Compare commits
64 Commits
dev.embedd
...
dev
| Author | SHA1 | Date | |
|---|---|---|---|
| 784c1fdc9e | |||
|
|
b79521995c | ||
|
|
cf3e35121b | ||
|
|
540b78204c | ||
|
|
86a063591e | ||
|
|
f33d4f1db6 | ||
|
|
fe62b1edd5 | ||
|
|
892f91aad7 | ||
|
|
9ff117f437 | ||
|
|
83693f1d4e | ||
|
|
0b256001fe | ||
|
|
7585f556f8 | ||
|
|
4968d79403 | ||
|
|
80fd7fd600 | ||
|
|
972a73758d | ||
|
|
b38a011105 | ||
|
|
2bdcd78622 | ||
|
|
7dedbc481b | ||
|
|
76345f8d4f | ||
|
|
2ccec9efb8 | ||
|
|
e2231eb3b9 | ||
|
|
144f8724d6 | ||
|
|
07130ff489 | ||
|
|
e0f8a36aa5 | ||
|
|
37a2501a79 | ||
|
|
4ca1d0a189 | ||
|
|
856c693650 | ||
|
|
f463f699cf | ||
|
|
ab3d68bc13 | ||
|
|
79438e3d30 | ||
|
|
f98f5a2611 | ||
|
|
4281f8724b | ||
|
|
71d602e36e | ||
|
|
46ee6055ec | ||
|
|
e579e1c88b | ||
|
|
f51ada866f | ||
|
|
acd978cbc5 | ||
|
|
56fbadd55e | ||
|
|
14f1c574e7 | ||
|
|
d8e65bfb8a | ||
|
|
bcc2fe7368 | ||
|
|
160b7dbfc0 | ||
|
|
49946727d8 | ||
|
|
e9d30b3cea | ||
|
|
1649cd7768 | ||
|
|
443f54fffd | ||
|
|
ff721107b9 | ||
|
|
f1886e5be1 | ||
|
|
5e3878ea17 | ||
|
|
79d3fb9ff8 | ||
|
|
586f021276 | ||
|
|
82462078f8 | ||
|
|
625f79f7c3 | ||
|
|
92ae40013d | ||
|
|
15f203cad5 | ||
|
|
31c8541dfb | ||
|
|
ee12f53f12 | ||
|
|
a04f4c7cb7 | ||
|
|
a93e61b8c1 | ||
|
|
0373460105 | ||
|
|
7307916891 | ||
|
|
acb43fc899 | ||
|
|
255d801a80 | ||
|
|
2bd24ec278 |
Binary file not shown.
BIN
Assets/Dataset/1-hop/curated/holdout/evaluation.csv
LFS
Normal file
BIN
Assets/Dataset/1-hop/curated/holdout/evaluation.csv
LFS
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/1-hop/curated/holdout/test.csv
LFS
Normal file
BIN
Assets/Dataset/1-hop/curated/holdout/test.csv
LFS
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/1-hop/curated/holdout/train.csv
LFS
Normal file
BIN
Assets/Dataset/1-hop/curated/holdout/train.csv
LFS
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/1-hop/curated/rdf_completation.csv
LFS
Normal file
BIN
Assets/Dataset/1-hop/curated/rdf_completation.csv
LFS
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/1-hop/curated/rdf_text.csv
LFS
Normal file
BIN
Assets/Dataset/1-hop/curated/rdf_text.csv
LFS
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/1-hop/small/holdout/evaluation.csv
LFS
Normal file
BIN
Assets/Dataset/1-hop/small/holdout/evaluation.csv
LFS
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/1-hop/small/holdout/test.csv
LFS
Normal file
BIN
Assets/Dataset/1-hop/small/holdout/test.csv
LFS
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/1-hop/small/holdout/train.csv
LFS
Normal file
BIN
Assets/Dataset/1-hop/small/holdout/train.csv
LFS
Normal file
Binary file not shown.
|
BIN
Assets/Model/curated/NanoSocrates.zip
LFS
Normal file
BIN
Assets/Model/curated/NanoSocrates.zip
LFS
Normal file
Binary file not shown.
BIN
Assets/Model/curated/dec_optim.zip
LFS
Normal file
BIN
Assets/Model/curated/dec_optim.zip
LFS
Normal file
Binary file not shown.
BIN
Assets/Model/curated/enc_optim.zip
LFS
Normal file
BIN
Assets/Model/curated/enc_optim.zip
LFS
Normal file
Binary file not shown.
BIN
Assets/Model/curated/last_epoch.txt
LFS
Normal file
BIN
Assets/Model/curated/last_epoch.txt
LFS
Normal file
Binary file not shown.
BIN
Assets/Model/curated/log_loss.csv
LFS
Normal file
BIN
Assets/Model/curated/log_loss.csv
LFS
Normal file
Binary file not shown.
|
BIN
Assets/Model/curated/nano_optim.zip
LFS
Normal file
BIN
Assets/Model/curated/nano_optim.zip
LFS
Normal file
Binary file not shown.
BIN
Assets/Model/small/bpe-small-16.json
LFS
Normal file
BIN
Assets/Model/small/bpe-small-16.json
LFS
Normal file
Binary file not shown.
263
Playgrounds/evaluation.py
Normal file
263
Playgrounds/evaluation.py
Normal file
@@ -0,0 +1,263 @@
|
||||
import random
|
||||
import torch
|
||||
from pathlib import Path
|
||||
import Project_Model.Libs.BPE as BPE
|
||||
import Project_Model.Libs.Transformer as Transformer
|
||||
import Project_Model.Libs.TransformerUtils as TUtils
|
||||
import Project_Model.Libs.TorchShims as torch_shims
|
||||
import Project_Model.Libs.Batch as Batch
|
||||
|
||||
# set a default device
|
||||
DEVICE = torch_shims.get_default_device()
|
||||
torch.set_default_device(DEVICE)
|
||||
|
||||
# set a fixed seed
|
||||
torch.manual_seed(0)
|
||||
random.seed(0)
|
||||
|
||||
# Get paths
|
||||
MODEL_DIR = "Assets/Model/curated"
|
||||
# MODEL_DIR= "Assets/Dataset/Tmp"
|
||||
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
|
||||
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv")
|
||||
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv")
|
||||
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv")
|
||||
# TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
|
||||
MODEL_PATH = Path(f"{MODEL_DIR}/NanoSocrates.zip")
|
||||
|
||||
|
||||
# BPE Init
|
||||
SPECIAL_VOC = BPE.default_special_tokens()
|
||||
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
|
||||
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
|
||||
|
||||
|
||||
# Constants
|
||||
MASK_EXTRA_SPACE = 100
|
||||
REAL_TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size
|
||||
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE
|
||||
EMBEDDED_SIZE = 256
|
||||
FEED_FORWARD_MULTIPLIER = 4
|
||||
ATTENTION_HEADS = 4
|
||||
SENTENCE_LENGTH = 256
|
||||
NUMBER_OF_BLOCKS = 2
|
||||
|
||||
SOS_TOKEN = TOKENANO.encode("<SOS>")[0]
|
||||
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
|
||||
END_TOKEN = TOKENANO.encode("<EOS>")[0]
|
||||
SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0]
|
||||
REL_TOKEN = TOKENANO.encode("<PRED>")[0]
|
||||
OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0]
|
||||
MASK_TOKEN = TOKENANO.encode("<MASK>")[0]
|
||||
CONTINUTE_TOKEN = TOKENANO.encode("<CONTINUERDF>")[0]
|
||||
|
||||
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens())))
|
||||
ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])
|
||||
FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS
|
||||
|
||||
|
||||
# Spanned_Masker
|
||||
MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS, average_span=4)
|
||||
|
||||
TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
|
||||
VALIDATION_BATCHER = Batch.Batcher(
|
||||
VALIDATION_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER
|
||||
)
|
||||
TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER, debug=True)
|
||||
|
||||
|
||||
# Model
|
||||
NANOSOCRATES_TRAIN = Transformer.TrainingModel(
|
||||
TOKEN_SPACE_SIZE,
|
||||
EMBEDDED_SIZE,
|
||||
FEED_FORWARD_MULTIPLIER,
|
||||
ATTENTION_HEADS,
|
||||
NUMBER_OF_BLOCKS,
|
||||
)
|
||||
|
||||
NANOSOCRATES = Transformer.NanoSocratesCore(
|
||||
TOKEN_SPACE_SIZE,
|
||||
SENTENCE_LENGTH,
|
||||
SOS_TOKEN,
|
||||
PAD_TOKEN,
|
||||
END_TOKEN,
|
||||
CONTINUTE_TOKEN,
|
||||
EMBEDDED_SIZE,
|
||||
FEED_FORWARD_MULTIPLIER,
|
||||
ATTENTION_HEADS,
|
||||
NUMBER_OF_BLOCKS,
|
||||
)
|
||||
|
||||
if MODEL_PATH.is_file():
|
||||
nanosocrates_dict = torch.load(MODEL_PATH, weights_only=True, map_location=DEVICE)
|
||||
NANOSOCRATES_TRAIN.load_state_dict(nanosocrates_dict)
|
||||
|
||||
_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(
|
||||
NANOSOCRATES, TOKEN_SPACE_SIZE, EMBEDDED_SIZE
|
||||
)
|
||||
|
||||
NANOSOCRATES = TUtils.train2inference(
|
||||
NANOSOCRATES_TRAIN,
|
||||
NANOSOCRATES
|
||||
)
|
||||
|
||||
NANOSOCRATES.eval()
|
||||
ENCODER_ONLY.eval()
|
||||
DECODER_ONLY.eval()
|
||||
NANOSOCRATES_TRAIN.eval()
|
||||
|
||||
task_1_metrics = []
|
||||
task_2_metrics = []
|
||||
task_3_metrics = []
|
||||
task_4_metrics = []
|
||||
|
||||
example_num = 0
|
||||
with torch.no_grad():
|
||||
for example in TEST_BATCHER.batch(1):
|
||||
|
||||
|
||||
print(f"DOING Example: {example_num}")
|
||||
|
||||
src_x, tgt_y, pad_x, pad_y, tasktype = example
|
||||
|
||||
enc_x = torch.tensor(src_x)
|
||||
|
||||
ACTUAL_BATCH_SIZE, _ = enc_x.shape
|
||||
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
|
||||
tgt = torch.tensor(tgt_y)
|
||||
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
|
||||
|
||||
dec_x = Transformer.get_decoder_input(
|
||||
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
|
||||
)
|
||||
dec_x[:, 1:] = tgt[:, :-1]
|
||||
dec_x_pad = dec_x.eq(PAD_TOKEN)
|
||||
|
||||
out: torch.Tensor = NANOSOCRATES.inference((enc_x, enc_x_pad), tasktype)
|
||||
|
||||
tokens: list[int] = out.tolist()[0]
|
||||
tokens.append(END_TOKEN)
|
||||
tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, tokens))
|
||||
out_string = TOKENANO.decode(tokens)
|
||||
|
||||
exp_tokens: list[int] = tgt_y[0]
|
||||
exp_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, exp_tokens))
|
||||
exp_string = TOKENANO.decode(exp_tokens)
|
||||
|
||||
enc_tokens: list[int] = src_x[0]
|
||||
enc_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, enc_tokens))
|
||||
enc_string = TOKENANO.decode(enc_tokens)
|
||||
|
||||
print(f"PROMPT:\n{enc_string}")
|
||||
print(f"EXPECTED:\n{exp_string}")
|
||||
print(f"ACTUAL:\n{out_string}")
|
||||
|
||||
if tasktype == Batch.TaskType.RDF2TXT:
|
||||
example_num += 1
|
||||
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
|
||||
pred = TUtils.remove_padding(tokens, PAD_TOKEN, END_TOKEN)
|
||||
ref_str = TOKENANO.decode(ref)
|
||||
pred_str = TOKENANO.decode(pred)
|
||||
|
||||
bleu, rouge, meteor = TUtils.rdf2txt([ref_str], [pred_str])
|
||||
|
||||
task_1_metrics.append(
|
||||
[
|
||||
bleu["bleu"], rouge["rougeL"], meteor["meteor"] # type: ignore
|
||||
]
|
||||
)
|
||||
|
||||
if tasktype == Batch.TaskType.TEXT2RDF:
|
||||
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
|
||||
pred = TUtils.remove_padding(tokens[1:], PAD_TOKEN, END_TOKEN)
|
||||
ref, pred = TUtils.balance_paddings(ref, pred, PAD_TOKEN)
|
||||
|
||||
precision, recall = TUtils.txt2rdf(ref, pred)
|
||||
|
||||
task_2_metrics.append(
|
||||
[
|
||||
precision["precision"], recall["recall"] # type: ignore
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
if tasktype == Batch.TaskType.MASKING:
|
||||
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
|
||||
pred = TUtils.remove_padding(tokens, PAD_TOKEN, END_TOKEN)
|
||||
ref, pred = TUtils.balance_paddings(ref, pred, PAD_TOKEN)
|
||||
|
||||
accuracy = TUtils.accuracy(ref, pred)
|
||||
|
||||
task_3_metrics.append(
|
||||
|
||||
accuracy["accuracy"] # type: ignore
|
||||
|
||||
)
|
||||
|
||||
if tasktype == Batch.TaskType.COMPLETATION:
|
||||
|
||||
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
|
||||
pred = TUtils.remove_padding(tokens, PAD_TOKEN, END_TOKEN)
|
||||
ref, pred = TUtils.balance_paddings(ref, pred, PAD_TOKEN)
|
||||
|
||||
precision, recall = TUtils.txt2rdf(ref, pred)
|
||||
|
||||
task_4_metrics.append(
|
||||
[
|
||||
precision["precision"], recall["recall"] # type: ignore
|
||||
]
|
||||
)
|
||||
|
||||
bleus = [row[0] for row in task_1_metrics]
|
||||
rouges = [row[1] for row in task_1_metrics]
|
||||
meteors = [row[2] for row in task_1_metrics]
|
||||
|
||||
prec_1 = [row[0] for row in task_2_metrics]
|
||||
rec_1 = [row[1] for row in task_2_metrics]
|
||||
|
||||
acc = task_3_metrics
|
||||
|
||||
prec_2 = [row[0] for row in task_4_metrics]
|
||||
rec_2 = [row[1] for row in task_4_metrics]
|
||||
|
||||
BLEU = TUtils.average(bleus)
|
||||
ROUGE = TUtils.average(rouges)
|
||||
METEOR = TUtils.average(meteors)
|
||||
|
||||
PREC_1 = TUtils.average(prec_1)
|
||||
REC_1 = TUtils.average(rec_1)
|
||||
F1_1 = TUtils.f1(PREC_1, REC_1)
|
||||
|
||||
ACC = TUtils.average(acc)
|
||||
|
||||
PREC_2 = TUtils.average(prec_2)
|
||||
REC_2 = TUtils.average(rec_2)
|
||||
F1_2 = TUtils.f1(PREC_2, REC_2)
|
||||
|
||||
