Added support for fast resuming

This commit is contained in:
Christian Risi 2025-10-12 13:53:07 +02:00
parent 37a2501a79
commit e0f8a36aa5

View File

@ -21,11 +21,18 @@ torch.set_default_device(DEVICE)
# Get paths # Get paths
CHECKPOINT_DIR = "Assets/Dataset/Tmp"
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json") VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv") TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv")
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv") VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv")
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv") TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv")
CHECKPOINT_PATH = Path("Assets/Dataset/Tmp/NanoSocrates.zip") CHECKPOINT_PATH = Path(f"{CHECKPOINT_DIR}/NanoSocrates.zip")
NANO_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/nano_optim.zip")
ENC_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/enc_optim.zip")
DEC_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/dec_optim.zip")
LAST_EPOCH_PATH = Path(f"{CHECKPOINT_DIR}/last_epoch.txt")
# BPE Init # BPE Init
@ -50,7 +57,7 @@ MINI_BATCH_SIZE = 80
VALIDATION_STEPS = 5 VALIDATION_STEPS = 5
CHECKPOINT_STEPS = VALIDATION_STEPS * 4 CHECKPOINT_STEPS = VALIDATION_STEPS * 4
PATIENCE = 4 PATIENCE = 4
CURRENT_EPOCH = 0 CURRENT_EPOCH = 0 if not LAST_EPOCH_PATH.is_file() else int(LAST_EPOCH_PATH.read_text())
VERBOSE = True VERBOSE = True
LEARNING_RATE = 1.5 LEARNING_RATE = 1.5
@ -78,7 +85,6 @@ TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKE
# Model # Model
NANOSOCRATES = Transformer.TrainingModel( NANOSOCRATES = Transformer.TrainingModel(
TOKEN_SPACE_SIZE, TOKEN_SPACE_SIZE,
EMBEDDED_SIZE, EMBEDDED_SIZE,
@ -103,12 +109,25 @@ decoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters(), LEARNING_RATE) nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters(), LEARNING_RATE)
encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters(), LEARNING_RATE) encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters(), LEARNING_RATE)
decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters(), LEARNING_RATE) decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters(), LEARNING_RATE)
nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)
if NANO_OPTIM_PATH.is_file():
optim_dict = torch.load(NANO_OPTIM_PATH)
nano_optim.load_state_dict(optim_dict)
if ENC_OPTIM_PATH.is_file():
optim_dict = torch.load(ENC_OPTIM_PATH)
encoder_only_optim.load_state_dict(optim_dict)
if DEC_OPTIM_PATH.is_file():
optim_dict = torch.load(DEC_OPTIM_PATH)
decoder_only_optim.load_state_dict(optim_dict)
nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH)
encoder_only_scheduler = Transformer.WarmupLR( encoder_only_scheduler = Transformer.WarmupLR(
encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH
) )
decoder_only_scheduler = Transformer.WarmupLR( decoder_only_scheduler = Transformer.WarmupLR(
decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH
) )
current_epoch = CURRENT_EPOCH current_epoch = CURRENT_EPOCH
@ -380,6 +399,13 @@ while current_epoch < MAX_EPOCHS:
if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE: if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:
print(f"Saving model at {CHECKPOINT_PATH.as_posix()}") print(f"Saving model at {CHECKPOINT_PATH.as_posix()}")
torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH) torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)
torch.save(nano_optim.state_dict(), NANO_OPTIM_PATH)
torch.save(encoder_only_optim.state_dict(), ENC_OPTIM_PATH)
torch.save(decoder_only_optim.state_dict(), DEC_OPTIM_PATH)
FILE = open(LAST_EPOCH_PATH, "w", encoding="utf-8")
FILE.write(f"{current_epoch}")
FILE.close()
if patience == PATIENCE: if patience == PATIENCE:
exit(0) exit(0)