(RDF: pd.DataFrame):
"""
Obtains joined RDF triple in one element, together with START and END special token.
Returns:
pd.Series: RDF["Triple"] (just this column). Side-effect: sets RDF["Triple"].
"""
start = SpecialToken.START_TRIPLE.value
end = SpecialToken.END_TRIPLE.value
subj = RDF["SubjectURI"].to_numpy(dtype=object)
rel = RDF["RelationshipURI"].to_numpy(dtype=object)
obj = RDF["ObjectURI"].to_numpy(dtype=object)
arr = np.char.add(np.char.add(np.char.add(start, subj),
np.char.add(rel, obj)),
end)
RDF["Triple"] = pd.Series(arr, index=RDF.index, dtype=object, name="Triple")
return RDF["Triple"]
@staticmethod
def build_incomplete_triple(RDF: pd.DataFrame):
"""
Helper used for the third task: "Predicting a masked component within an RDF triple".
Accepts any subset of ["SubjectURI","RelationshipURI","ObjectURI"] (typically 2 of 3).
Missing components are replaced by <MASK>.
Returns:
pd.Series: RDF["Triple"] (just this column). Side-effect: sets RDF["Triple"].
"""
start = SpecialToken.START_TRIPLE.value
end = SpecialToken.END_TRIPLE.value
maskv = SpecialToken.MASK.value
n = len(RDF.index)
subj = RDF["SubjectURI"].to_numpy(dtype=object) if "SubjectURI" in RDF else np.full(n, maskv, dtype=object)
rel = RDF["RelationshipURI"].to_numpy(dtype=object) if "RelationshipURI" in RDF else np.full(n, maskv, dtype=object)
obj = RDF["ObjectURI"].to_numpy(dtype=object) if "ObjectURI" in RDF else np.full(n, maskv, dtype=object)
arr = np.char.add(np.char.add(np.char.add(start, subj),
np.char.add(rel, obj)),
end)
RDF["Triple"] = pd.Series(arr, index=RDF.index, dtype=object, name="Triple")
return RDF["Triple"]
def rebuild_by_movie(self, RDF: pd.DataFrame):
"""
Collapse triples + abstract into a single row per movie.
Returns: ["MovieID","Triple","Abstract"]
"""
# Build triples once (vectorized); method also sets RDF["Triple"]
triples = self.build_triple(RDF)
# Minimal frame for grouping (avoid carrying extra columns)
tmp = pd.DataFrame({
"MovieID": RDF["MovieID"].to_numpy(),
"Abstract": RDF["Abstract"].to_numpy(),
"Triple": triples.to_numpy(),
})
# Factorize high-cardinality keys to fast integer codes, group on codes,
# then map back to labels; sum concatenates strings for object dtype.
mid_codes, mid_uniques = pd.factorize(tmp["MovieID"], sort=False)
abs_codes, abs_uniques = pd.factorize(tmp["Abstract"], sort=False)
tmp["_mid"] = mid_codes
tmp["_abs"] = abs_codes
grouped = tmp.groupby(["_mid", "_abs"], sort=False, as_index=False)["Triple"].sum()
grouped["MovieID"] = grouped["_mid"].map(lambda i: mid_uniques[i])
grouped["Abstract"] = grouped["_abs"].map(lambda i: abs_uniques[i])
# Final tokens
grouped["Triple"] = SpecialToken.START_TRIPLE_LIST.value + grouped["Triple"]
grouped["Abstract"] = SpecialToken.ABSTRACT.value + grouped["Abstract"]
return grouped[["MovieID", "Triple", "Abstract"]]

View File

@ -26,6 +26,7 @@ class PipelineApplier():
"""Remove rows whose RelationshipURI is in the stored filter. Generate it first callig the generate_list_relationship_filter"""
return RDF[~RDF["RelationshipURI"].isin(self.relationship_filter_list)]
# def filter_movie_by_rel_uri_frequence()
def generate_frequency_movie_filter(self, MOVIE_COUNT: pd.DataFrame ,min_treshold: int, max_treshold: int):
"""