SEPARATOR = "**************************************************************************"
|
||||
OUTPUT = "".join([
|
||||
f"{SEPARATOR}\n",
|
||||
"*\tRDF2TXT:\n",
|
||||
f"*\t\tBLEU: {BLEU} - ROUGE: {ROUGE} - METEOR: {METEOR}\n"
|
||||
f"{SEPARATOR}\n",
|
||||
"*\tTXT2RDF:\n",
|
||||
f"*\t\tPRECISION: {PREC_1} - RECALL: {REC_1} - F1: {F1_1}\n"
|
||||
f"{SEPARATOR}\n",
|
||||
"*\tRDF Completion 1:\n",
|
||||
f"*\t\tACCURACY: {ACC}\n"
|
||||
f"{SEPARATOR}\n",
|
||||
"*\tRDF Completion 2:\n",
|
||||
f"*\t\tPRECISION: {PREC_2} - RECALL: {REC_2} - F1: {F1_2}\n"
|
||||
f"{SEPARATOR}\n",
|
||||
""
|
||||
])
|
||||
|
||||
print(OUTPUT)
|
||||
|
||||
|
||||
print("\nDEBUG")
|
||||
print(task_1_metrics)
|
||||
print(task_2_metrics)
|
||||
print(task_3_metrics)
|
||||
print(task_4_metrics)
|
||||
|
||||
472
Playgrounds/nanosocrates-train-experiment-2.py
Normal file
472
Playgrounds/nanosocrates-train-experiment-2.py
Normal file
@@ -0,0 +1,472 @@
|
||||
import random
|
||||
import sys
|
||||
import torch
|
||||
import pandas as pd
|
||||
from pathlib import Path
|
||||
import Project_Model.Libs.Embedder as Embedder
|
||||
import Project_Model.Libs.BPE as BPE
|
||||
import Project_Model.Libs.Transformer as Transformer
|
||||
import Project_Model.Libs.TransformerUtils as TUtils
|
||||
import Project_Model.Libs.TorchShims as torch_shims
|
||||
import Project_Model.Libs.Batch as Batch
|
||||
from Project_Model.Libs.Training.loss_saver import Log
|
||||
|
||||
# set a fixed seed
|
||||
torch.manual_seed(0)
|
||||
random.seed(0)
|
||||
|
||||
|
||||
# set a default device
|
||||
DEVICE = torch_shims.get_default_device()
|
||||
torch.set_default_device(DEVICE)
|
||||
|
||||
|
||||
# Get paths
|
||||
CHECKPOINT_DIR = "Assets/Dataset/Tmp"
|
||||
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
|
||||
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
|
||||
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
|
||||
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
|
||||
CHECKPOINT_PATH = Path(f"{CHECKPOINT_DIR}/NanoSocrates.zip")
|
||||
|
||||
NANO_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/nano_optim.zip")
|
||||
ENC_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/enc_optim.zip")
|
||||
DEC_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/dec_optim.zip")
|
||||
LAST_EPOCH_PATH = Path(f"{CHECKPOINT_DIR}/last_epoch.txt")
|
||||
|
||||
# log saver:
|
||||
loss_saver = Log(f"{CHECKPOINT_DIR}/log_loss.csv")
|
||||
|
||||
|
||||
|
||||
# BPE Init
|
||||
SPECIAL_VOC = BPE.default_special_tokens()
|
||||
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
|
||||
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
|
||||
|
||||
|
||||
# Constants
|
||||
MASK_EXTRA_SPACE = 100
|
||||
REAL_TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size
|
||||
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE
|
||||
EMBEDDED_SIZE = 256
|
||||
FEED_FORWARD_MULTIPLIER = 4
|
||||
ATTENTION_HEADS = 4
|
||||
SENTENCE_LENGTH = 256
|
||||
NUMBER_OF_BLOCKS = 2
|
||||
MAX_EPOCHS = int(300)
|
||||
PRETRAIN_EPOCHS = int(20)
|
||||
WARMUP_EPOCHS = int(30)
|
||||
MINI_BATCH_SIZE = 20
|
||||
VALIDATION_STEPS = 10
|
||||
CHECKPOINT_STEPS = VALIDATION_STEPS
|
||||
PATIENCE = 4
|
||||
CURRENT_EPOCH = -1 if not LAST_EPOCH_PATH.is_file() else int(LAST_EPOCH_PATH.read_text())
|
||||
VERBOSE = False
|
||||
LEARNING_RATE = 0.05
|
||||
LABEL_SMOOTHING = 0.01
|
||||
|
||||
SOS_TOKEN = TOKENANO.encode("<SOS>")[0]
|
||||
|
||||
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
|
||||
END_TOKEN = TOKENANO.encode("<END>")[0]
|
||||
SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0]
|
||||
REL_TOKEN = TOKENANO.encode("<PRED>")[0]
|
||||
OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0]
|
||||
MASK_TOKEN = TOKENANO.encode("<MASK>")[0]
|
||||
|
||||
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens())))
|
||||
ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])
|
||||
FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS
|
||||
|
||||
|
||||
# Spanned_Masker
|
||||
MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS, average_span=4)
|
||||
|
||||
TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
|
||||
VALIDATION_BATCHER = Batch.Batcher(
|
||||
VALIDATION_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER
|
||||
)
|
||||
TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
|
||||
|
||||
|
||||
# Model
|
||||
NANOSOCRATES = Transformer.TrainingModel(
|
||||
TOKEN_SPACE_SIZE,
|
||||
EMBEDDED_SIZE,
|
||||
FEED_FORWARD_MULTIPLIER,
|
||||
ATTENTION_HEADS,
|
||||
NUMBER_OF_BLOCKS,
|
||||
)
|
||||
|
||||
if CHECKPOINT_PATH.is_file():
|
||||
nanosocrates_dict = torch.load(CHECKPOINT_PATH, weights_only=True)
|
||||
NANOSOCRATES.load_state_dict(nanosocrates_dict)
|
||||
|
||||
_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(
|
||||
NANOSOCRATES, TOKEN_SPACE_SIZE, EMBEDDED_SIZE
|
||||
)
|
||||
|
||||
|
||||
# Training constants
|
||||
nano_cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN, label_smoothing=LABEL_SMOOTHING)
|
||||
encoder_ce = torch.nn.CrossEntropyLoss( label_smoothing=LABEL_SMOOTHING)
|
||||
decoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN, label_smoothing=LABEL_SMOOTHING)
|
||||
nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters(), LEARNING_RATE)
|
||||
encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters(), LEARNING_RATE)
|
||||
decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters(), LEARNING_RATE)
|
||||
|
||||
if NANO_OPTIM_PATH.is_file():
|
||||
optim_dict = torch.load(NANO_OPTIM_PATH)
|
||||
nano_optim.load_state_dict(optim_dict)
|
||||
|
||||
if ENC_OPTIM_PATH.is_file():
|
||||
optim_dict = torch.load(ENC_OPTIM_PATH)
|
||||
encoder_only_optim.load_state_dict(optim_dict)
|
||||
|
||||
if DEC_OPTIM_PATH.is_file():
|
||||
optim_dict = torch.load(DEC_OPTIM_PATH)
|
||||
decoder_only_optim.load_state_dict(optim_dict)
|
||||
|
||||
nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH)
|
||||
encoder_only_scheduler = Transformer.WarmupLR(
|
||||
encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH
|
||||
)
|
||||
decoder_only_scheduler = Transformer.WarmupLR(
|
||||
decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH
|
||||
)
|
||||
|
||||
current_epoch = CURRENT_EPOCH + 2
|
||||
patience = 0
|
||||
|
||||
|
||||
average_loss_validation = {
|
||||
"txt": float("inf"),
|
||||
"encoder_only": float("inf"),
|
||||
"decoder_only": float("inf"),
|
||||
}
|
||||
|
||||
|
||||
while current_epoch < MAX_EPOCHS:
|
||||
|
||||
NANOSOCRATES.train()
|
||||
ENCODER_ONLY.train()
|
||||
DECODER_ONLY.train()
|
||||
|
||||
text_batch_losses = []
|
||||
encoder_batch_losses = []
|
||||
decoder_batch_losses = []
|
||||
|
||||
batch_counter = 0
|
||||
|
||||
if VERBOSE:
|
||||
print(f"EPOCH {current_epoch} STARTING")
|
||||
|
||||
for batch in TRAIN_BATCHER.batch(MINI_BATCH_SIZE):
|
||||
|
||||
batch_counter += 1
|
||||
|
||||
src_x, tgt_y, pad_x, pad_y, tasktype = batch
|
||||
|
||||
enc_x = torch.tensor(src_x)
|
||||
|
||||
ACTUAL_BATCH_SIZE, _ = enc_x.shape
|
||||
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
|
||||
tgt = torch.tensor(tgt_y)
|
||||
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
|
||||
|
||||
dec_x = Transformer.get_decoder_input(
|
||||
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
|
||||
)
|
||||
dec_x[:, 1:] = tgt[:, :-1]
|
||||
dec_x_pad = dec_x.eq(PAD_TOKEN)
|
||||
|
||||
if VERBOSE:
|
||||
for s in TUtils.decode_batch(enc_x, TOKENANO, MASK_TOKEN):
|
||||
print("Input")
|
||||
print(s)
|
||||
|
||||
for s in TUtils.decode_batch(enc_x_pad, TOKENANO, MASK_TOKEN):
|
||||
print("Encoder Padding mask")
|
||||
print(s)
|
||||
|
||||
for s in TUtils.decode_batch(tgt, TOKENANO, MASK_TOKEN):
|
||||
print("Desired Output")
|
||||
print(s)
|
||||
a_dx = dec_x[:,:]
|
||||
a_dx[:, -1]= END_TOKEN
|
||||
for s in TUtils.decode_batch(a_dx, TOKENANO, MASK_TOKEN):
|
||||
print("Decoder Input")
|
||||
print(s)
|
||||
|
||||
if VERBOSE:
|
||||
print(f"\tBATCH {batch_counter} Starting")
|
||||
|
||||
# Task 1 and Task 2
|
||||
if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:
|
||||
|
||||
if VERBOSE:
|
||||
print(f"\tExecuting TASK 1 or 2 - BATCH {batch_counter}")
|
||||
|
||||
nano_optim.zero_grad()
|
||||
|
||||
pred_logits: torch.Tensor = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
|
||||
pred_logits = pred_logits.permute(0, 2, 1)
|
||||
|
||||
loss: torch.Tensor = nano_cross_entropy(pred_logits, tgt)
|
||||
|
||||
loss.backward()
|
||||
nano_optim.step()
|
||||
|
||||
text_batch_losses.append(loss)
|
||||
continue
|
||||
|
||||
# Pretrain first
|
||||
if current_epoch < PRETRAIN_EPOCHS:
|
||||
continue
|
||||
|
||||
# Task 3
|
||||
if tasktype == Batch.TaskType.MASKING:
|
||||
|
||||
if VERBOSE:
|
||||
print(f"\tExecuting TASK 3 - BATCH {batch_counter}")
|
||||
|
||||
encoder_only_optim.zero_grad()
|
||||
|
||||
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
|
||||
pred_logits = pred_logits.permute(0, 2, 1)
|
||||
# print(torch.max(tgt))
|
||||
|
||||
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
|
||||
|
||||
loss.backward()
|
||||
encoder_only_optim.step()
|
||||
|
||||
exp_tokens: list[int] = tgt_y[0]
|
||||
exp_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, exp_tokens))
|
||||
exp_string = TOKENANO.decode(exp_tokens)
|
||||
|
||||
enc_tokens: list[int] = src_x[0]
|
||||
enc_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, enc_tokens))
|
||||
enc_string = TOKENANO.decode(enc_tokens)
|
||||
|
||||
print(f"PROMPT:\n{enc_string}")
|
||||
print(f"EXPECTED:\n{exp_string}")
|
||||
|
||||
|
||||
encoder_batch_losses.append(loss.item())
|
||||
|
||||
continue
|
||||
|
||||
# Task 4
|
||||
if tasktype == Batch.TaskType.COMPLETATION:
|
||||
|
||||
if VERBOSE:
|
||||
print(f"\tExecuting TASK 4 - BATCH {batch_counter}")
|
||||
|
||||
decoder_only_optim.zero_grad()
|
||||
|
||||
pred_logits = DECODER_ONLY((dec_x, enc_x_pad, dec_x_pad))
|
||||
pred_logits = pred_logits.permute(0, 2, 1)
|
||||
|
||||
loss: torch.Tensor = decoder_ce(pred_logits, tgt)
|
||||
|
||||
loss.backward()
|
||||
decoder_only_optim.step()
|
||||
|
||||
decoder_batch_losses.append(
|
||||
loss
|
||||
)
|
||||
|
||||
continue
|
||||
|
||||
nano_scheduler.step()
|
||||
encoder_only_scheduler.step()
|
||||
decoder_only_scheduler.step()
|
||||
|
||||
current_epoch += 1
|
||||
|
||||
if current_epoch % VALIDATION_STEPS == 0:
|
||||
|
||||
NANOSOCRATES.eval()
|
||||
ENCODER_ONLY.eval()
|
||||
DECODER_ONLY.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
txt_avg_batch_losses = []
|
||||
enc_avg_batch_losses = []
|
||||
dec_avg_batch_losses = []
|
||||
|
||||
for batch in VALIDATION_BATCHER.batch(MINI_BATCH_SIZE):
|
||||
|
||||
src_x, tgt_y, pad_x, pad_y, tasktype = batch
|
||||
|
||||
enc_x = torch.tensor(src_x)
|
||||
|
||||
ACTUAL_BATCH_SIZE, _ = enc_x.shape
|
||||
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
|
||||
tgt = torch.tensor(tgt_y)
|
||||
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
|
||||
|
||||
dec_x = Transformer.get_decoder_input(
|
||||
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
|
||||
)
|
||||
dec_x[:, 1:] = tgt[:, :-1]
|
||||
dec_x_pad = dec_x.eq(PAD_TOKEN)
|
||||
|
||||
# Task 1 and Task 2
|
||||
if (
|
||||
tasktype == Batch.TaskType.RDF2TXT
|
||||
or tasktype == Batch.TaskType.TEXT2RDF
|
||||
):
|
||||
|
||||
|
||||
pred_logits = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
|
||||
|
||||
pred_logits = pred_logits.permute(0, 2, 1)
|
||||
|
||||
loss: torch.Tensor = nano_cross_entropy(
|
||||
pred_logits, tgt
|
||||
)
|
||||
|
||||
txt_avg_batch_losses.append(loss)
