Merge branch 'dev.embedder' of https://repositories.communitynotfound.work/PoliBa-DeepLearning/NanoSocrates into dev.embedder
This commit is contained in:
@@ -10,7 +10,6 @@ class SpecialToken(Enum):
|
||||
RELATIONSHIP = "<PRED>"
|
||||
OBJECT = "<OBJ>"
|
||||
ABSTRACT = "<ABS>"
|
||||
CORPUS_END = "<END>"
|
||||
|
||||
## Tasks' Token
|
||||
RDF_TO_TEXT = "<RDF2TXT>"
|
||||
@@ -20,4 +19,6 @@ class SpecialToken(Enum):
|
||||
|
||||
# BPE Training:
|
||||
# NanoSocrates
|
||||
START = "<START>"
|
||||
START = "<START>"
|
||||
CORPUS_END = "<END>"
|
||||
PAD = "<PAD>"
|
||||
19
Project_Model/Libs/Transformer/Classes/DeToken.py
Normal file
19
Project_Model/Libs/Transformer/Classes/DeToken.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import torch
|
||||
|
||||
|
||||
class DeToken(torch.nn.Module):
|
||||
|
||||
def __init__(self, embedding_size: int, vocabulary_size: int) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.__linear = torch.nn.Linear(embedding_size, vocabulary_size)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
# 1) Go from latent space to vocabularu space
|
||||
x = self.__linear(x)
|
||||
|
||||
# 2) Go to logits
|
||||
x = torch.softmax(x, 2)
|
||||
|
||||
return x
|
||||
@@ -35,22 +35,28 @@ class Decoder(nn.Module):
|
||||
)
|
||||
self.__layer_norm_3 = nn.LayerNorm(embedding_dimension)
|
||||
|
||||
|
||||
|
||||
def forward(self, x, k_x, v_x, padding_mask = None): #-> list[torch.Tensor]: # k_x = v_x . While x_q = x
|
||||
def forward(
|
||||
self,
|
||||
args: tuple[
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
torch.Tensor
|
||||
]
|
||||
): # -> list[torch.Tensor]: # k_x = v_x . While x_q = x
|
||||
# WARNING: args is needed to have sequential
|
||||
x, k_x, v_x, padding_mask = args
|
||||
|
||||
# build of attention mask
|
||||
attention_mask = get_causal_attention_mask(x.size(1))
|
||||
|
||||
# 1) Masked Attention
|
||||
MASKED_ATTENTION = self.__masked_attention(
|
||||
x, x, x, key_padding_mask=padding_mask, attn_mask=attention_mask
|
||||
x, x, x, key_padding_mask=padding_mask, attention_mask=attention_mask
|
||||
)
|
||||
|
||||
# 2) Dropout
|
||||
DROPPED_MASKED_ATTENTION = self.__dropout(
|
||||
MASKED_ATTENTION
|
||||
)
|
||||
DROPPED_MASKED_ATTENTION = self.__dropout(MASKED_ATTENTION)
|
||||
del MASKED_ATTENTION
|
||||
|
||||
# 3) Residual Connection
|
||||
@@ -61,7 +67,9 @@ class Decoder(nn.Module):
|
||||
x = self.__layer_norm_1(x)
|
||||
|
||||
# 5) Encoder–decoder (cross) attention
|
||||
CROSS_ATTENTION = self.__cross_attention(x, k_x, v_x, key_padding_mask=padding_mask)
|
||||
CROSS_ATTENTION = self.__cross_attention(
|
||||
x, k_x, v_x, key_padding_mask=padding_mask
|
||||
)
|
||||
|
||||
# 6) Dropout
|
||||
DROPPED_CROSS_ATTENTION = self.__dropout(CROSS_ATTENTION)
|
||||
@@ -88,7 +96,7 @@ class Decoder(nn.Module):
|
||||
# 12) Layer Normalization
|
||||
x = self.__layer_norm_3(x)
|
||||
|
||||
return x, k_x, v_x, padding_mask
|
||||
return (x, k_x, v_x, padding_mask)
|
||||
|
||||
|
||||
# use eval to disable dropout ecc
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from Project_Model.Libs.Transformer.Classes.FeedForwardNetwork import FeedForwardNetwork
|
||||
from Project_Model.Libs.Transformer.Classes.TorchMultiHeadAttention import (
|
||||
@@ -29,14 +30,17 @@ class Encoder(
|
||||
embedding_dimension
|
||||
) # norm of second "Add and Normalize"
|
||||
self.__dropout = nn.Dropout(0.1) # ...