View File

@ -1,6 +1,6 @@
import re
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
from Scripts.DataCleaning.filter import PipelineApplier
from Scripts.DataCleaning.legacy.filter import PipelineApplier
# tasks dataset builder
from Scripts.DataCleaning.data_output_models.rdf_mask_task import RDF_mask_task_dataset
from Scripts.DataCleaning.data_output_models.bpe_corpus import BPE_corpus
@ -25,13 +25,16 @@ class Pipeline():
MOVIE_COUNT = self.sql_endpoint.get_movies_id_count()
REL_COUNT = self.sql_endpoint.get_relationship_count()
self.filter_applier.generate_frequency_movie_filter(MOVIE_COUNT,50,3000)
self.filter_applier.generate_frequency_relationship_filter(REL_COUNT, 50, 2395627)
self.filter_applier.generate_frequency_relationship_filter(REL_COUNT, 50, 2395627) # from 2718 to 3069
# prepare the filter on the relationshipURI you want to delete:
relationship_uri_banned_list = [
"dbp-dbp:wikiPageUsesTemplate","w3:2000/01/rdf-schema#label","dbp-dbo:abstract",
"dbp-dbo:wikiPageID","dbp-dbo:wikiPageRevisionID", "dbp-dbo:wikiPageDisambiguates",
"w3:2002/07/owl#sameAs","dbp-dbp:image","dbp-dbo:wikiPageLength", "w3:2000/01/rdf-schema#comment",
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type"]
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type",
"dbp-dbp:id","dbp-dbp:totalWidth", "w3:ns/prov#wasDerivedFrom", "dbp-dbp:n", "dbp-dbp:alt",
"dbp-dbo:soundRecording"
]
self.filter_applier.generate_list_relationship_filter(relationship_uri_banned_list)

View File

@ -0,0 +1,86 @@
# This file deletes in the pipeline the unwanted relationship by different rules
import pandas as pd
import sqlite3
import numpy as np
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class PipelineApplier():
def __init__(self):
pass
def rdf_add_special_token(self, RDF: pd.DataFrame):
"""
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI, OBJ to ObjectURI, REL to RelationshipURI.
Check Scrits/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
It only adds the special token of the three element of the RDF, no other special token.
Args:
RDF (pd.DataFrame):
Returns:
pd.DataFrame: ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
"""
# if the filter runned before sliced the RDF and created a View, here the problem is resolved
# for more context: SettingWithCopyWarning
RDF = RDF.copy()
# at the beginning of SubjectURI RelationshipURI ObjectURI, add their special token
RDF["SubjectURI"] = SpecialToken.SUBJECT.value + RDF["SubjectURI"]
RDF["ObjectURI"] = SpecialToken.OBJECT.value + RDF["ObjectURI"]
RDF["RelationshipURI"] = SpecialToken.RELATIONSHIP.value + RDF["RelationshipURI"]
return RDF
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
RDF = RDF.replace('', np.nan)
# Drop rows where any of the key columns are NaN
RDF = RDF.dropna(subset=["SubjectURI", "RelationshipURI", "ObjectURI"])
return RDF
def rebuild_by_movie(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""
Args:
RDF (pd.DataFrame): ["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
Returns:
pd.DataFrame: ["MovieID","Triple","Abstract"]
"""
# to execute this method you have to have itereted by movie_id
# because as design we want at the end one row for each movie
# MovieID and abstract can be given as input for a more generic method
# first let's combine each row creating column triple as join of rdf
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
# special token
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
# combine rows into one
# MovieID and Abstract are unique for each other 1 <-> 1
RDF = RDF.groupby(["MovieID", "Abstract"])["Triple"].apply("".join).reset_index()
# add special token for: start of triple, end of triple and start of abstract
RDF["Triple"] = SpecialToken.START_TRIPLE_LIST.value + RDF["Triple"]+SpecialToken.END_OF_SENTENCE.value
RDF["Abstract"] = SpecialToken.ABSTRACT.value + RDF["Abstract"] + SpecialToken.END_OF_SENTENCE.value
return RDF[["MovieID","Triple","Abstract"]]
@staticmethod
def build_triple(RDF: pd.DataFrame):
"""
Obtains joined RDF triple in one element, togheter with START and END special token
Args:
RDF (pd.DataFrame): at least ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
pd.DataFrame: RDF["Triple"] (just this column)
"""
# let's combine each row creating column triple as join of rdf
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
# special token
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
return RDF["Triple"]
def regex_on_objects(self, RDF: pd.DataFrame) -> pd.DataFrame:
RDF["ObjectURI"] = (RDF["ObjectURI"].astype("string")
.str.replace(r"\r?\n+", ", ", regex=True) # newlines -> ", "
.str.replace(r"\*", "", regex=True)) # delete all asterisks
return RDF