|
||||
|
||||
continue
|
||||
|
||||
# Pretrain first
|
||||
if current_epoch <= PRETRAIN_EPOCHS:
|
||||
continue
|
||||
|
||||
# Task 3
|
||||
if tasktype == Batch.TaskType.MASKING:
|
||||
|
||||
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
|
||||
pred_logits = pred_logits.permute(0, 2, 1)
|
||||
|
||||
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
|
||||
|
||||
enc_avg_batch_losses.append(loss.item())
|
||||
|
||||
continue
|
||||
|
||||
# Task 4
|
||||
if tasktype == Batch.TaskType.COMPLETATION:
|
||||
|
||||
|
||||
|
||||
pred_logits = DECODER_ONLY((dec_x, enc_x_pad, dec_x_pad))
|
||||
|
||||
pred_logits = pred_logits.permute(0, 2, 1)
|
||||
|
||||
loss: torch.Tensor = decoder_ce(pred_logits, tgt)
|
||||
|
||||
|
||||
dec_avg_batch_losses.append(loss)
|
||||
|
||||
continue
|
||||
|
||||
txt_avg_loss = sum(txt_avg_batch_losses) / len(txt_avg_batch_losses)
|
||||
enc_avg_loss = float("inf")
|
||||
dec_avg_loss = float("inf")
|
||||
|
||||
if current_epoch > PRETRAIN_EPOCHS:
|
||||
enc_avg_loss = sum(enc_avg_batch_losses) / len(enc_avg_batch_losses)
|
||||
dec_avg_loss = sum(dec_avg_batch_losses) / len(dec_avg_batch_losses)
|
||||
|
||||
if current_epoch < PRETRAIN_EPOCHS:
|
||||
|
||||
if txt_avg_loss < average_loss_validation["txt"]:
|
||||
average_loss_validation["txt"] = txt_avg_loss
|
||||
else:
|
||||
patience += 1
|
||||
if VERBOSE:
|
||||
print(f"losing a patience, current irritation: {patience}")
|
||||
else:
|
||||
|
||||
counter = 0
|
||||
|
||||
if txt_avg_loss > average_loss_validation["txt"]:
|
||||
|
||||
if VERBOSE:
|
||||
print("txt average is higher than lowest")
|
||||
counter += 1
|
||||
else:
|
||||
average_loss_validation["txt"] = txt_avg_loss
|
||||
|
||||
if enc_avg_loss > average_loss_validation["encoder_only"]:
|
||||
if VERBOSE:
|
||||
print("masking average is higher than lowest")
|
||||
counter += 1
|
||||
else:
|
||||
average_loss_validation["encoder_only"] = enc_avg_loss
|
||||
|
||||
if dec_avg_loss > average_loss_validation["decoder_only"]:
|
||||
if VERBOSE:
|
||||
print("decoding only average is higher than lowest")
|
||||
counter += 1
|
||||
else:
|
||||
average_loss_validation["decoder_only"] = dec_avg_loss
|
||||
|
||||
if counter > 1:
|
||||
patience += 1
|
||||
if VERBOSE:
|
||||
print(f"losing a patience, current irritation: {patience}")
|
||||
|
||||
|
||||
if counter == 0:
|
||||
patience = max(0, patience - 1)
|
||||
if VERBOSE:
|
||||
print(f"all good, gaining a patience, current irritation: {patience}")
|
||||
|
||||
|
||||
|
||||
txt_train_avg_loss = sum(text_batch_losses) / len(text_batch_losses)
|
||||
|
||||
enc_avg_train_loss = float("inf")
|
||||
dec_avg_train_loss = float("inf")
|
||||
|
||||
if current_epoch > PRETRAIN_EPOCHS:
|
||||
try:
|
||||
enc_avg_train_loss = sum(encoder_batch_losses) / len(encoder_batch_losses)
|
||||
dec_avg_train_loss = sum(decoder_batch_losses) / len(decoder_batch_losses)
|
||||
except:
|
||||
pass
|
||||
|
||||
# write on log
|
||||
loss_saver.write([current_epoch, txt_train_avg_loss,enc_avg_train_loss,dec_avg_train_loss,txt_avg_loss,enc_avg_loss,dec_avg_loss])
|
||||
SEPARATOR = "================================================================================================================"
|
||||
DEBUG_TEXT = "".join(
|
||||
[
|
||||
f"{SEPARATOR}\n",
|
||||
f"EPOCH {current_epoch}\n",
|
||||
f"{SEPARATOR}\n",
|
||||
f"Train Losses:\n",
|
||||
f"\tAvg Losses:\n",
|
||||
f"\t\tavg_txt: {txt_train_avg_loss} - avg_enc: {enc_avg_train_loss} - avg_dec: {dec_avg_train_loss}\n",
|
||||
f"{SEPARATOR}\n",
|
||||
f"Validation Losses:\n",
|
||||
f"\ttxt_loss: {txt_avg_loss} - masking_loss: {enc_avg_loss} - prediction_loss: {dec_avg_loss}\n",
|
||||
f"{SEPARATOR}\n",
|
||||
]
|
||||
)
|
||||
|
||||
print(DEBUG_TEXT)
|
||||
|
||||
# Warn about patience
|
||||
if patience == PATIENCE:
|
||||
print("Model is likely overfitting, so let's stop here")
|
||||
|
||||
# SAVE MODEL
|
||||
if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:
|
||||
print(f"Saving model at {CHECKPOINT_PATH.as_posix()}")
|
||||
torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)
|
||||
torch.save(nano_optim.state_dict(), NANO_OPTIM_PATH)
|
||||
torch.save(encoder_only_optim.state_dict(), ENC_OPTIM_PATH)
|
||||
torch.save(decoder_only_optim.state_dict(), DEC_OPTIM_PATH)
|
||||
FILE = open(LAST_EPOCH_PATH, "w", encoding="utf-8")
|
||||
FILE.write(f"{current_epoch}")
|
||||
FILE.close()
|
||||
|
||||
|
||||
if patience == PATIENCE:
|
||||
exit(0)
|
||||
File diff suppressed because one or more lines are too long
509
Playgrounds/nanosocrates-train.ipynb
Normal file
509
Playgrounds/nanosocrates-train.ipynb
Normal file
@@ -0,0 +1,509 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "adbef43f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"c:\\Users\\Chris\\miniconda3\\envs\\deep_learning\\Lib\\site-packages\\torch\\utils\\_device.py:103: UserWarning: Aten Op fallback from XPU to CPU happends. This may have performance implications. If need debug the fallback ops please set environment variable `PYTORCH_DEBUG_XPU_FALLBACK=1` (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\build\\xpu\\ATen\\RegisterXPU_0.cpp:54528.)\n",
|
||||
" return func(*args, **kwargs)\n",
|
||||
"c:\\Users\\Chris\\miniconda3\\envs\\deep_learning\\Lib\\site-packages\\torch\\optim\\lr_scheduler.py:192: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate\n",
|
||||
" warnings.warn(\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "IndexError",
|
||||
"evalue": "list index out of range",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
||||
"\u001b[31mIndexError\u001b[39m Traceback (most recent call last)",
|
||||
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 383\u001b[39m\n\u001b[32m 381\u001b[39m txt_min_train_losses = text_batch_losses[:][\u001b[32m0\u001b[39m]\n\u001b[32m 382\u001b[39m txt_avg_train_losses = text_batch_losses[:][\u001b[32m1\u001b[39m]\n\u001b[32m--> \u001b[39m\u001b[32m383\u001b[39m txt_max_train_losses = \u001b[43mtext_batch_losses\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m[\u001b[49m\u001b[32;43m2\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[32m 385\u001b[39m txt_min_loss = \u001b[38;5;28mmin\u001b[39m(txt_min_train_losses)\n\u001b[32m 386\u001b[39m txt_avg_min_loss = \u001b[38;5;28msum\u001b[39m(txt_min_train_losses) / \u001b[38;5;28mlen\u001b[39m(txt_min_train_losses)\n",
|
||||
"\u001b[31mIndexError\u001b[39m: list index out of range"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import random\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import pandas as pd\n",
|
||||
"from pathlib import Path\n",
|
||||
"import Project_Model.Libs.Embedder as Embedder\n",
|
||||
"import Project_Model.Libs.BPE as BPE\n",
|
||||
"import Project_Model.Libs.Transformer as Transformer\n",
|
||||
"import Project_Model.Libs.TransformerUtils as TUtils\n",
|
||||
"import Project_Model.Libs.TorchShims as torch_shims\n",
|
||||
"import Project_Model.Libs.Batch as Batch\n",
|
||||
"\n",
|
||||
"# set a fixed seed\n",
|
||||
"torch.manual_seed(0)\n",
|
||||
"random.seed(0)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# set a default device\n",
|
||||
"DEVICE = torch_shims.get_default_device()\n",
|
||||
"torch.set_default_device(DEVICE)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Get paths\n",
|
||||
"VOCABULARY_PATH = Path(\"Assets/Model/small/bpe-small-16.json\")\n",
|
||||
"TRAIN_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
|
||||
"VALIDATION_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
|
||||
"TEST_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
|
||||
"CHECKPOINT_PATH = Path(\"Assets/Dataset/Tmp/NanoSocrates.zip\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# BPE Init\n",
|
||||
"SPECIAL_VOC = BPE.default_special_tokens()\n",
|
||||
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
|
||||
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Constants\n",
|
||||
"MASK_EXTRA_SPACE = 25\n",
|
||||
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE\n",
|
||||
"EMBEDDED_SIZE = 256\n",
|
||||
"FEED_FORWARD_MULTIPLIER = 4\n",
|
||||
"ATTENTION_HEADS = 8\n",
|
||||
"SENTENCE_LENGTH = 256\n",
|
||||
"NUMBER_OF_BLOCKS = 4\n",
|
||||
"MAX_EPOCHS = int(1e3)\n",
|
||||
"PRETRAIN_EPOCHS = int(2)\n",
|
||||
"WARMUP_EPOCHS = int(4e3)\n",
|
||||
"MINI_BATCH_SIZE = 10\n",
|
||||
"VALIDATION_STEPS = 1\n",
|
||||
"CHECKPOINT_STEPS = VALIDATION_STEPS * 4\n",
|
||||
"PATIENCE = 4\n",
|
||||
"CURRENT_EPOCH = 0\n",
|
||||
"\n",
|
||||
"SOS_TOKEN = TOKENANO.encode(\"<SOS>\")[0]\n",
|
||||
"\n",
|
||||
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
|
||||
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
|
||||
"SUBJ_TOKEN = TOKENANO.encode(\"<SUBJ>\")[0]\n",
|
||||
"REL_TOKEN = TOKENANO.encode(\"<PRED>\")[0]\n",
|
||||
"OBJ_TOKEN = TOKENANO.encode(\"<OBJ>\")[0]\n",
|
||||
"\n",
|
||||
"SPECIAL_TOKENS: set[int] = set(TOKENANO.encode(\"\".join(BPE.default_special_tokens())))\n",
|
||||
"ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])\n",
|
||||
"FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Spanned_Masker\n",
|
||||
"MASKER = Transformer.SpannedMasker(\n",
|
||||
" TOKEN_SPACE_SIZE,\n",
|
||||
" FORBIDDEN_TOKENS\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"TRAIN_BATCHER = Batch.Batcher(\n",
|
||||
" TRAIN_DATASET_PATH,\n",
|
||||
" SENTENCE_LENGTH,\n",
|
||||
" TOKENANO,\n",
|
||||
" MASKER\n",
|
||||
")\n",
|
||||
"VALIDATION_BATCHER = Batch.Batcher(\n",
|
||||
" VALIDATION_DATASET_PATH,\n",
|
||||
" SENTENCE_LENGTH,\n",
|
||||
" TOKENANO,\n",
|
||||
" MASKER\n",
|
||||
")\n",
|
||||
"TEST_BATCHER = Batch.Batcher(\n",
|
||||
" TEST_DATASET_PATH,\n",
|
||||
" SENTENCE_LENGTH,\n",
|
||||
" TOKENANO,\n",
|
||||
" MASKER\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Model\n",
|
||||
"NANOSOCRATES = Transformer.TrainingModel(\n",
|
||||
" TOKEN_SPACE_SIZE,\n",
|
||||
" EMBEDDED_SIZE,\n",
|
||||
" FEED_FORWARD_MULTIPLIER,\n",
|
||||
" ATTENTION_HEADS,\n",
|
||||
" NUMBER_OF_BLOCKS\n",
|
||||
")\n",
|
||||
"_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(\n",
|
||||
" NANOSOCRATES,\n",
|
||||
" TOKEN_SPACE_SIZE,\n",
|
||||
" EMBEDDED_SIZE\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Training constants\n",
|
||||
"cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)\n",
|
||||
"nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters())\n",
|
||||
"encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters())\n",
|
||||
"decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters())\n",
|
||||
"\n",
|
||||
"nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)\n",
|
||||
"encoder_only_scheduler = Transformer.WarmupLR(encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)\n",
|
||||
"decoder_only_scheduler = Transformer.WarmupLR(decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)\n",
|
||||
"\n",
|
||||
"current_epoch = CURRENT_EPOCH\n",
|
||||
"patience = 0\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"average_loss_validation = {\n",
|
||||
" \"txt\": float(\"inf\"),\n",
|
||||
" \"encoder_only\": float(\"inf\"),\n",
|
||||
" \"decoder_only\": float(\"inf\")\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"while current_epoch < MAX_EPOCHS:\n",
|
||||
"\n",
|
||||
" text_batch_losses = []\n",
|
||||
" encoder_batch_losses = []\n",
|
||||
" decoder_batch_losses = []\n",
|
||||
"\n",
|
||||
" for batch in TRAIN_BATCHER.batch(MINI_BATCH_SIZE):\n",
|
||||
"\n",
|
||||
" src_x, tgt_y, pad_x, pad_y, tasktype = batch\n",
|
||||
"\n",
|
||||