|
||||
pass
|
||||
|
||||
def forward(self, x, padding_mask = None):
|
||||
|
||||
def forward(self, args: tuple[torch.Tensor, torch.Tensor]):
|
||||
# WARNING: args is needed to have sequential
|
||||
x, padding_mask = args
|
||||
|
||||
# -> ATTENTION -> dropout -> add and normalize -> FF -> dropout -> add and normalize ->
|
||||
# Attention with Residual Connection [ input + self-attention]
|
||||
|
||||
# 1) Multi Head Attention
|
||||
ATTENTION = self.__attention(x, x, x,key_padding_mask= padding_mask)
|
||||
ATTENTION = self.__attention(x, x, x, key_padding_mask=padding_mask)
|
||||
|
||||
# 2) Dropout
|
||||
DROPPED_ATTENTION = self.__dropout(ATTENTION)
|
||||
@@ -62,7 +66,7 @@ class Encoder(
|
||||
# 8) Layer Normalization
|
||||
x = self.__layer_norm_2(x)
|
||||
|
||||
return x,padding_mask
|
||||
return (x, padding_mask)
|
||||
|
||||
|
||||
# use eval to disable dropout ecc
|
||||
|
||||
@@ -1,24 +0,0 @@
|
||||
# multi-head attention -> (then to) ff
|
||||
# attention: qkv -> score = qk -> divide -> softamx
|
||||
# multihead -> QKV diferent in each head ( built by : X*[WQ/QK/WV])
|
||||
# z = soft(Q*K'/sqr(d))*V
|
||||
# recombine Z: 1) concatenate. 2) [z01234] * W = Z
|
||||
# we expect later to have padding token
|
||||
########################
|
||||
# WIP
|
||||
########################
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
embed_dim = 256
|
||||
num_heads = 8
|
||||
multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
||||
|
||||
|
||||
class MultiheadAttention:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_heads=8,
|
||||
) -> None:
|
||||
pass
|
||||
@@ -4,55 +4,108 @@ from .Encoder import Encoder
|
||||
from ....Libs.Embedder import NanoSocratesEmbedder
|
||||
import torch
|
||||
|
||||
|
||||
class NanoSocratesCore(torch.nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
embedded_size: int,
|
||||
feed_forward_dim: int,
|
||||
encoder_layers: int,
|
||||
decoder_layers:int,
|
||||
attention_heads: int,
|
||||
vocab_size: int) -> None:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
sentence_length: int,
|
||||
vocab_size: int,
|
||||
embedding_size: int = 256,
|
||||
feed_forward_multiplier: int = 4,
|
||||
num_encoder_layers: int = 2,
|
||||
num_decoder_layers: int = 2,
|
||||
num_attention_heads: int = 4,
|
||||
) -> None:
|
||||
|
||||
feed_forward_dim = embedding_size * feed_forward_multiplier
|
||||
|
||||
self.__sentence_length = sentence_length
|
||||
|
||||
self.__encoder_sequence = torch.nn.Sequential(
|
||||
*[Encoder(embedded_size, feed_forward_dim, attention_heads) for _ in range(encoder_layers)]
|
||||
)
|
||||
|
||||
#* unpack the list so that each encoder has its own weights
|
||||
|
||||
*[
|
||||
Encoder(embedding_size, feed_forward_dim, num_attention_heads)
|
||||
for _ in range(num_encoder_layers)
|
||||
]
|
||||
)
|
||||
|
||||
# * unpack the list so that each encoder has its own weights
|
||||
|
||||
self.__decoder_sequence = torch.nn.Sequential(
|
||||
*[Decoder(embedded_size, feed_forward_dim, attention_heads) for _ in range(decoder_layers)]
|
||||
*[
|
||||
Decoder(embedding_size, feed_forward_dim, num_attention_heads)
|
||||
for _ in range(num_decoder_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.__linear = torch.nn.Linear(embedding_size, vocab_size)
|
||||
|
||||
self.__input_embeder = NanoSocratesEmbedder(vocab_size, embedding_size)
|
||||
self.__output_embedder = NanoSocratesEmbedder(vocab_size, embedding_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
encoder_input: list[list[int]],
|
||||
decoder_input: list[list[int]],
|
||||
encoder_padding_mask: list[list[int]],
|
||||
):
|
||||
|
||||
if len(encoder_padding_mask) != len(encoder_input):
|
||||
raise Exception("Mismatch in received_dimensions")
|
||||
|
||||
# TODO: check for tensor in input to embedder
|
||||
# 1) Embed User-Input for encoders
|
||||
ENCODER_INPUT = self.__input_embeder(encoder_input)
|
||||
|
||||
# 2) Encode User-Input
|
||||
ENCODER_OUTPUT, _ = self.__encoder_sequence(ENCODER_INPUT, encoder_padding_mask)
|
||||
del ENCODER_INPUT
|
||||
|
||||
exit_loop = False
|
||||
decoder_token_list = decoder_input[:]