View File

@ -0,0 +1,103 @@
import pandas as pd
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class MovieFilter:
def __init__(self) -> None:
self.sql_endpoint = SqlEndpoint()
# first obtain all movie_id
movie_query = "SELECT MovieID FROM Movies"
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(movie_query)
def frequency_filter(self, min_treshold:int, max_treshold:int):
movie_list_placeholder = ",".join(["?"] * len(self.MOVIE_FILTER))
filter_query = f"""
SELECT MovieID
FROM RDFs
WHERE MovieID IN ({movie_list_placeholder})
GROUP BY MovieID
HAVING COUNT(*) BETWEEN {min_treshold} AND {max_treshold};
"""
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, tuple(self.MOVIE_FILTER["MovieID"].to_list()))
def get_movie_id(self):
return self.MOVIE_FILTER
def relation_filter(self, parsed_rel_uri: str, min_treshold:int, max_treshold:int):
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
filter_query = f"""
SELECT MovieID
FROM RDFs
JOIN ParsedRelationships ON ParsedRelationships.RelationshipID = RDFs.RelationshipID
WHERE MovieID IN ({movie_list_placeholder})
GROUP BY MovieID
HAVING SUM(CASE WHEN ParsedRelationships.RelationshipURI = '{parsed_rel_uri}' THEN 1 ELSE 0 END)
BETWEEN {min_treshold} AND {max_treshold};
"""
params = tuple(movie_ids) # + (parsed_rel_uri, min_treshold, max_treshold)
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)
def filter_by_director(self):
director_list = ['dbp-dbo:director','dbp-dbp:director']
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
filter_query = f"""
SELECT DISTINCT RDFs.MovieID
FROM RDFs
JOIN ParsedRelationships USING (RelationshipID)
WHERE RDFs.MovieID IN ({movie_list_placeholder})
AND ParsedRelationships.RelationshipURI IN {tuple(director_list)};
"""
params = tuple(movie_ids)
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)
def filter_by_english_movies(self):
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
relationship = ["dbp-dbp:language"]
objects_list = ["English", "dbp-dbr:English_language"]
filter_query = f"""
SELECT DISTINCT RDFs.MovieID
FROM RDFs
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
WHERE RDFs.MovieID IN ({movie_list_placeholder})
AND ParsedRelationships.RelationshipURI IN ('{relationship[0]}')
AND ParsedObjects.ObjectURI in {tuple(objects_list)};
"""
other_query = f"""
SELECT RDFs.MovieID
FROM RDFs
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
WHERE RDFs.MovieID IN ({movie_list_placeholder})
AND ParsedRelationships.RelationshipURI IN ('{relationship[0]}')
GROUP BY RDFs.MovieID
HAVING
SUM(CASE WHEN ParsedObjects.ObjectURI IN {tuple(objects_list)} THEN 1 ELSE 0 END) >= 1
AND
SUM(CASE WHEN ParsedObjects.ObjectURI NOT IN {tuple(objects_list)} THEN 1 ELSE 0 END) = 0;
"""
params = tuple(movie_ids)
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(other_query, params)
# movie_filter = MovieFilter()
# movie_filter.frequency_filter(5,10)