" enc_x = torch.tensor(src_x)\n",
|
||||
" enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)\n",
|
||||
" dec_x = Transformer.get_decoder_input(MINI_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH)\n",
|
||||
" dec_x_pad = dec_x.eq(PAD_TOKEN)\n",
|
||||
" tgt = torch.tensor(tgt_y)\n",
|
||||
" tgt_pad = torch.tensor(pad_y, dtype=torch.bool)\n",
|
||||
"\n",
|
||||
" # Task 1 and Task 2\n",
|
||||
" if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:\n",
|
||||
"\n",
|
||||
" BATCH_LOSS = []\n",
|
||||
"\n",
|
||||
" for token_idx in range(0, SENTENCE_LENGTH):\n",
|
||||
"\n",
|
||||
" nano_optim.zero_grad()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" pred_logits = NANOSOCRATES((\n",
|
||||
" enc_x, enc_x_pad, dec_x, dec_x_pad\n",
|
||||
" ))\n",
|
||||
"\n",
|
||||
" pred_logits = pred_logits[:, token_idx, :]\n",
|
||||
"\n",
|
||||
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
|
||||
"\n",
|
||||
" loss.backward()\n",
|
||||
" nano_optim.step()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" BATCH_LOSS.append(\n",
|
||||
" loss.item()\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" if token_idx < SENTENCE_LENGTH - 1:\n",
|
||||
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
|
||||
"\n",
|
||||
" MIN_BATCH_LOSS = min(BATCH_LOSS)\n",
|
||||
" MAX_BATCH_LOSS = max(BATCH_LOSS)\n",
|
||||
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
|
||||
"\n",
|
||||
" text_batch_losses.append([MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS])\n",
|
||||
" continue\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # Pretrain first\n",
|
||||
" if current_epoch < PRETRAIN_EPOCHS:\n",
|
||||
" continue\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # Task 3\n",
|
||||
" if tasktype == Batch.TaskType.MASKING:\n",
|
||||
"\n",
|
||||
" encoder_only_optim.zero_grad()\n",
|
||||
"\n",
|
||||
" pred_logits = ENCODER_ONLY((\n",
|
||||
" enc_x, enc_x_pad\n",
|
||||
" ))\n",
|
||||
"\n",
|
||||
" loss: torch.Tensor= cross_entropy(pred_logits, tgt)\n",
|
||||
"\n",
|
||||
" loss.backward()\n",
|
||||
" encoder_only_optim.step()\n",
|
||||
"\n",
|
||||
" encoder_batch_losses.append(\n",
|
||||
" loss.item()\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" continue\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # Task 4\n",
|
||||
" if tasktype == Batch.TaskType.COMPLETATION:\n",
|
||||
"\n",
|
||||
" BATCH_LOSS = []\n",
|
||||
"\n",
|
||||
" for token_idx in range(0, SENTENCE_LENGTH):\n",
|
||||
"\n",
|
||||
" decoder_only_optim.zero_grad()\n",
|
||||
"\n",
|
||||
" pred_logits = DECODER_ONLY((\n",
|
||||
" enc_x, enc_x_pad\n",
|
||||
" ))\n",
|
||||
"\n",
|
||||
" pred_logits = pred_logits[:, token_idx, :]\n",
|
||||
"\n",
|
||||
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
|
||||
"\n",
|
||||
" loss.backward()\n",
|
||||
" decoder_only_optim.step()\n",
|
||||
"\n",
|
||||
" BATCH_LOSS.append(\n",
|
||||
" loss.item()\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" if token_idx < SENTENCE_LENGTH - 1:\n",
|
||||
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" MIN_BATCH_LOSS = min(BATCH_LOSS)\n",
|
||||
" MAX_BATCH_LOSS = max(BATCH_LOSS)\n",
|
||||
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
|
||||
"\n",
|
||||
" decoder_batch_losses.append([MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS])\n",
|
||||
"\n",
|
||||
" continue\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" nano_scheduler.step()\n",
|
||||
" encoder_only_scheduler.step()\n",
|
||||
" decoder_only_scheduler.step()\n",
|
||||
"\n",
|
||||
" current_epoch += 1\n",
|
||||
"\n",
|
||||
" if current_epoch % VALIDATION_STEPS == 0:\n",
|
||||
"\n",
|
||||
" txt_avg_batch_losses = []\n",
|
||||
" enc_avg_batch_losses = []\n",
|
||||
" dec_avg_batch_losses = []\n",
|
||||
"\n",
|
||||
" for batch in VALIDATION_BATCHER.batch(MINI_BATCH_SIZE):\n",
|
||||
"\n",
|
||||
" src_x, tgt_y, pad_x, pad_y, tasktype = batch\n",
|
||||
"\n",
|
||||
" enc_x = torch.tensor(src_x)\n",
|
||||
" enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)\n",
|
||||
" dec_x = Transformer.get_decoder_input(MINI_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH)\n",
|
||||
" dec_x_pad = dec_x.eq(PAD_TOKEN)\n",
|
||||
" tgt = torch.tensor(tgt_y)\n",
|
||||
" tgt_pad = torch.tensor(pad_y, dtype=torch.bool)\n",
|
||||
"\n",
|
||||
" # Task 1 and Task 2\n",
|
||||
" if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:\n",
|
||||
"\n",
|
||||
" BATCH_LOSS = []\n",
|
||||
"\n",
|
||||
" for token_idx in range(0, SENTENCE_LENGTH):\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" pred_logits = NANOSOCRATES((\n",
|
||||
" enc_x, enc_x_pad, dec_x, dec_x_pad\n",
|
||||
" ))\n",
|
||||
"\n",
|
||||
" pred_logits = pred_logits[:, token_idx, :]\n",
|
||||
"\n",
|
||||
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" BATCH_LOSS.append(\n",
|
||||
" loss.item()\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" if token_idx < SENTENCE_LENGTH - 1:\n",
|
||||
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
|
||||
" txt_avg_batch_losses.append(AVG_BATCH_LOSS)\n",
|
||||
"\n",
|
||||
" continue\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # Pretrain first\n",
|
||||
" if current_epoch < PRETRAIN_EPOCHS:\n",
|
||||
" continue\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # Task 3\n",
|
||||
" if tasktype == Batch.TaskType.MASKING:\n",
|
||||
"\n",
|
||||
" pred_logits = ENCODER_ONLY((\n",
|
||||
" enc_x, enc_x_pad\n",
|
||||
" ))\n",
|
||||
"\n",
|
||||
" loss: torch.Tensor= cross_entropy(pred_logits, tgt)\n",
|
||||
"\n",
|
||||
" enc_avg_batch_losses.append(\n",
|
||||
" loss.item()\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" continue\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # Task 4\n",
|
||||
" if tasktype == Batch.TaskType.COMPLETATION:\n",
|
||||
"\n",
|
||||
" BATCH_LOSS = []\n",
|
||||
"\n",
|
||||
" for token_idx in range(0, SENTENCE_LENGTH):\n",
|
||||
"\n",
|
||||
" pred_logits = DECODER_ONLY((\n",
|
||||
" enc_x, enc_x_pad\n",
|
||||
" ))\n",
|
||||
"\n",
|
||||
" pred_logits = pred_logits[:, token_idx, :]\n",
|
||||
"\n",
|
||||
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
|
||||
"\n",
|
||||
" BATCH_LOSS.append(\n",
|
||||
" loss.item()\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" if token_idx < SENTENCE_LENGTH - 1:\n",
|
||||
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
|
||||
"\n",
|
||||
" dec_avg_batch_losses.append(AVG_BATCH_LOSS)\n",
|
||||
"\n",
|
||||
" continue\n",
|
||||
"\n",
|
||||
" txt_avg_loss = sum(txt_avg_batch_losses) / len(txt_avg_batch_losses)\n",
|
||||
" enc_avg_loss = float(\"inf\")\n",
|
||||
" dec_avg_loss = float(\"inf\")\n",
|
||||
"\n",
|
||||
" if current_epoch >= PRETRAIN_EPOCHS:\n",
|
||||
" enc_avg_loss = sum(enc_avg_batch_losses) / len(enc_avg_batch_losses)\n",
|
||||
" dec_avg_loss = sum(dec_avg_batch_losses) / len(dec_avg_batch_losses)\n",
|
||||
"\n",
|
||||
" if current_epoch < PRETRAIN_EPOCHS:\n",
|
||||
"\n",
|
||||
" if txt_avg_loss < average_loss_validation[\"txt\"]:\n",
|
||||
" average_loss_validation[\"txt\"] = txt_avg_loss\n",
|
||||
" else:\n",
|
||||
" patience += 1\n",
|
||||
" else:\n",
|
||||
"\n",
|
||||
" counter = 0\n",
|
||||
"\n",
|
||||
" if txt_avg_loss > average_loss_validation[\"txt\"]:\n",
|
||||
" counter += 1\n",
|
||||
"\n",
|
||||
" if txt_avg_loss > average_loss_validation[\"encoder_only\"]:\n",
|
||||
" counter += 1\n",
|
||||
"\n",
|
||||
" if txt_avg_loss > average_loss_validation[\"decoder_only\"]:\n",
|
||||
" counter += 1\n",
|
||||
"\n",
|
||||
" if counter > 1:\n",
|
||||
" patience += 1\n",
|
||||
"\n",
|
||||
" txt_min_train_losses = text_batch_losses[:][0]\n",
|
||||
" txt_avg_train_losses = text_batch_losses[:][1]\n",
|
||||
" txt_max_train_losses = text_batch_losses[:][2]\n",
|
||||
"\n",
|
||||
" txt_min_loss = min(txt_min_train_losses)\n",
|
||||
" txt_avg_min_loss = sum(txt_min_train_losses) / len(txt_min_train_losses)\n",
|
||||
" txt_max_loss = max(txt_max_train_losses)\n",
|
||||
" txt_avg_max_loss = sum(txt_max_train_losses) / len(txt_max_train_losses)\n",
|
||||
" txt_avg_loss = sum(txt_avg_train_losses) / len(txt_avg_train_losses)\n",
|
||||
"\n",
|
||||
" enc_avg_train_loss = float(\"inf\")\n",
|
||||
"\n",
|
||||
" dec_min_loss = float(\"inf\")\n",
|
||||
" dec_avg_min_loss = float(\"inf\")\n",
|
||||
" dec_max_loss = float(\"inf\")\n",
|
||||
" dec_avg_max_loss = float(\"inf\")\n",
|
||||
" dec_avg_loss = float(\"inf\")\n",
|
||||
"\n",
|
||||
" if current_epoch >= PRETRAIN_EPOCHS:\n",
|
||||
" enc_avg_train_loss = sum(encoder_batch_losses) / len(encoder_batch_losses)\n",
|
||||
"\n",
|
||||
" dec_min_train_losses = decoder_batch_losses[:][0]\n",
|
||||
" dec_avg_train_losses = decoder_batch_losses[:][1]\n",
|
||||
" dec_max_train_losses = decoder_batch_losses[:][2]\n",
|
||||
"\n",
|
||||
" dec_min_loss = min(dec_min_train_losses)\n",
|
||||
" dec_avg_min_loss = sum(dec_min_train_losses) / len(dec_min_train_losses)\n",
|
||||
" dec_max_loss = max(dec_max_train_losses)\n",
|
||||
" dec_avg_max_loss = sum(dec_max_train_losses) / len(dec_max_train_losses)\n",
|
||||
" dec_avg_loss = sum(dec_avg_train_losses) / len(dec_avg_train_losses)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" SEPARATOR = \"===========================================================================================\"\n",
|
||||
" DEBUG_TEXT = \"\".join([\n",
|
||||
" f\"{SEPARATOR}\\n\",\n",
|
||||
" f\"EPOCH {current_epoch}\"\n",
|
||||
" f\"{SEPARATOR}\\n\",\n",
|
||||
" f\"Train Losses:\\n\"\n",
|
||||
" f\"\\tMin Losses:\\n\"\n",
|
||||
" f\"\\t\\tmin_txt: {txt_min_loss} - avg_txt: {txt_avg_min_loss}\\n\"\n",
|
||||
" f\"\\t\\tmin_dec: {dec_min_loss} - avg_dec: {dec_avg_min_loss}\\n\"\n",
|
||||
" f\"\\tMax Losses:\\n\"\n",
|
||||
" f\"\\t\\tmax_txt: {txt_max_loss} - avg_txt: {txt_avg_max_loss}\\n\"\n",
|
||||
" f\"\\t\\tmax_dec: {dec_min_loss} - avg_dec: {dec_avg_max_loss}\\n\"\n",
|
||||
" f\"\\tAvg Losses:\\n\"\n",
|
||||
" f\"\\t\\tavg_txt: {txt_avg_loss} - avg_enc: {enc_avg_loss} - avg_dec: {dec_avg_loss}\\n\"\n",
|
||||
" f\"{SEPARATOR}\\n\",\n",
|
||||
" f\"Validation Losses:\\n\"\n",
|
||||
" f\"\\ttxt_loss: {txt_avg_loss} - masking_loss: {enc_avg_loss} - prediction: {dec_avg_loss}\"\n",
|
||||
" f\"{SEPARATOR}\\n\",\n",
|
||||
" ])\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # Warn about patience\n",
|
||||
" if patience == PATIENCE:\n",
|
||||
" print(\n",
|
||||
" \"Model is likely overfitting, so let's stop here\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # SAVE MODEL\n",
|
||||
" if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:\n",
|
||||
" print(f\"Saving model at {CHECKPOINT_PATH.as_posix()}\")\n",
|
||||
" torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "deep_learning",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.13.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
433
Playgrounds/nanosocrates-train.py
Normal file
433
Playgrounds/nanosocrates-train.py
Normal file
@@ -0,0 +1,433 @@
|
||||
import random
|
||||
import sys
|
||||
import torch
|
||||
import pandas as pd
|
||||
from pathlib import Path
|
||||
import Project_Model.Libs.Embedder as Embedder
|
||||
import Project_Model.Libs.BPE as BPE
|
||||
import Project_Model.Libs.Transformer as Transformer
|
||||
import Project_Model.Libs.TransformerUtils as TUtils
|
||||
import Project_Model.Libs.TorchShims as torch_shims
|
||||
import Project_Model.Libs.Batch as Batch
|
||||
|
||||
# set a fixed seed
|
||||
torch.manual_seed(0)
|
||||
random.seed(0)
|
||||
|
||||
|
||||
