This commit is contained in:
GassiGiuseppe 2025-10-12 16:36:09 +02:00
commit e2231eb3b9
5 changed files with 217 additions and 14 deletions

View File

@ -21,11 +21,18 @@ torch.set_default_device(DEVICE)
# Get paths # Get paths
CHECKPOINT_DIR = "Assets/Dataset/Tmp"
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json") VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv") TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv")
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv") VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv")
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv") TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv")
CHECKPOINT_PATH = Path("Assets/Dataset/Tmp/NanoSocrates.zip") CHECKPOINT_PATH = Path(f"{CHECKPOINT_DIR}/NanoSocrates.zip")
NANO_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/nano_optim.zip")
ENC_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/enc_optim.zip")
DEC_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/dec_optim.zip")
LAST_EPOCH_PATH = Path(f"{CHECKPOINT_DIR}/last_epoch.txt")
# BPE Init # BPE Init
@ -50,7 +57,7 @@ MINI_BATCH_SIZE = 80
VALIDATION_STEPS = 5 VALIDATION_STEPS = 5
CHECKPOINT_STEPS = VALIDATION_STEPS * 4 CHECKPOINT_STEPS = VALIDATION_STEPS * 4
PATIENCE = 4 PATIENCE = 4
CURRENT_EPOCH = 0 CURRENT_EPOCH = -1 if not LAST_EPOCH_PATH.is_file() else int(LAST_EPOCH_PATH.read_text())
VERBOSE = True VERBOSE = True
LEARNING_RATE = 1.5 LEARNING_RATE = 1.5
@ -78,7 +85,6 @@ TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKE
# Model # Model
NANOSOCRATES = Transformer.TrainingModel( NANOSOCRATES = Transformer.TrainingModel(
TOKEN_SPACE_SIZE, TOKEN_SPACE_SIZE,
EMBEDDED_SIZE, EMBEDDED_SIZE,
@ -103,12 +109,25 @@ decoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters(), LEARNING_RATE) nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters(), LEARNING_RATE)
encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters(), LEARNING_RATE) encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters(), LEARNING_RATE)
decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters(), LEARNING_RATE) decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters(), LEARNING_RATE)
nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)
if NANO_OPTIM_PATH.is_file():
optim_dict = torch.load(NANO_OPTIM_PATH)
nano_optim.load_state_dict(optim_dict)
if ENC_OPTIM_PATH.is_file():
optim_dict = torch.load(ENC_OPTIM_PATH)
encoder_only_optim.load_state_dict(optim_dict)
if DEC_OPTIM_PATH.is_file():
optim_dict = torch.load(DEC_OPTIM_PATH)
decoder_only_optim.load_state_dict(optim_dict)
nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH)
encoder_only_scheduler = Transformer.WarmupLR( encoder_only_scheduler = Transformer.WarmupLR(
encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH
) )
decoder_only_scheduler = Transformer.WarmupLR( decoder_only_scheduler = Transformer.WarmupLR(
decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH
) )
current_epoch = CURRENT_EPOCH current_epoch = CURRENT_EPOCH
@ -209,7 +228,7 @@ while current_epoch < MAX_EPOCHS:
decoder_only_optim.zero_grad() decoder_only_optim.zero_grad()
pred_logits = DECODER_ONLY((dec_x, dec_x_pad)) pred_logits = DECODER_ONLY((dec_x, enc_x_pad, dec_x_pad))
pred_logits = pred_logits.permute(0, 2, 1) pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = decoder_ce(pred_logits, tgt) loss: torch.Tensor = decoder_ce(pred_logits, tgt)
@ -297,7 +316,7 @@ while current_epoch < MAX_EPOCHS:
pred_logits = DECODER_ONLY((dec_x, dec_x_pad)) pred_logits = DECODER_ONLY((dec_x, enc_x_pad, dec_x_pad))
pred_logits = pred_logits.permute(0, 2, 1) pred_logits = pred_logits.permute(0, 2, 1)
@ -380,6 +399,13 @@ while current_epoch < MAX_EPOCHS:
if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE: if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:
print(f"Saving model at {CHECKPOINT_PATH.as_posix()}") print(f"Saving model at {CHECKPOINT_PATH.as_posix()}")
torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH) torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)
torch.save(nano_optim.state_dict(), NANO_OPTIM_PATH)
torch.save(encoder_only_optim.state_dict(), ENC_OPTIM_PATH)
torch.save(decoder_only_optim.state_dict(), DEC_OPTIM_PATH)
FILE = open(LAST_EPOCH_PATH, "w", encoding="utf-8")
FILE.write(f"{current_epoch}")
FILE.close()
if patience == PATIENCE: if patience == PATIENCE:
exit(0) exit(0)

View File

@ -9,6 +9,7 @@ class NanoSocraDecoder(torch.nn.Module):
decoder_embedder: Embedder.NanoSocratesEmbedder, decoder_embedder: Embedder.NanoSocratesEmbedder,
decoder_layers: torch.nn.Sequential, decoder_layers: torch.nn.Sequential,
detokener: DeToken detokener: DeToken
) -> None: ) -> None:
super().__init__() super().__init__()
@ -17,14 +18,14 @@ class NanoSocraDecoder(torch.nn.Module):
self.__decoder = decoder_layers self.__decoder = decoder_layers
self.__detokener = detokener self.__detokener = detokener
def forward(self, args: tuple[torch.Tensor, torch.Tensor]): def forward(self, args: tuple[torch.Tensor,torch.Tensor, torch.Tensor]):
decoder_embedder_input, tgt_padding = args decoder_embedder_input, prefix_mask, tgt_padding = args
decoder_tensor = self.__decoder_embedder(decoder_embedder_input) decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
decoder_output, _, _, _, _, _ = self.__decoder( decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_tensor, decoder_tensor, decoder_tensor, tgt_padding, tgt_padding, True) (decoder_tensor, decoder_tensor, decoder_tensor, prefix_mask, tgt_padding, True)
) )
logits: torch.Tensor = self.__detokener(decoder_output) logits: torch.Tensor = self.__detokener(decoder_output)