View File

@ -0,0 +1,155 @@
from movie_filter import MovieFilter
from relationship_filter import RelationshipFilter
from rdf_filter import RdfFilter
from cleaner import PipelineApplier
from Scripts.DataCleaning.data_output_models.bpe_corpus import BPE_corpus
from Scripts.DataCleaning.data_output_models.rdf_text_tasks import RDF_text_task_dataset
from Scripts.DataCleaning.data_output_models.rdf_completation_task import RDF_completation_task_dataset
from Scripts.DataCleaning.data_output_models.debug_csv import Debug_csv
import pandas as pd
RELATIONSHIP_FILTER_LIST = [
"dbp-dbp:wikiPageUsesTemplate","w3:2000/01/rdf-schema#label","dbp-dbo:abstract",
"dbp-dbo:wikiPageID","dbp-dbo:wikiPageRevisionID", "dbp-dbo:wikiPageDisambiguates",
"w3:2002/07/owl#sameAs","dbp-dbp:image","dbp-dbo:wikiPageLength", "w3:2000/01/rdf-schema#comment",
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type",
"dbp-dbp:id","dbp-dbp:totalWidth", "w3:ns/prov#wasDerivedFrom", "dbp-dbp:n", "dbp-dbp:alt",
"dbp-dbo:soundRecording", "dbp-dbp:align", "dbp-dbp:format",
"dbp-dbp:filename", "dbp-dbp:wikt", "foaf:isPrimaryTopicOf", "dbp-dbp:quote", "foaf:homepage",
"dbp-dbp:wordnet_type", "dbp-dbp:length","dbp-dbp:caption", "dbp-dbo:imdbId", "dbp-dbp:border", "dbp-dbp:note",
"dbp-dbp:postalCodeType", "dbp-dbp:extraColumn", "foaf:homepage", "dbp-dbp:bgcolor","dbp-dbp:prevTitle",
"dbp-dbp:imageUpright", "dbp-dbp:url", "dbp-dbp:italicTitle", "dbp-dbp:imageSize", "dbp-dbp:text",
"dbp-dbp:captionAlign", "dbp-dbp:headerAlign", "dbp-dbp:height", "dbp-dbp:link", "dbp-dbo:wikiPageInterLanguageLink",
"w3:2003/01/geo/wgs84_pos#lat", "w3:2003/01/geo/wgs84_pos#long", "http://www.georss.org/georss/point",
"dbp-dbp:bgcolor", "dbp-dbp:mc", "dbp-dbp:rev3score", "dbp-dbp:rev4score", "dbp-dbp:imageAlt",
"dbp-dbp:b", "dbp-dbp:s", "dbp-dbp:c", "dbp-dbp:d", "dbp-dbp:m", "dbp-dbp:v", "dbp-dbp:mw", "dbp-dbp:fontsize",
"dbp-dbp:salign", "dbp-dbp:q", "dbp-dbp:portal", "dbp-dbp:dSearch", "dbp-dbp:header", "w3:2003/01/geo/wgs84_pos#geometry",
"dbp-dbp:shortsummary", "dbp-dbp:fixAttempted", "dbp-dbo:developer", "dbp-dbp:no", "dbp-dbp:ref", "dbp-dbp:infoa"
"dbp-dbp:infob", "dbp-dbp:1a", "dbp-dbp:1p", "dbp-dbp:2a", "dbp-dbp:2p", "http://rdvocab.info/RDARelationshipsWEMI/manifestationOfWork",
"dbp-dbp:isbn", "dbp-dbp:titleWidth", "dbp-dbp:prodcode", "dbp-dbp:page", "w3:2004/02/skos/core#closeMatch",
"dbp-dbp:colwidth", "dbp-dbp:imagesize", "dbp-dbp:rr", "dbp-dbp:date", "dbp-dbp:type", "dbp-dbp:list",
"dbp-dbp:listEpisodes", "dbp-dbp:footerAlign", "dbp-dbp:float", "dbp-dbp:bot", "dbp-dbp:p", "dbp-dbp:l", "dbp-dbp:t", "dbp-dbp:j",
"dbp-dbp:1y", "dbp-dbp:2y", "dbp-dbp:1pp", "dbp-dbp:vgs", "dbp-dbp:3a", "dbp-dbp:3p", "dbp-dbp:3y", "dbp-dbp:4a", "dbp-dbp:4y",
"dbp-dbp:website"
]
RELATIONSHIP_WHITE_LIST = [
"dbp-dbp:director","dbp-dbo:starring", "dbp-dbo:writer", "dbp-dbp:name", "dbp-dbp:genre", "purl:dc/terms/subject"
]
"""
SELECT DISTINCT field3
FROM debug
"""
class Pipeline():
def __init__(self) -> None:
self._movie_filter = MovieFilter()
self._relationship_filter = RelationshipFilter()
self._rdf_filter = RdfFilter()
self._pipeline = PipelineApplier()
self.task_bpe_corpus = BPE_corpus("./Assets/Dataset/Tmp/corpus.txt")