# set a default device
|
||||
DEVICE = torch_shims.get_default_device()
|
||||
torch.set_default_device(DEVICE)
|
||||
|
||||
|
||||
# Get paths
|
||||
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
|
||||
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv")
|
||||
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv")
|
||||
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv")
|
||||
CHECKPOINT_PATH = Path("Assets/Dataset/Tmp/NanoSocrates.zip")
|
||||
|
||||
|
||||
# BPE Init
|
||||
SPECIAL_VOC = BPE.default_special_tokens()
|
||||
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
|
||||
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
|
||||
|
||||
|
||||
# Constants
|
||||
MASK_EXTRA_SPACE = 100
|
||||
REAL_TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size
|
||||
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE
|
||||
EMBEDDED_SIZE = 256
|
||||
FEED_FORWARD_MULTIPLIER = 4
|
||||
ATTENTION_HEADS = 8
|
||||
SENTENCE_LENGTH = 256
|
||||
NUMBER_OF_BLOCKS = 4
|
||||
MAX_EPOCHS = int(1e3)
|
||||
PRETRAIN_EPOCHS = int(10)
|
||||
WARMUP_EPOCHS = int(4e3)
|
||||
MINI_BATCH_SIZE = 100
|
||||
VALIDATION_STEPS = 5
|
||||
CHECKPOINT_STEPS = VALIDATION_STEPS * 4
|
||||
PATIENCE = 4
|
||||
CURRENT_EPOCH = 0
|
||||
|
||||
SOS_TOKEN = TOKENANO.encode("<SOS>")[0]
|
||||
|
||||
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
|
||||
END_TOKEN = TOKENANO.encode("<END>")[0]
|
||||
SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0]
|
||||
REL_TOKEN = TOKENANO.encode("<PRED>")[0]
|
||||
OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0]
|
||||
|
||||
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens())))
|
||||
ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])
|
||||
FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS
|
||||
|
||||
|
||||
# Spanned_Masker
|
||||
MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS)
|
||||
|
||||
TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
|
||||
VALIDATION_BATCHER = Batch.Batcher(
|
||||
VALIDATION_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER
|
||||
)
|
||||
TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
|
||||
|
||||
|
||||
# Model
|
||||
NANOSOCRATES = Transformer.TrainingModel(
|
||||
TOKEN_SPACE_SIZE,
|
||||
EMBEDDED_SIZE,
|
||||
FEED_FORWARD_MULTIPLIER,
|
||||
ATTENTION_HEADS,
|
||||
NUMBER_OF_BLOCKS,
|
||||
)
|
||||
_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(
|
||||
NANOSOCRATES, TOKEN_SPACE_SIZE, EMBEDDED_SIZE
|
||||
)
|
||||
|
||||
|
||||
# Training constants
|
||||
nano_cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
|
||||
encoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
|
||||
decoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
|
||||
nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters())
|
||||
encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters())
|
||||
decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters())
|
||||
|
||||
nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)
|
||||
encoder_only_scheduler = Transformer.WarmupLR(
|
||||
encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE
|
||||
)
|
||||
decoder_only_scheduler = Transformer.WarmupLR(
|
||||
decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE
|
||||
)
|
||||
|
||||
current_epoch = CURRENT_EPOCH
|
||||
patience = 0
|
||||
|
||||
|
||||
average_loss_validation = {
|
||||
"txt": float("inf"),
|
||||
"encoder_only": float("inf"),
|
||||
"decoder_only": float("inf"),
|
||||
}
|
||||
|
||||
while current_epoch < MAX_EPOCHS:
|
||||
|
||||
NANOSOCRATES.train()
|
||||
ENCODER_ONLY.train()
|
||||
DECODER_ONLY.train()
|
||||
|
||||
text_batch_losses = []
|
||||
encoder_batch_losses = []
|
||||
decoder_batch_losses = []
|
||||
|
||||
batch_counter = 0
|
||||
|
||||
print(f"EPOCH {current_epoch} STARTING")
|
||||
|
||||
for batch in TRAIN_BATCHER.batch(MINI_BATCH_SIZE):
|
||||
|
||||
batch_counter += 1
|
||||
|
||||
src_x, tgt_y, pad_x, pad_y, tasktype = batch
|
||||
|
||||
|
||||
|
||||
enc_x = torch.tensor(src_x)
|
||||
|
||||
ACTUAL_BATCH_SIZE, _ = enc_x.shape
|
||||
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
|
||||
dec_x = Transformer.get_decoder_input(
|
||||
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
|
||||
)
|
||||
dec_x_pad = dec_x.eq(PAD_TOKEN)
|
||||
tgt = torch.tensor(tgt_y)
|
||||
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
|
||||
|
||||
print(f"\tBATCH {batch_counter} Starting")
|
||||
|
||||
# Task 1 and Task 2
|
||||
if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:
|
||||
|
||||
print(f"\tExecuting TASK 1 or 2 - BATCH {batch_counter}")
|
||||
|
||||
BATCH_LOSS = []
|
||||
|
||||
|
||||
for token_idx in range(0, SENTENCE_LENGTH):
|
||||
|
||||
nano_optim.zero_grad()
|
||||
|
||||
pred_logits = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
|
||||
|
||||
pred_logits = pred_logits[:, token_idx, :]
|
||||
|
||||
loss: torch.Tensor = nano_cross_entropy(pred_logits, tgt[:, token_idx])
|
||||
|
||||
loss.backward()
|
||||
nano_optim.step()
|
||||
|
||||
BATCH_LOSS.append(loss.item())
|
||||
|
||||
if token_idx < SENTENCE_LENGTH - 1:
|
||||
dec_x[:, token_idx + 1] = tgt[:, token_idx]
|
||||
|
||||
MIN_BATCH_LOSS = min(BATCH_LOSS)
|
||||
MAX_BATCH_LOSS = max(BATCH_LOSS)
|
||||
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
|
||||
|
||||
text_batch_losses.append([MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS])
|
||||
continue
|
||||
|
||||
# Pretrain first
|
||||
if current_epoch < PRETRAIN_EPOCHS:
|
||||
continue
|
||||
|
||||
# Task 3
|
||||
if tasktype == Batch.TaskType.MASKING:
|
||||
|
||||
print(f"\tExecuting TASK 3 - BATCH {batch_counter}")
|
||||
|
||||
encoder_only_optim.zero_grad()
|
||||
|
||||
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
|
||||
pred_logits = pred_logits.permute(0, 2, 1)
|
||||
print(torch.max(tgt))
|
||||
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
|
||||
|
||||
loss.backward()
|
||||
encoder_only_optim.step()
|
||||
|
||||
encoder_batch_losses.append(loss.item())
|
||||
|
||||
continue
|
||||
|
||||
# Task 4
|
||||
if tasktype == Batch.TaskType.COMPLETATION:
|
||||
|
||||
print(f"\tExecuting TASK 4 - BATCH {batch_counter}")
|
||||
|
||||
BATCH_LOSS = []
|
||||
|
||||
for token_idx in range(0, SENTENCE_LENGTH):
|
||||
|
||||
decoder_only_optim.zero_grad()
|
||||
|
||||
pred_logits = DECODER_ONLY((enc_x, enc_x_pad))
|
||||
|
||||
pred_logits = pred_logits[:, token_idx, :]
|
||||
|
||||
loss: torch.Tensor = decoder_ce(pred_logits, tgt[:, token_idx])
|
||||
|
||||
loss.backward()
|
||||
decoder_only_optim.step()
|
||||
|
||||
BATCH_LOSS.append(loss.item())
|
||||
|
||||
if token_idx < SENTENCE_LENGTH - 1:
|
||||
dec_x[:, token_idx + 1] = tgt[:, token_idx]
|
||||
|
||||
MIN_BATCH_LOSS = min(BATCH_LOSS)
|
||||
MAX_BATCH_LOSS = max(BATCH_LOSS)
|
||||
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
|
||||
|
||||
decoder_batch_losses.append(
|
||||
[MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS]
|
||||
)
|
||||
|
||||
continue
|
||||
|
||||
nano_scheduler.step()
|
||||
encoder_only_scheduler.step()
|
||||
decoder_only_scheduler.step()
|
||||
|
||||
current_epoch += 1
|
||||
|
||||
if current_epoch % VALIDATION_STEPS == 0:
|
||||
|
||||
NANOSOCRATES.eval()
|
||||
ENCODER_ONLY.eval()
|
||||
DECODER_ONLY.eval()
|
||||
|
||||
txt_avg_batch_losses = []
|
||||
enc_avg_batch_losses = []
|
||||
dec_avg_batch_losses = []
|
||||
|
||||
for batch in VALIDATION_BATCHER.batch(MINI_BATCH_SIZE):
|
||||
|
||||
src_x, tgt_y, pad_x, pad_y, tasktype = batch
|
||||
|
||||
enc_x = torch.tensor(src_x)
|
||||
|
||||
ACTUAL_BATCH_SIZE, _, _ = enc_x.shape
|
||||
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
|
||||
dec_x = Transformer.get_decoder_input(
|
||||
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
|
||||
)
|
||||
|
||||
dec_x_pad = dec_x.eq(PAD_TOKEN)
|
||||
tgt = torch.tensor(tgt_y)
|
||||
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
|
||||
|
||||
# Task 1 and Task 2
|
||||
if (
|
||||
tasktype == Batch.TaskType.RDF2TXT
|
||||
or tasktype == Batch.TaskType.TEXT2RDF
|
||||
):
|
||||
|
||||
BATCH_LOSS = []
|
||||
|
||||
for token_idx in range(0, SENTENCE_LENGTH):
|
||||
|
||||
pred_logits = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
|
||||
|
||||
pred_logits = pred_logits[:, token_idx, :]
|
||||
|
||||
loss: torch.Tensor = nano_cross_entropy(pred_logits, tgt[:, token_idx])
|
||||
|
||||
BATCH_LOSS.append(loss.item())
|
||||
|
||||
if token_idx < SENTENCE_LENGTH - 1:
|
||||
dec_x[:, token_idx + 1] = tgt[:, token_idx]
|
||||
|
||||
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
|
||||
txt_avg_batch_losses.append(AVG_BATCH_LOSS)
|
||||
|
||||
continue
|
||||
|
||||
# Pretrain first
|
||||
if current_epoch < PRETRAIN_EPOCHS:
|
||||
continue
|
||||
|
||||
# Task 3
|
||||
if tasktype == Batch.TaskType.MASKING:
|
||||
|
||||
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
|
||||
pred_logits = pred_logits.permute(0, 2, 1)
|
||||
|
||||
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
|
||||
|
||||
enc_avg_batch_losses.append(loss.item())
|
||||
|
||||
continue
|
||||
|
||||
# Task 4
|
||||
if tasktype == Batch.TaskType.COMPLETATION:
|
||||
|
||||
BATCH_LOSS = []
|
||||
|
||||
for token_idx in range(0, SENTENCE_LENGTH):
|
||||
|
||||
pred_logits = DECODER_ONLY((enc_x, enc_x_pad))
|
||||
|
||||
pred_logits = pred_logits[:, token_idx, :]
|
||||
|
||||
loss: torch.Tensor = decoder_ce(pred_logits, tgt[:, token_idx])
|
||||
|
||||
BATCH_LOSS.append(loss.item())
|
||||
|
||||
if token_idx < SENTENCE_LENGTH - 1:
|
||||
dec_x[:, token_idx + 1] = tgt[:, token_idx]
|
||||
|
||||
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
|
||||
|
||||
dec_avg_batch_losses.append(AVG_BATCH_LOSS)
|
||||
|
||||
continue
|
||||
|
||||
txt_avg_loss = sum(txt_avg_batch_losses) / len(txt_avg_batch_losses)
|
||||
enc_avg_loss = float("inf")
|
||||
dec_avg_loss = float("inf")
|
||||
|
||||
if current_epoch >= PRETRAIN_EPOCHS:
|
||||
enc_avg_loss = sum(enc_avg_batch_losses) / len(enc_avg_batch_losses)
|
||||
dec_avg_loss = sum(dec_avg_batch_losses) / len(dec_avg_batch_losses)
|
||||
|
||||
if current_epoch < PRETRAIN_EPOCHS:
|
||||
|
||||
if txt_avg_loss < average_loss_validation["txt"]:
|
||||
average_loss_validation["txt"] = txt_avg_loss
|
||||
else:
|
||||
patience += 1
|
||||
else:
|
||||
|
||||
counter = 0
|
||||
|
||||
if txt_avg_loss > average_loss_validation["txt"]:
|
||||
counter += 1
|
||||
|
||||
if txt_avg_loss > average_loss_validation["encoder_only"]:
|
||||
counter += 1
|
||||
|
||||
if txt_avg_loss > average_loss_validation["decoder_only"]:
|
||||
counter += 1
|
||||
|
||||
if counter > 1:
|
||||
patience += 1
|
||||
|
||||
txt_min_train_losses = [row[0] for row in text_batch_losses]
|
||||
txt_avg_train_losses = [row[1] for row in text_batch_losses]
|
||||
txt_max_train_losses = [row[2] for row in text_batch_losses]
|
||||
|
||||
txt_min_loss = min(txt_min_train_losses)
|
||||
txt_avg_min_loss = sum(txt_min_train_losses) / len(txt_min_train_losses)
|
||||
txt_max_loss = max(txt_max_train_losses)
|
||||
txt_avg_max_loss = sum(txt_max_train_losses) / len(txt_max_train_losses)
|
||||
txt_avg_loss = sum(txt_avg_train_losses) / len(txt_avg_train_losses)
|
||||
|
||||
enc_avg_train_loss = float("inf")
|
||||
|
||||
dec_min_loss = float("inf")
|
||||
dec_avg_min_loss = float("inf")
|
||||
dec_max_loss = float("inf")
|
||||
dec_avg_max_loss = float("inf")
|
||||
dec_avg_loss = float("inf")
|
||||
|
||||
if current_epoch >= PRETRAIN_EPOCHS:
|
||||
enc_avg_train_loss = sum(encoder_batch_losses) / len(encoder_batch_losses)
