Made model Batch ready
This commit is contained in:
parent
109ad9f36b
commit
fdece42462
19
Project_Model/Libs/Transformer/Classes/DeToken.py
Normal file
19
Project_Model/Libs/Transformer/Classes/DeToken.py
Normal file
@ -0,0 +1,19 @@
|
||||
import torch
|
||||
|
||||
|
||||
class DeToken(torch.nn.Module):
|
||||
|
||||
def __init__(self, embedding_size: int, vocabulary_size: int) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.__linear = torch.nn.Linear(embedding_size, vocabulary_size)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
# 1) Go from latent space to vocabularu space
|
||||
x = self.__linear(x)
|
||||
|
||||
# 2) Go to logits
|
||||
x = torch.softmax(x, 2)
|
||||
|
||||
return x
|
||||
@ -35,22 +35,28 @@ class Decoder(nn.Module):
|
||||
)
|
||||
self.__layer_norm_3 = nn.LayerNorm(embedding_dimension)
|
||||
|
||||
|
||||
|
||||
def forward(self, x, k_x, v_x, padding_mask = None): #-> list[torch.Tensor]: # k_x = v_x . While x_q = x
|
||||
def forward(
|
||||
self,
|
||||
args: tuple[
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
torch.Tensor
|
||||
]
|
||||
): # -> list[torch.Tensor]: # k_x = v_x . While x_q = x
|
||||
# WARNING: args is needed to have sequential
|
||||
x, k_x, v_x, padding_mask = args
|
||||
|
||||
# build of attention mask
|
||||
attention_mask = get_causal_attention_mask(x.size(1))
|
||||
|
||||
# 1) Masked Attention
|
||||
MASKED_ATTENTION = self.__masked_attention(
|
||||
x, x, x, key_padding_mask=padding_mask, attn_mask=attention_mask
|
||||
x, x, x, key_padding_mask=padding_mask, attention_mask=attention_mask
|
||||
)
|
||||
|
||||
# 2) Dropout
|
||||
DROPPED_MASKED_ATTENTION = self.__dropout(
|
||||
MASKED_ATTENTION
|
||||
)
|
||||
DROPPED_MASKED_ATTENTION = self.__dropout(MASKED_ATTENTION)
|
||||
del MASKED_ATTENTION
|
||||
|
||||
# 3) Residual Connection
|
||||
@ -61,7 +67,9 @@ class Decoder(nn.Module):
|
||||
x = self.__layer_norm_1(x)
|
||||
|
||||
# 5) Encoder–decoder (cross) attention
|
||||
CROSS_ATTENTION = self.__cross_attention(x, k_x, v_x, key_padding_mask=padding_mask)
|
||||
CROSS_ATTENTION = self.__cross_attention(
|
||||
x, k_x, v_x, key_padding_mask=padding_mask
|
||||
)
|
||||
|
||||
# 6) Dropout
|
||||
DROPPED_CROSS_ATTENTION = self.__dropout(CROSS_ATTENTION)
|
||||
@ -88,7 +96,7 @@ class Decoder(nn.Module):
|
||||
# 12) Layer Normalization
|
||||
x = self.__layer_norm_3(x)
|
||||
|
||||
return x, k_x, v_x, padding_mask
|
||||
return (x, k_x, v_x, padding_mask)
|
||||
|
||||
|
||||
# use eval to disable dropout ecc
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from Project_Model.Libs.Transformer.Classes.FeedForwardNetwork import FeedForwardNetwork
|
||||
from Project_Model.Libs.Transformer.Classes.TorchMultiHeadAttention import (
|
||||
@ -29,9 +30,12 @@ class Encoder(
|
||||
embedding_dimension
|
||||
) # norm of second "Add and Normalize"
|
||||
self.__dropout = nn.Dropout(0.1) # ...
|
||||
pass
|
||||
|
||||
def forward(self, x, padding_mask = None):
|
||||
|
||||
def forward(self, args: tuple[torch.Tensor, torch.Tensor]):
|
||||
# WARNING: args is needed to have sequential
|
||||
x, padding_mask = args
|
||||
|
||||
# -> ATTENTION -> dropout -> add and normalize -> FF -> dropout -> add and normalize ->
|
||||
# Attention with Residual Connection [ input + self-attention]
|
||||
|
||||
@ -62,7 +66,7 @@ class Encoder(
|
||||
# 8) Layer Normalization
|
||||
x = self.__layer_norm_2(x)
|
||||
|
||||
return x,padding_mask
|
||||
return (x, padding_mask)
|
||||
|
||||
|
||||
# use eval to disable dropout ecc
|
||||
|
||||
@ -8,17 +8,16 @@ class TorchMultiHeadAttention(nn.Module):
|
||||
self,
|
||||
embedding_dimension: int,
|
||||
number_of_attention_heads: int,
|
||||
dropout: float = 0.0,
|
||||
dropout: float = 0.0
|
||||
):
|
||||
super().__init__()
|
||||
self.attention = nn.MultiheadAttention(
|
||||
self.attention = torch.nn.MultiheadAttention(
|
||||
embedding_dimension,
|
||||
number_of_attention_heads,
|
||||
num_heads=number_of_attention_heads,
|
||||
dropout=dropout,
|
||||
batch_first=True,
|
||||
)
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x_q: torch.Tensor,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user