self.task_rdf_text = RDF_text_task_dataset("./Assets/Dataset/Tmp/rdf_text.csv")
self.task_rdf_completation = RDF_completation_task_dataset("./Assets/Dataset/Tmp/rdf_completation.csv")
self._movie_filter.frequency_filter(50,3000)
self._relationship_filter.frequency_filter(25, 2395627) # from 2718 to 3069
self._relationship_filter.delete_relationship_uri_by_list(RELATIONSHIP_FILTER_LIST)
def other_filter(self):
self._movie_filter.relation_filter("purl:dc/terms/subject",5,100)
self._movie_filter.filter_by_director()
self._movie_filter.filter_by_english_movies()
self._movie_filter.relation_filter("dbp-dbp:budget",1,100) # the most important film have relationship budget
self._movie_filter.relation_filter("dbp-dbp:released",1,100) # to cut to 2000 :(
def _get_cleaned_movie_rows(self):
movie_ids = self._movie_filter.get_movie_id()
rel_ids = self._relationship_filter.get_relationship_id()
# rel_ids = self._relationship_filter.get_relationship_id_from_white_list(RELATIONSHIP_WHITE_LIST)
for RDF in self._rdf_filter.yield_movie_abbreviated_rdfs(movie_ids,rel_ids):
RDF = self._pipeline.drop_na_from_dataset(RDF)
RDF = self._pipeline.regex_on_objects(RDF)
RDF = self._pipeline.rdf_add_special_token(RDF)
if RDF.empty:
continue
yield RDF
def execute_task_bpe_corpus(self):
for RDF in self._get_cleaned_movie_rows():
RDF = self._pipeline.rebuild_by_movie(RDF)
RDF = RDF[["Triple","Abstract"]]
self.task_bpe_corpus.write_from_df(RDF)
self._end_file_handler()
def execute_tasks_rdf_text(self):
for RDF in self._get_cleaned_movie_rows():
RDF = self._pipeline.rebuild_by_movie(RDF)
self.task_rdf_text.write(RDF)
self._end_file_handler()
def execute_task_rdf_completation(self):
for RDF in self._get_cleaned_movie_rows():
RDF["Triple"] = self._pipeline.build_triple(RDF)
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
self._end_file_handler()
def _end_file_handler(self):
self.task_bpe_corpus.close()
self.task_rdf_text.close()
self.task_rdf_completation.close()
def execute_all_task(self):
for RDF in self._get_cleaned_movie_rows():
completation_RDF = RDF.copy()
completation_RDF["Triple"] = self._pipeline.build_triple(completation_RDF)
self.task_rdf_completation.write(completation_RDF[["MovieID","Triple"]])
RDF = self._pipeline.rebuild_by_movie(RDF)
self.task_rdf_text.write(RDF)
self.task_bpe_corpus.write_from_df(RDF[["Triple","Abstract"]])
self._end_file_handler()
def use_toy_dataset(self):
# CHOOSEN MOVIE:
# The Dark Knight : 117248
# Inception : 147074
# The Avengers : 113621
# Cast Away : 1123
# The Departed : 117586
# American Psycho : 90177
# Avatar : 71587
# Django Unchained : 138952
# Spirited Away : 144137
# Knives Out : 148025
# [106465,106466,106467,106468,106469,106470,106471,106472,106473]
movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
self._movie_filter.MOVIE_FILTER = pd.DataFrame({"MovieID": movie_list})
def generate_csv_debug_file(self, debug_path:str):
debug_csv = Debug_csv(debug_path)
for RDF in self._get_cleaned_movie_rows():
debug_csv.write(RDF)
debug_csv.close()
pipe = Pipeline()
#pipe.use_toy_dataset()
pipe.other_filter()
# pipe.execute_all_task()
pipe.generate_csv_debug_file("Assets/Dataset/Tmp/debug.csv")