|
||||
|
||||
dec_min_train_losses = [row[0] for row in decoder_batch_losses]
|
||||
dec_avg_train_losses = [row[1] for row in decoder_batch_losses]
|
||||
dec_max_train_losses = [row[2] for row in decoder_batch_losses]
|
||||
|
||||
dec_min_loss = min(dec_min_train_losses)
|
||||
dec_avg_min_loss = sum(dec_min_train_losses) / len(dec_min_train_losses)
|
||||
dec_max_loss = max(dec_max_train_losses)
|
||||
dec_avg_max_loss = sum(dec_max_train_losses) / len(dec_max_train_losses)
|
||||
dec_avg_loss = sum(dec_avg_train_losses) / len(dec_avg_train_losses)
|
||||
|
||||
SEPARATOR = "================================================================================================================"
|
||||
DEBUG_TEXT = "".join(
|
||||
[
|
||||
f"{SEPARATOR}\n",
|
||||
f"EPOCH {current_epoch}\n",
|
||||
f"{SEPARATOR}\n",
|
||||
f"Train Losses:\n",
|
||||
f"\tMin Losses:\n",
|
||||
f"\t\tmin_txt: {txt_min_loss} - avg_txt: {txt_avg_min_loss}\n",
|
||||
f"\t\tmin_dec: {dec_min_loss} - avg_dec: {dec_avg_min_loss}\n",
|
||||
f"\tMax Losses:\n",
|
||||
f"\t\tmax_txt: {txt_max_loss} - avg_txt: {txt_avg_max_loss}\n",
|
||||
f"\t\tmax_dec: {dec_min_loss} - avg_dec: {dec_avg_max_loss}\n",
|
||||
f"\tAvg Losses:\n",
|
||||
f"\t\tavg_txt: {txt_avg_loss} - avg_enc: {enc_avg_loss} - avg_dec: {dec_avg_loss}\n",
|
||||
f"{SEPARATOR}\n",
|
||||
f"Validation Losses:\n",
|
||||
f"\ttxt_loss: {txt_avg_loss} - masking_loss: {enc_avg_loss} - prediction: {dec_avg_loss}\n",
|
||||
f"{SEPARATOR}\n",
|
||||
]
|
||||
)
|
||||
|
||||
print(DEBUG_TEXT)
|
||||
|
||||
# Warn about patience
|
||||
if patience == PATIENCE:
|
||||
print("Model is likely overfitting, so let's stop here")
|
||||
|
||||
# SAVE MODEL
|
||||
if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:
|
||||
print(f"Saving model at {CHECKPOINT_PATH.as_posix()}")
|
||||
torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)
|
||||
@@ -1,4 +1,5 @@
|
||||
import random
|
||||
import time
|
||||
import torch
|
||||
import pandas as pd
|
||||
from pathlib import Path
|
||||
@@ -45,7 +46,7 @@ TOY_DATASET = pd.read_csv(TOY_DATASET_PATH)
|
||||
TOY_BATCH_INPUT_LIST: list[list[int]] = []
|
||||
TOY_BATCH_PADDING_LIST: list[list[bool]] = []
|
||||
TOY_BATCH_TARGET_LIST: list[list[int]] = []
|
||||
TOY_BATCH_DECODER_DEFAULT: list[list[int]]= []
|
||||
TOY_BATCH_DECODER_DEFAULT: list[list[int]] = []
|
||||
|
||||
|
||||
for index, row in TOY_DATASET.iterrows():
|
||||
@@ -98,7 +99,7 @@ NANOSOCRATES = Transformer.TrainingModel(
|
||||
EMBEDDED_SIZE,
|
||||
FEED_FORWARD_MULTIPLIER,
|
||||
ATTENTION_HEADS,
|
||||
NUMBER_OF_BLOCKS
|
||||
NUMBER_OF_BLOCKS,
|
||||
)
|
||||
cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
|
||||
optimizer = torch.optim.AdamW(NANOSOCRATES.parameters())
|
||||
@@ -120,21 +121,31 @@ while current_epoch < MAX_EPOCHS:
|
||||
last_loss = 0
|
||||
last_prediction: torch.Tensor
|
||||
|
||||
LOSS_HISTORY = []
|
||||
|
||||
start = time.time_ns()
|
||||
|
||||
|
||||
for i in range(0, SENTENCE_LENGTH):
|
||||
|
||||
|
||||
optimizer.zero_grad()
|
||||
tgt_padding = decoder_list.eq(PAD_TOKEN)
|
||||
|
||||
logits: torch.Tensor = NANOSOCRATES((encoder_list, src_padding, decoder_list, tgt_padding))
|
||||
logits: torch.Tensor = NANOSOCRATES(
|
||||
(encoder_list, src_padding, decoder_list, tgt_padding)
|
||||
)
|
||||
prob = torch.softmax(logits, 2)
|
||||
|
||||
most_probable_tokens = torch.argmax(prob, 2)
|
||||
last_prediction = most_probable_tokens
|
||||
|
||||
logits = logits[:,:i,:]
|
||||
logits = logits.permute(0, 2, 1)
|
||||
logits = logits[:, i, :]
|
||||
# logits = logits.permute(0, 2, 1)
|
||||
|
||||
loss : torch.Tensor = cross_entropy(logits, target_logits[:, 0:i])
|
||||
loss: torch.Tensor = cross_entropy(logits, target_logits[:, i])
|
||||
LOSS_HISTORY.append(loss.item())
|
||||
# loss : torch.Tensor = cross_entropy(logits, target_logits[:, 0:i])
|
||||
# loss : torch.Tensor = cross_entropy(logits, target_logits)
|
||||
|
||||
last_loss = loss
|
||||
@@ -143,28 +154,24 @@ while current_epoch < MAX_EPOCHS:
|
||||
scheduler.step()
|
||||
|
||||
if i < SENTENCE_LENGTH - 1:
|
||||
decoder_list[:,i+1] = target_logits[:,i]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
decoder_list[:, i + 1] = target_logits[:, i]
|
||||
|
||||
current_epoch += 1
|
||||
|
||||
end = time.time_ns()
|
||||
|
||||
if current_epoch % 1 == 0:
|
||||
print(f"EPOCH {current_epoch}\n\tLoss: {last_loss}")
|
||||
|
||||
for encoded_sentence, expected_sentence in zip(
|
||||
Transformer.tensor2token(last_prediction[:,:], END_TOKEN), # type: ignore
|
||||
Transformer.tensor2token(target_logits[:,:], END_TOKEN)
|
||||
):
|
||||
decoded_sentence = TOKENANO.decode(encoded_sentence)
|
||||
decoded_target = TOKENANO.decode(expected_sentence)
|
||||
print(f"\tACTUAL:\n\t\t{decoded_sentence}\n\tEXPECTED:\n\t\t{decoded_target}\n")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
MIN_LOSS = min(LOSS_HISTORY)
|
||||
MAX_LOSS = max(LOSS_HISTORY)
|
||||
AVERAGE_LOSS = sum(LOSS_HISTORY)/len(LOSS_HISTORY)
|
||||
print(f"EPOCH {current_epoch}\n\tTime: {(end-start)/1E9}s\n\tLoss: {last_loss}")
|
||||
print(f"\tMin Loss: {MIN_LOSS}\tAvg Loss: {AVERAGE_LOSS}\tMax Loss: {MAX_LOSS}\n")
|
||||
# for encoded_sentence, expected_sentence in zip(
|
||||
# Transformer.tensor2token(last_prediction[:, :], END_TOKEN), # type: ignore
|
||||
# Transformer.tensor2token(target_logits[:, :], END_TOKEN),
|
||||
# ):
|
||||
# decoded_sentence = TOKENANO.decode(encoded_sentence)
|
||||
# decoded_target = TOKENANO.decode(expected_sentence)
|
||||
# print(
|
||||
# f"\tACTUAL:\n\t\t{decoded_sentence}\n\tEXPECTED:\n\t\t{decoded_target}\n"
|
||||
# )
|
||||
|
||||
@@ -3,18 +3,33 @@ import sys
|
||||
from typing import Any, Generator
|
||||
import pandas as pd
|
||||
from pathlib import Path
|
||||
from Project_Model.Libs.Batch.Enums.TaskType import TaskType
|
||||
from ..Enums import TaskType
|
||||
import Project_Model.Libs.BPE as BPE
|
||||
|
||||
# from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
|
||||
from Project_Model.Libs.Transformer import SpannedMasker, truncate_rdf_list, normalize_sequence
|
||||
from TokenCompletation import TokenCompletationTransformer
|
||||
from Project_Model.Libs.Transformer import (
|
||||
SpannedMasker,
|
||||
truncate_rdf_list,
|
||||
normalize_sequence,
|
||||
)
|
||||
|
||||
from Project_Model.Libs.BPE import SpecialToken
|
||||
|
||||
|
||||
MAX_LENGHT = 128
|
||||
|
||||
|
||||
|
||||
class Batcher:
|
||||
|
||||
def __init__(self, dataset_path: Path, tokenizer: BPE.TokeNanoCore, masker: SpannedMasker, seed:int = 0) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
dataset_path: Path,
|
||||
max_length: int,
|
||||
tokenizer: BPE.TokeNanoCore,
|
||||
masker: SpannedMasker,
|
||||
seed: int = 0,
|
||||
debug = False
|
||||
) -> None:
|
||||
# ABSTRACT, TRIPLE
|
||||
# tasks:
|
||||
# rdf2text: X: TRIPLE, Y: ABSTRACT
|
||||
@@ -26,66 +41,85 @@ class Batcher:
|
||||
self._dataset_path = dataset_path
|
||||
self._tokenizer = tokenizer
|
||||
self._masker = masker
|
||||
|
||||
self.__max_length = max_length
|
||||
self._seed = seed
|
||||
# self._token_completation = TokenCompletationTransformer(sotl,eos)
|
||||
self._completation_task_token_truncator = truncate_rdf_list
|
||||
self.__debug = debug
|
||||
|
||||
|
||||
|
||||
|
||||
def batch(self, batch_size)-> Generator[tuple[list[list[int]], list[list[int]], list[list[int]],list[list[int]], TaskType],Any,Any]:
|
||||
def batch(self, batch_size) -> Generator[
|
||||
tuple[
|
||||
list[list[int]],
|
||||
list[list[int]],
|
||||
list[list[int]],
|
||||
list[list[int]],
|
||||
TaskType
|
||||
],
|
||||
Any,
|
||||
Any,
|
||||
]:
|
||||
"""
|
||||
Yields: X,Y,padding_X
|
||||
"""
|
||||
RNG = random.Random(self._seed)
|
||||
self._masker.reseed(self._seed)
|
||||
|
||||
for batch in pd.read_csv(self._dataset_path, chunksize= batch_size):
|
||||
for batch in pd.read_csv(self._dataset_path, chunksize=batch_size):
|
||||
|
||||
tokenized_batch = pd.DataFrame()
|
||||
# encode
|
||||
tokenized_batch[["Abstract","RDFs"]] = (
|
||||
batch[["Abstract","RDFs"]]
|
||||
.map(lambda t: self._tokenizer.encode(t))
|
||||
tokenized_batch[["Abstract", "RDFs"]] = batch[["Abstract", "RDFs"]].map(
|
||||
lambda t: self._tokenizer.encode(t)
|
||||
)
|
||||
|
||||
X,Y, padding_X, padding_Y = self.__rdf2txt_transformation(tokenized_batch)
|
||||
yield X,Y, padding_X, padding_Y, TaskType.RDF2TXT
|
||||
X,Y, padding_X, padding_Y, = self.__txt2rdf_transformation(tokenized_batch)
|
||||
yield X,Y, padding_X, padding_Y, TaskType.TEXT2RDF
|
||||
X,Y, padding_X, padding_Y, = self.__masking_trasformation(tokenized_batch)
|
||||
yield X,Y, padding_X, padding_Y, TaskType.MASKING
|
||||
X,Y, padding_X, padding_Y, = self.__token_completation_task(tokenized_batch, RNG.randint(0,sys.maxsize))
|
||||
yield X,Y, padding_X, padding_Y, TaskType.COMPLETATION
|
||||
X, Y, padding_X, padding_Y = self.__rdf2txt_transformation(tokenized_batch)
|
||||
yield X, Y, padding_X, padding_Y, TaskType.RDF2TXT
|
||||
(
|
||||
X,
|
||||
Y,
|
||||
padding_X,
|
||||
padding_Y,
|
||||
) = self.__txt2rdf_transformation(tokenized_batch)
|
||||
yield X, Y, padding_X, padding_Y, TaskType.TEXT2RDF
|
||||
(
|
||||
X,
|
||||
Y,
|
||||
padding_X,
|
||||
padding_Y,
|
||||
) = self.__masking_trasformation(tokenized_batch)
|
||||
yield X, Y, padding_X, padding_Y, TaskType.MASKING
|
||||
(
|
||||
X,
|
||||
Y,
|
||||
padding_X,
|
||||
padding_Y,
|
||||
) = self.__token_completation_task(
|
||||
tokenized_batch, RNG.randint(0, sys.maxsize)
|
||||
)
|
||||
yield X, Y, padding_X, padding_Y, TaskType.COMPLETATION
|
||||
|
||||
# output = pd.concat([rdf2txt_batch,txt2rdf_batch,completation_batch],ignore_index=True)
|
||||
# output = output.sample(frac=1).reset_index(drop=True)
|
||||
# self.decode_debug(output)
|
||||
# yield output
|
||||
|
||||
|
||||
def __random_subset_rdfs(self, batch: pd.DataFrame, seed = 0):
|
||||
def __random_subset_rdfs(self, batch: pd.DataFrame, seed=0):
|
||||
# WIP
|
||||
rng = random.Random(seed)
|
||||
|
||||
def to_list(x):
|
||||
return x.split(SpecialToken.START_TRIPLE.value)[1:]
|
||||
|
||||
batch["RDFs"] = batch["RDFs"].map(
|
||||
to_list
|
||||
)
|
||||
batch["RDFs"] = batch["RDFs"].map(to_list)
|
||||
|
||||
def decode_debug(self, batch: pd.DataFrame):
|
||||
decoded = pd.DataFrame()
|
||||
decoded[["X","Y"]] = (
|
||||
batch[["X","Y"]]
|
||||
.map(lambda t: self._tokenizer.decode(t))
|
||||
)
|
||||
decoded[["X", "Y"]] = batch[["X", "Y"]].map(lambda t: self._tokenizer.decode(t))
|
||||
print(decoded)
|
||||
|
||||
|
||||
def __normalization(self, X:list[list[int]], Y: list[list[int]])-> tuple[list[list[int]], list[list[int]], list[list[int]], list[list[int]]]:
|
||||
def __normalization(
|
||||
self, X: list[list[int]], Y: list[list[int]]
|
||||
) -> tuple[list[list[int]], list[list[int]], list[list[int]], list[list[int]]]:
|
||||
pad_token = self._tokenizer.encode(SpecialToken.PAD.value)[0]
|
||||
end_token = self._tokenizer.encode(SpecialToken.END_OF_SEQUENCE.value)[0]
|
||||
out_X = []
|
||||
@@ -94,55 +128,99 @@ class Batcher:
|
||||
padding_Y = []
|
||||
|
||||
for x in X:
|
||||
out_x, padding_x = normalize_sequence(x,MAX_LENGHT,pad_token,end_token,True)
|
||||
out_x, padding_x = normalize_sequence(
|
||||
x, self.__max_length, pad_token, end_token, True
|
||||
)
|
||||
out_X.append(out_x)
|
||||
padding_X.append(padding_x)
|
||||
|
||||
for y in Y:
|
||||
out_y, padding_y = normalize_sequence(y,MAX_LENGHT,pad_token,end_token,True)
|
||||
out_y, padding_y = normalize_sequence(
|
||||