View File

@ -0,0 +1,176 @@
import torch
import Project_Model.Libs.Embedder as Embedder
from ..Classes import Encoder, Decoder, DeToken
from ..Utils import get_decoder_input
from Project_Model.Libs.Batch import TaskType
class NanoSocratesCore(torch.nn.Module):
def __init__(
self,
vocabulary_size: int,
sentence_max_length: int,
sos: int,
pad: int,
eos: int,
latent_space: int = 256,
feed_forward_multiplier: int = 4,
attention_heads: int = 4,
layer_number: int = 2,
) -> None:
super().__init__()
self.__sos = sos
self.__pad = pad
self.__eos = eos
self.__sentence_len = sentence_max_length
feed_forward_latent_space = latent_space * feed_forward_multiplier
self.__encoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
self.__decoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
TMP_ENCODERS = [
Encoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
TMP_DECODERS = [
Decoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
self.__encoder = torch.nn.Sequential(*TMP_ENCODERS)
self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
self.__detokener = DeToken(latent_space, vocabulary_size)
self.__encoder_detokener = DeToken(latent_space, vocabulary_size)
def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
encoder_embedder_input, src_padding, decoder_embedder_input, tgt_padding = args
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_tensor, encoder_output, encoder_output, src_padding, tgt_padding, False)
)
logits: torch.Tensor = self.__detokener(decoder_output)
return logits
def inference(self, input: tuple[torch.Tensor, torch.Tensor], task_type: TaskType) -> torch.Tensor:
if task_type == TaskType.MASKING:
return self.__masking(input)
if task_type == TaskType.COMPLETATION:
return self.__continue_rdf(input)
return self.__text_generation(input)
def __text_generation(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
x, padding = args
encoder_tensor = self.__encoder_embedder(x)
BATCH, SEQ_LEN, _ = x.shape
encoder_output, _ = self.__encoder((encoder_tensor, padding))
decoder_in = get_decoder_input(BATCH, self.__sos, self.__pad, SEQ_LEN)
decoder_in_pad_mask = decoder_in.eq(self.__pad)
continue_generating = True
token_idx = 0
while continue_generating:
decoder_in = self.__decoder_embedder(decoder_in)
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_in, encoder_output, encoder_output, padding, decoder_in_pad_mask, False)
)
logits: torch.Tensor = self.__detokener(decoder_output)
logits = torch.softmax(logits, 2)
tokens = torch.argmax(logits)
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
continue_generating = False
continue
if token_idx < self.__sentence_len - 1:
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
decoder_in_pad_mask = decoder_in.eq(self.__pad)
return decoder_in
def __masking(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
x, padding = args
encoder_tensor = self.__encoder_embedder(x)
x, _ = self.__encoder((encoder_tensor, padding))
logits: torch.Tensor = self.__encoder_detokener(x)
del x
logits = torch.softmax(logits, 2)
tokens = torch.argmax(logits)
return tokens
def __continue_rdf(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
decoder_in, _ = args
decoder_in_prefix_mask = decoder_in.eq(self.__pad)
decoder_in_pad_mask = decoder_in.eq(self.__pad)
continue_generating = True
token_idx = 0
while continue_generating:
decoder_in = self.__decoder_embedder(decoder_in)
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_in, decoder_in, decoder_in, decoder_in_prefix_mask, decoder_in_pad_mask, False)
)
logits: torch.Tensor = self.__detokener(decoder_output)
logits = torch.softmax(logits, 2)
tokens = torch.argmax(logits)
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
continue_generating = False
continue
if token_idx < self.__sentence_len - 1:
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
decoder_in_pad_mask = decoder_in.eq(self.__pad)
return decoder_in
def take_pieces(self):
return (
(self.__encoder_embedder, self.__encoder),
(self.__decoder_embedder, self.__decoder, self.__detokener)
)

View File

@ -36,6 +36,7 @@ class TrainingModel(torch.nn.Module):
self.__decoder = torch.nn.Sequential(*TMP_DECODERS) self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
self.__detokener = DeToken(latent_space, vocabulary_size) self.__detokener = DeToken(latent_space, vocabulary_size)
self.__encoder_detokener = DeToken(latent_space, vocabulary_size)
def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]): def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
@ -57,6 +58,6 @@ class TrainingModel(torch.nn.Module):
def take_pieces(self): def take_pieces(self):
return ( return (
(self.__encoder_embedder, self.__encoder), (self.__encoder_embedder, self.__encoder, self.__encoder_detokener),
(self.__decoder_embedder, self.__decoder, self.__detokener) (self.__decoder_embedder, self.__decoder, self.__detokener)
) )

View File

@ -10,8 +10,7 @@ def decompose_nano_socrates(
) -> tuple[TrainingModel, NanoSocratEncoder, NanoSocraDecoder]: ) -> tuple[TrainingModel, NanoSocratEncoder, NanoSocraDecoder]:
encoder_pieces, decoder_pieces = model.take_pieces() encoder_pieces, decoder_pieces = model.take_pieces()
encoder_embedder, encoder = encoder_pieces encoder_embedder, encoder, encoder_detokener = encoder_pieces
encoder_detokener = DeToken(embedding_size, vocabulary_size)
decoder_embedder, decoder, decoder_detokener = decoder_pieces decoder_embedder, decoder, decoder_detokener = decoder_pieces
return ( return (