View File

@ -0,0 +1,32 @@
import pandas as pd
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class RdfFilter:
def __init__(self) -> None:
self.sql_endpoint = SqlEndpoint()
# def delete_hyperum_when_movie(self):
# purl:linguistics/gold/hypernym
# is almost ever as "dbp-dbr:Movie" or "dbp-dbr:Film"
# banned triple
def yield_movie_abbreviated_rdfs(self, MOVIE_ID: pd.DataFrame, REL_ID: pd.DataFrame):
relationship_placeholder = ",".join(["?"] * len(REL_ID))
param = tuple(REL_ID["RelationshipID"].to_list())
QUERY = f"""
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
FROM RDFs
INNER JOIN ParsedSubjects USING (SubjectID)
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
INNER JOIN WikipediaAbstracts USING (MovieID)
WHERE MovieID = (?) AND RelationshipID IN ({relationship_placeholder});
"""
for movie_id in MOVIE_ID["MovieID"].to_list():
params = (movie_id,) + param
yield self.sql_endpoint.get_dataframe_from_query(QUERY, params=params)

View File

@ -0,0 +1,54 @@
import pandas as pd
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class RelationshipFilter:
def __init__(self) -> None:
self.sql_endpoint = SqlEndpoint()
# first obtain all relationship_id
relationship_query = "SELECT RelationshipID FROM Relationships"
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(relationship_query)
def frequency_filter(self, min_treshold:int, max_treshold:int):
movie_list_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
filter_query = f"""
SELECT RelationshipID
FROM RDFs
WHERE RelationshipID IN ({movie_list_placeholder})
GROUP BY RelationshipID
HAVING COUNT(*) BETWEEN {min_treshold} AND {max_treshold};
"""
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()))
def get_relationship_id(self):
return self.RELATIONSHIP_FILTER
def get_relationship_id_from_white_list(self, relationship_list: list[str]):
ids_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
uri_placeholder = ",".join(["?"] * len(relationship_list))
filter_query = f"""
SELECT RelationshipID
FROM ParsedRelationships
WHERE RelationshipID IN ({ids_placeholder})
AND RelationshipURI IN ({uri_placeholder});
"""
params = tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()) + tuple(relationship_list)
return self.sql_endpoint.get_dataframe_from_query(filter_query, params)
def delete_relationship_uri_by_list(self, filter_list: list[str]):
ids_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
uri_placeholder = ",".join(["?"] * len(filter_list))
filter_query = f"""
SELECT RelationshipID
FROM ParsedRelationships
WHERE RelationshipID IN ({ids_placeholder})
AND RelationshipURI NOT IN ({uri_placeholder});
"""
params = tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()) + tuple(filter_list)
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)

View File

@ -134,6 +134,11 @@ class SqlEndpoint():
"""
return pd.read_sql_query(QUERY, self.sql_engine)
def get_dataframe_from_query(self, query: str, params=None):
if params is None:
return pd.read_sql_query(query, self.sql_engine)
return pd.read_sql_query(query, self.sql_engine, params=params)
if __name__ == "__main__" :