y, self.__max_length, pad_token, end_token, True
|
||||
)
|
||||
out_Y.append(out_y)
|
||||
padding_Y.append(padding_y)
|
||||
|
||||
return out_X,out_Y,padding_X,padding_Y
|
||||
|
||||
return out_X, out_Y, padding_X, padding_Y
|
||||
|
||||
def __rdf2txt_transformation(self, batch: pd.DataFrame):
|
||||
X: list[list[int]]
|
||||
task_token = self._tokenizer.encode(SpecialToken.RDF_TO_TEXT.value)
|
||||
out = batch.rename(columns={"RDFs":"X","Abstract":"Y"})[["X","Y"]]
|
||||
out = batch.rename(columns={"RDFs": "X", "Abstract": "Y"})[["X", "Y"]]
|
||||
out["X"] = [task_token + x for x in out["X"]]
|
||||
return self.__normalization(out["X"].to_list(),out["Y"].to_list())
|
||||
|
||||
return self.__normalization(out["X"].to_list(), out["Y"].to_list())
|
||||
|
||||
def __txt2rdf_transformation(self, batch: pd.DataFrame):
|
||||
task_token = self._tokenizer.encode(SpecialToken.TEXT_TO_RDF.value)
|
||||
out = batch.rename(columns={"Abstract":"X","RDFs":"Y"})[["X","Y"]]
|
||||
out = batch.rename(columns={"Abstract": "X", "RDFs": "Y"})[["X", "Y"]]
|
||||
out["X"] = [task_token + x for x in out["X"]]
|
||||
return self.__normalization(out["X"].to_list(),out["Y"].to_list())
|
||||
|
||||
return self.__normalization(out["X"].to_list(), out["Y"].to_list())
|
||||
|
||||
def __masking_trasformation(self, batch: pd.DataFrame):
|
||||
X = []
|
||||
Y = []
|
||||
for rdf in batch["RDFs"]:
|
||||
x,y = self._masker.mask_sequence(rdf)
|
||||
x, y = self._masker.mask_sequence(rdf[:self.__max_length])
|
||||
X.append(x)
|
||||
Y.append(y)
|
||||
return self.__normalization(X,Y)
|
||||
|
||||
return self.__normalization(X, Y)
|
||||
|
||||
def __token_completation_task(self, batch: pd.DataFrame, minibatch_seed: int):
|
||||
continue_triple_token = self._tokenizer.encode(SpecialToken.CONTINUE_RDF.value)[0]
|
||||
continue_triple_token = self._tokenizer.encode(SpecialToken.CONTINUE_RDF.value)[
|
||||
0
|
||||
]
|
||||
eot = self._tokenizer.encode(SpecialToken.END_TRIPLE.value)[0]
|
||||
X = []
|
||||
Y = []
|
||||
for rdf in batch["RDFs"]:
|
||||
x,y = self._completation_task_token_truncator(rdf, 0.5, continue_triple_token, eot, minibatch_seed)
|
||||
# here first truncate to max_lenght
|
||||
rdf = rdf[: self.__max_length] # truncator that uses "eot" so no problem
|
||||
x, y = self._completation_task_token_truncator(
|
||||
rdf, 0.5, continue_triple_token, eot, minibatch_seed
|
||||
)
|
||||
X.append(x)
|
||||
Y.append(y)
|
||||
return self.__normalization(X,Y)
|
||||
return self.__token_cmpletation_task_special_normalization(X, Y)
|
||||
|
||||
def __token_cmpletation_task_special_normalization(self, X: list[list[int]], Y: list[list[int]]
|
||||
) -> tuple[list[list[int]], list[list[int]], list[list[int]], list[list[int]]]:
|
||||
|
||||
def continue_rdf_padding(sequence: list[int], pad_token: int):
|
||||
for i, x in enumerate(sequence):
|
||||
if x == pad_token:
|
||||
i = i+1 # continueRDF will be excluded by the mask
|
||||
# fill the tail with True and stop
|
||||
return [False] * i + [True] * (len(sequence) - i)
|
||||
return [False] * len(sequence) # no pad token found
|
||||
|
||||
pad_token = self._tokenizer.encode(SpecialToken.PAD.value)[0]
|
||||
end_token = self._tokenizer.encode(SpecialToken.END_OF_SEQUENCE.value)[0]
|
||||
continue_rdf = self._tokenizer.encode(SpecialToken.CONTINUE_RDF.value)[0]
|
||||
out_X = []
|
||||
padding_X = []
|
||||
out_Y = []
|
||||
padding_Y = []
|
||||
|
||||
for x in X:
|
||||
out_x, _ = normalize_sequence(
|
||||
x, self.__max_length, pad_token, end_token, True
|
||||
)
|
||||
out_X.append(out_x)
|
||||
# padding_X.append(padding_x)
|
||||
special_padding = continue_rdf_padding(out_x,continue_rdf)
|
||||
padding_X.append(special_padding)
|
||||
|
||||
for y in Y:
|
||||
out_y, padding_y = normalize_sequence(
|
||||
y, self.__max_length, pad_token, end_token, True
|
||||
)
|
||||
out_Y.append(out_y)
|
||||
# special padding
|
||||
# special_padding = continue_rdf_padding(out_y,continue_rdf)
|
||||
# padding_Y.append(special_padding)
|
||||
padding_Y.append(padding_y)
|
||||
|
||||
return out_X, out_Y, padding_X, padding_Y
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -150,15 +228,16 @@ if __name__ == "__main__":
|
||||
VOCABULARY_path = "Assets/Dataset/Tmp/trimmed.json"
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
VOCABULARY = BPE.load_nanos_vocabulary(Path(VOCABULARY_path))
|
||||
SPECIAL_LIST = BPE.default_special_tokens()
|
||||
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_LIST)
|
||||
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(SPECIAL_LIST)))
|
||||
|
||||
MASKER = SpannedMasker(TOKENANO.vocabulary_size,SPECIAL_TOKENS)
|
||||
MASKER = SpannedMasker(TOKENANO.vocabulary_size, SPECIAL_TOKENS)
|
||||
|
||||
prova = "<ABS>Cactus Flower is a 1969 American screwball comedy film directed by Gene Saks, and starring Walter Matthau, Ingrid Bergman and Goldie Hawn, who won an Academy Award for her performance.The screenplay was adapted by I. A. L. Diamond from the 1965 Broadway play of the same title written by Abe Burrows, which, in turn, is based on the French play Fleur de cactus by Pierre Barillet and Jean-Pierre Gredy. Cactus Flower was the ninth highest-grossing film of 1969."
|
||||
print(TOKENANO.encode(prova))
|
||||
batcher = Batcher(DATASET_PATH,TOKENANO,MASKER)
|
||||
batcher = Batcher(DATASET_PATH,256, TOKENANO, MASKER)
|
||||
for batch in batcher.batch(8):
|
||||
print(batch)
|
||||
|
||||
2
Project_Model/Libs/Batch/Classes/__init__.py
Normal file
2
Project_Model/Libs/Batch/Classes/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .Batcher import Batcher
|
||||
from .TokenCompletation import TokenCompletationTransformer
|
||||
5
Project_Model/Libs/Batch/Enums/__init__.py
Normal file
5
Project_Model/Libs/Batch/Enums/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
from .TaskType import TaskType
|
||||
|
||||
__all__ = [
|
||||
"TaskType"
|
||||
]
|
||||
5
Project_Model/Libs/Batch/__init__.py
Normal file
5
Project_Model/Libs/Batch/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
from .Classes import *
|
||||
from .Enums import *
|
||||
|
||||
from . import Classes
|
||||
from . import Enums
|
||||
70
Project_Model/Libs/Evaluation/evaluation.py
Normal file
70
Project_Model/Libs/Evaluation/evaluation.py
Normal file
@@ -0,0 +1,70 @@
|
||||
import evaluate
|
||||
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
||||
class Evaluator():
|
||||
def __init__(self) -> None:
|
||||
# txt based evaluator
|
||||
self.__rouge = evaluate.load("rouge")
|
||||
self.__rouge_types = ["rougeLsum", "rouge1", "rouge2"] #rougeLsum will work bad because it expect that each sentence are divided with /n
|
||||
self._bleu = evaluate.load("bleu")
|
||||
self._meteor = evaluate.load("meteor")
|
||||
# token based evaluator
|
||||
self.__acc_m = evaluate.load("accuracy")
|
||||
self.__prec_m = evaluate.load("precision")
|
||||
self.__rec_m = evaluate.load("recall")
|
||||
self.__f1_m = evaluate.load("f1")
|
||||
|
||||
def rdf2txt_rouge_evaluation(self, preds: list[str], refs: list[str]):
|
||||
|
||||
results = self.__rouge.compute(
|
||||
predictions=preds, references=refs,
|
||||
rouge_types=self.__rouge_types,
|
||||
use_stemmer=True,
|
||||
use_aggregator=True #F1
|
||||
)
|
||||
|
||||
return {k: float(results[k]) for k in self.__rouge_types}
|
||||
|
||||
def rdf2txt_bleu_evaluation(self, preds: list[str], refs: list[str]) -> float:
|
||||
# sacreBLEU via evaluate; expects references as list-of-lists
|
||||
# each prediction can be evaluated against a list of references, hence [[ref]]
|
||||
results = self._bleu.compute(predictions=preds, references=[[r] for r in refs])
|
||||
return float(results["bleu"]) # (native sacreBLEU scale)
|
||||
|
||||
def rdf2txt_meteor_evaluation(self, preds: list[str], refs: list[str]) -> float:
|
||||
# as bleu
|
||||
res = self._meteor.compute(predictions=preds, references=[[r] for r in refs])
|
||||
return float(res["meteor"])
|
||||
|
||||
|
||||
def __my_accuracy(self,preds: list[list[int]], refs: list[list[int]]):
|
||||
# it is done on token sequence not single token
|
||||
total = len(preds)
|
||||
correct = 0
|
||||
for p, r in zip(preds, refs):
|
||||
correct += int(p == r)
|
||||
return correct / total
|
||||
|
||||
def __accuracy(self, preds, refs):
|
||||
return accuracy_score(preds,refs)
|
||||
|
||||
def __clean_batch_by_pad(self, preds: list[list[int]], refs: list[list[int]]):
|
||||
output_preds = []
|
||||
output_refs = []
|
||||
#TODO
|
||||
pad_token: int = 7000 # percolate
|
||||
for pred, ref in zip(preds,refs):
|
||||
try:
|
||||
i = ref.index(pad_token) # first time pad token appears
|
||||
except ValueError:
|
||||
i = len(ref)
|
||||
output_preds.append(pred[:i])
|
||||
output_refs.append(ref[:i])
|
||||
|
||||
return output_preds,output_refs
|
||||
|
||||
def __precision_recall(self, preds: list[list[int]], refs: list[list[int]]):
|
||||
#TODO
|
||||
p, r, f1, _ = precision_recall_fscore_support(
|
||||
preds, refs, average="binary", zero_division=0
|
||||
) #### watch later
|
||||
return {"precision": float(p), "recall": float(r), "f1": float(f1)}
|
||||
20
Project_Model/Libs/Training/loss_saver.py
Normal file
20
Project_Model/Libs/Training/loss_saver.py
Normal file
@@ -0,0 +1,20 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
class Log:
|
||||
def __init__(self, path):
|
||||
self.path = path
|
||||
header = ["epoch","avg_txt","avg_enc","avg_dec","txt_loss","masking_loss","prediction_loss"]
|
||||
|
||||
if Path(path).is_file():
|
||||
return
|
||||
|
||||
with open(self.path, "w", encoding="utf-8", newline="") as f:
|
||||
f.write(",".join(header) + "\n")
|
||||
|
||||
def write(self, loss: list[float]):
|
||||
line = ",".join(str(float(x)) for x in loss) + "\n"
|
||||
with open(self.path, "a", encoding="utf-8", newline="") as f:
|
||||
f.write(line)
|
||||
f.flush()
|
||||
os.fsync(f.fileno()) # extra durability per write # suggested against sudden crashes since it will be done
|
||||
@@ -1,8 +1,9 @@
|
||||
from typing import Optional
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from .FeedForwardNetwork import FeedForwardNetwork
|
||||
from .TorchMultiHeadAttention import TorchMultiHeadAttention as MultiHeadAttention
|
||||
from ..Utils.attention_mask import get_causal_attention_mask
|
||||
from ..Utils.attention_mask import get_causal_attention_mask, get_prefix_causal_mask_from_padding_mask
|
||||
|
||||
# B, L(T), E_D
|
||||
|
||||
@@ -15,8 +16,10 @@ class Decoder(nn.Module):
|
||||
feed_forward_hidden_layer_dimension: int,
|
||||
number_of_attention_heads: int,
|
||||
) -> None:
|
||||
self.__attention_heads = number_of_attention_heads
|
||||
super().__init__()
|
||||
|
||||
|
||||
self.__masked_attention = MultiHeadAttention(
|
||||
embedding_dimension, number_of_attention_heads, dropout=0.1
|
||||
)
|
||||
@@ -42,13 +45,20 @@ class Decoder(nn.Module):
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
torch.Tensor
|
||||
torch.Tensor,
|
||||
Optional[bool]
|
||||
]
|
||||
): # -> list[torch.Tensor]: # k_x = v_x . While x_q = x
|
||||
# WARNING: args is needed to have sequential
|
||||
x, k_x, v_x, src_padding_mask, tgt_padding_mask = args
|
||||
if len(args) < 6:
|
||||
args = args + (False)
|
||||
x, k_x, v_x, src_padding_mask, tgt_padding_mask, decoder_only = args
|
||||
|
||||
# build of attention mask
|
||||
# TODO: create a prefix causal mask if needed
|
||||
if decoder_only:
|
||||
attention_mask = get_prefix_causal_mask_from_padding_mask(x.size(1),src_padding_mask,self.__attention_heads) # the correct is tgt however ...