|
||||
decoder_phase = 0
|
||||
|
||||
LOGITS_HISTORY: list[torch.Tensor] = []
|
||||
|
||||
# 3) Autoregressive Output
|
||||
while not exit_loop:
|
||||
|
||||
# 3.0) Increment Counter
|
||||
decoder_phase += 1
|
||||
|
||||
# 3.1) Embed Decoder Input
|
||||
decoder_input = self.__output_embedder(decoder_token_list)
|
||||
|
||||
# 3.2) Decode Decoder Input
|
||||
DECODER_OUTPUT, _, _, _ = self.__decoder_sequence(
|
||||
decoder_input, ENCODER_OUTPUT, ENCODER_OUTPUT
|
||||
)
|
||||
|
||||
self.__linear = torch.nn.Linear(embedded_size, vocab_size, bias=False)
|
||||
|
||||
self.__input_embeder = NanoSocratesEmbedder(vocab_size,embedded_size)
|
||||
self.__output_embedder = NanoSocratesEmbedder(vocab_size,embedded_size)
|
||||
# 3.3) Go back to Token space
|
||||
# TODO: change name
|
||||
LOGITS = self.__linear(DECODER_OUTPUT)
|
||||
del DECODER_OUTPUT
|
||||
|
||||
# 3.4) Transform in probabilities
|
||||
# TODO: change name
|
||||
TOKEN_PROBABILITIES = torch.softmax(LOGITS, dim=-1)
|
||||
del LOGITS
|
||||
|
||||
def forward(self, token_list, padding_mask = None):
|
||||
x = self.__input_embeder(token_list)
|
||||
x = self.__encoder_sequence(x, padding_mask)[0]
|
||||
LOGITS_HISTORY.append(TOKEN_PROBABILITIES)
|
||||
|
||||
# 3.5) Take most probable tokens
|
||||
TOKEN_IDS = torch.argmax(TOKEN_PROBABILITIES, -1)
|
||||
|
||||
# do while
|
||||
x = self.__decoder_sequence(x,x,x, padding_mask)[0]
|
||||
logits = self.__linear(x)
|
||||
log_prob = torch.softmax(logits, dim=-1)
|
||||
output = torch.argmax(log_prob)
|
||||
while self.keep_going(log_prob):
|
||||
# from log_prob again into x
|
||||
# TODO: check for dimensions and for efficiency
|
||||
DECODER_TOKEN_TENSOR = torch.tensor(decoder_token_list)
|
||||
DECODER_TOKEN_TENSOR[:, decoder_phase] = TOKEN_IDS
|
||||
decoder_token_list = DECODER_TOKEN_TENSOR.tolist()
|
||||
|
||||
del TOKEN_IDS
|
||||
del DECODER_TOKEN_TENSOR
|
||||
|
||||
x = self.__decoder_sequence(x,x,x, padding_mask)[0]
|
||||
logits = self.__linear(x)
|
||||
log_prob = torch.softmax(logits, dim=-1)
|
||||
# argmax
|
||||
|
||||
return log_prob
|
||||
|
||||
|
||||
|
||||
def keep_going(self, x: ) -> bool:
|
||||
# 3.6) Check if we generated all tokens
|
||||
if decoder_phase == self.__sentence_length - 1:
|
||||
exit_loop = True
|
||||
|
||||
return LOGITS_HISTORY
|
||||
|
||||
@@ -8,17 +8,16 @@ class TorchMultiHeadAttention(nn.Module):
|
||||
self,
|
||||
embedding_dimension: int,
|
||||
number_of_attention_heads: int,
|
||||
dropout: float = 0.0,
|
||||
dropout: float = 0.0
|
||||
):
|
||||
super().__init__()
|
||||
self.attention = nn.MultiheadAttention(
|
||||
self.attention = torch.nn.MultiheadAttention(
|
||||
embedding_dimension,
|
||||
number_of_attention_heads,
|
||||
num_heads=number_of_attention_heads,
|
||||
dropout=dropout,
|
||||
batch_first=True,
|
||||
)
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x_q: torch.Tensor,
|
||||
|
||||
@@ -1,15 +1,16 @@
|
||||
from .Decoder import Decoder
|
||||
from .Encoder import Encoder
|
||||
from .FeedForwardNetwork import FeedForwardNetwork
|
||||
from .MultiHeadAttention import MultiheadAttention
|
||||
# from .MultiHeadAttention import MultiheadAttention
|
||||
from .TorchMultiHeadAttention import TorchMultiHeadAttention
|
||||
from .SpannedMasker import SpannedMasker
|
||||
from .DeToken import DeToken
|
||||
|
||||
__all__ = [
|
||||
"Decoder",
|
||||
"Encoder",
|
||||
"FeedForwardNetwork",
|
||||
"MultiheadAttention",
|
||||
"TorchMultiHeadAttention",
|
||||
"SpannedMasker"
|
||||
"SpannedMasker",
|
||||
"DeToken"
|
||||
]
|
||||
@@ -47,7 +47,7 @@ def normalize_sequence(
|
||||
) -> tuple[list[int], list[bool]]:
|
||||
|
||||
new_sequence = pad_sequence(sequence, max_length, pad_token)
|
||||
new_sequence = truncate_sequence(sequence, max_length, end_token)
|
||||
PADDING_MASK = create_padding_mask(sequence, pad_token)
|
||||
new_sequence = truncate_sequence(new_sequence, max_length, end_token)
|
||||
PADDING_MASK = create_padding_mask(new_sequence, pad_token)
|
||||
|
||||
return (new_sequence, PADDING_MASK)
|
||||
|
||||
Reference in New Issue
Block a user