|
||||
else:
|
||||
attention_mask = get_causal_attention_mask(x.size(1))
|
||||
|
||||
# 1) Masked Attention
|
||||
@@ -57,28 +67,30 @@ class Decoder(nn.Module):
|
||||
)
|
||||
|
||||
# 2) Dropout
|
||||
# DROPPED_MASKED_ATTENTION = self.__dropout(MASKED_ATTENTION)
|
||||
# del MASKED_ATTENTION
|
||||
DROPPED_MASKED_ATTENTION = self.__dropout(MASKED_ATTENTION)
|
||||
del MASKED_ATTENTION
|
||||
|
||||
# 3) Residual Connection
|
||||
x = x + MASKED_ATTENTION
|
||||
del MASKED_ATTENTION
|
||||
x = x + DROPPED_MASKED_ATTENTION
|
||||
del DROPPED_MASKED_ATTENTION
|
||||
|
||||
# 4) Layer Normalization
|
||||
x = self.__layer_norm_1(x)
|
||||
|
||||
|
||||
if not decoder_only:
|
||||
# 5) Encoder–decoder (cross) attention
|
||||
CROSS_ATTENTION = self.__cross_attention(
|
||||
x, k_x, v_x, key_padding_mask=src_padding_mask
|
||||
)
|
||||
|
||||
# 6) Dropout
|
||||
# DROPPED_CROSS_ATTENTION = self.__dropout(CROSS_ATTENTION)
|
||||
# del CROSS_ATTENTION
|
||||
DROPPED_CROSS_ATTENTION = self.__dropout(CROSS_ATTENTION)
|
||||
del CROSS_ATTENTION
|
||||
|
||||
# 7) Residual Connection
|
||||
x = x + CROSS_ATTENTION
|
||||
del CROSS_ATTENTION
|
||||
x = x + DROPPED_CROSS_ATTENTION
|
||||
del DROPPED_CROSS_ATTENTION
|
||||
|
||||
# 8) Layer Normalization
|
||||
x = self.__layer_norm_2(x)
|
||||
@@ -87,17 +99,17 @@ class Decoder(nn.Module):
|
||||
FEED_FORWARD = self.__feed_forward_network(x)
|
||||
|
||||
# 10) Dropout
|
||||
# DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
|
||||
# del FEED_FORWARD
|
||||
DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
|
||||
del FEED_FORWARD
|
||||
|
||||
# 11) Residual Connection
|
||||
x = x + FEED_FORWARD
|
||||
del FEED_FORWARD
|
||||
x = x + DROPPED_FEED_FORWARD
|
||||
del DROPPED_FEED_FORWARD
|
||||
|
||||
# 12) Layer Normalization
|
||||
x = self.__layer_norm_3(x)
|
||||
|
||||
return (x, k_x, v_x, src_padding_mask, tgt_padding_mask)
|
||||
return (x, k_x, v_x, src_padding_mask, tgt_padding_mask, decoder_only)
|
||||
|
||||
|
||||
# use eval to disable dropout ecc
|
||||
|
||||
@@ -43,12 +43,12 @@ class Encoder(
|
||||
ATTENTION = self.__attention(x, x, x, key_padding_mask=padding_mask)
|
||||
|
||||
# 2) Dropout
|
||||
# DROPPED_ATTENTION = self.__dropout(ATTENTION)
|
||||
# del ATTENTION
|
||||
DROPPED_ATTENTION = self.__dropout(ATTENTION)
|
||||
del ATTENTION
|
||||
|
||||
# 3) Residual Connection
|
||||
x = x + ATTENTION
|
||||
del ATTENTION
|
||||
x = x + DROPPED_ATTENTION
|
||||
del DROPPED_ATTENTION
|
||||
|
||||
# 4) Layer Normalization
|
||||
x = self.__layer_norm_1(x)
|
||||
@@ -57,12 +57,12 @@ class Encoder(
|
||||
FEED_FORWARD = self.__feed_forward(x)
|
||||
|
||||
# 6) Dropout
|
||||
# DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
|
||||
# del FEED_FORWARD
|
||||
DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
|
||||
del FEED_FORWARD
|
||||
|
||||
# 7) Residual Connection
|
||||
x = x + FEED_FORWARD
|
||||
del FEED_FORWARD
|
||||
x = x + DROPPED_FEED_FORWARD
|
||||
del DROPPED_FEED_FORWARD
|
||||
|
||||
# 8) Layer Normalization
|
||||
x = self.__layer_norm_2(x)
|
||||
|
||||
@@ -10,7 +10,7 @@ class SpannedMasker:
|
||||
max_vocabulary: int,
|
||||
forbidden_tokens: set[int],
|
||||
change_token_probability: float = 0.15,
|
||||
average_span: int = 1,
|
||||
average_span: int = 2,
|
||||
seed: int = random.randint(0, sys.maxsize),
|
||||
|
||||
) -> None:
|
||||
|
||||
33
Project_Model/Libs/Transformer/Models/NanoSocraDecoder.py
Normal file
33
Project_Model/Libs/Transformer/Models/NanoSocraDecoder.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import torch
|
||||
import Project_Model.Libs.Embedder as Embedder
|
||||
from ..Classes import DeToken
|
||||
|
||||
class NanoSocraDecoder(torch.nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
decoder_embedder: Embedder.NanoSocratesEmbedder,
|
||||
decoder_layers: torch.nn.Sequential,
|
||||
detokener: DeToken
|
||||
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
|
||||
self.__decoder_embedder = decoder_embedder
|
||||
self.__decoder = decoder_layers
|
||||
self.__detokener = detokener
|
||||
|
||||
def forward(self, args: tuple[torch.Tensor,torch.Tensor, torch.Tensor]):
|
||||
|
||||
decoder_embedder_input, prefix_mask, tgt_padding = args
|
||||
|
||||
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
|
||||
|
||||
decoder_output, _, _, _, _, _ = self.__decoder(
|
||||
(decoder_tensor, decoder_tensor, decoder_tensor, prefix_mask, tgt_padding, True)
|
||||
)
|
||||
|
||||
logits: torch.Tensor = self.__detokener(decoder_output)
|
||||
|
||||
return logits
|
||||
29
Project_Model/Libs/Transformer/Models/NanoSocratEncoder.py
Normal file
29
Project_Model/Libs/Transformer/Models/NanoSocratEncoder.py
Normal file
@@ -0,0 +1,29 @@
|
||||
import torch
|
||||
import Project_Model.Libs.Embedder as Embedder
|
||||
from ..Classes import DeToken
|
||||
|
||||
class NanoSocratEncoder(torch.nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
encoder_embedder: Embedder.NanoSocratesEmbedder,
|
||||
encoder_layers: torch.nn.Sequential,
|
||||
detokener: DeToken
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.__encoder_embedder = encoder_embedder
|
||||
self.__encoder = encoder_layers
|
||||
self.__detokener = detokener
|
||||
|
||||
def forward(self, args: tuple[torch.Tensor, torch.Tensor]):
|
||||
|
||||
encoder_embedder_input, src_padding = args
|
||||
|
||||
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
|
||||
|
||||
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
|
||||
|
||||
logits: torch.Tensor = self.__detokener(encoder_output)
|
||||
|
||||
return logits
|
||||
219
Project_Model/Libs/Transformer/Models/NanoSocrates.py
Normal file
219
Project_Model/Libs/Transformer/Models/NanoSocrates.py
Normal file
@@ -0,0 +1,219 @@
|
||||
import torch
|
||||
import Project_Model.Libs.Embedder as Embedder
|
||||
from ..Classes import Encoder, Decoder, DeToken
|
||||
from ..Utils import get_decoder_input
|
||||
from Project_Model.Libs.Batch import TaskType
|
||||
|
||||
|
||||
class NanoSocratesCore(torch.nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocabulary_size: int,
|
||||
sentence_max_length: int,
|
||||
sos: int,
|
||||
pad: int,
|
||||
eos: int,
|
||||
continuerdf: int,
|
||||
latent_space: int = 256,
|
||||
feed_forward_multiplier: int = 4,
|
||||
attention_heads: int = 4,
|
||||
layer_number: int = 2,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.__sos = sos
|
||||
self.__pad = pad
|
||||
self.__eos = eos
|
||||
self.__continuerdf = continuerdf
|
||||
self.__sentence_len = sentence_max_length
|
||||
|
||||
feed_forward_latent_space = latent_space * feed_forward_multiplier
|
||||
|
||||
self.__encoder_embedder = Embedder.NanoSocratesEmbedder(
|
||||
vocabulary_size, latent_space
|
||||
)
|
||||
self.__decoder_embedder = Embedder.NanoSocratesEmbedder(
|
||||
vocabulary_size, latent_space
|
||||
)
|
||||
|
||||
TMP_ENCODERS = [
|
||||
Encoder(latent_space, feed_forward_latent_space, attention_heads)
|
||||
] * layer_number
|
||||
|
||||
TMP_DECODERS = [
|
||||
Decoder(latent_space, feed_forward_latent_space, attention_heads)
|
||||
] * layer_number
|
||||
|
||||
self.__encoder = torch.nn.Sequential(*TMP_ENCODERS)
|
||||
self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
|
||||
|
||||
self.__detokener = DeToken(latent_space, vocabulary_size)
|
||||
self.__encoder_detokener = DeToken(latent_space, vocabulary_size)
|
||||
|
||||
def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
|
||||
|
||||
encoder_embedder_input, src_padding, decoder_embedder_input, tgt_padding = args
|
||||
|
||||
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
|
||||
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
|
||||
|
||||
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
|
||||
|
||||
decoder_output, _, _, _, _, _ = self.__decoder(
|
||||
(decoder_tensor, encoder_output, encoder_output, src_padding, tgt_padding, False)
|
||||
)
|
||||
|
||||
logits: torch.Tensor = self.__detokener(decoder_output)
|
||||
|
||||
return logits
|
||||
|
||||
def inference(self, input: tuple[torch.Tensor, torch.Tensor], task_type: TaskType) -> torch.Tensor:
|
||||
|
||||
if task_type == TaskType.MASKING:
|
||||
return self.__masking(input)
|
||||
|
||||
if task_type == TaskType.COMPLETATION:
|
||||
return self.__continue_rdf(input)
|
||||
|
||||
return self.__text_generation(input)
|
||||
|
||||
|
||||
|
||||
def __text_generation(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
|
||||
|
||||
x, padding = args
|
||||
|
||||
encoder_tensor = self.__encoder_embedder(x)
|
||||
|
||||
BATCH: int
|
||||
|
||||
if len(x.shape) > 2:
|
||||
BATCH, SEQ_LEN, _ = x.shape
|
||||
else:
|
||||
_, SEQ_LEN = x.shape
|
||||
BATCH = 1
|
||||
|
||||
encoder_output, _ = self.__encoder((encoder_tensor, padding))
|
||||
|
||||
decoder_in = get_decoder_input(BATCH, self.__sos, self.__pad, SEQ_LEN)
|
||||
decoder_in_pad_mask = decoder_in.eq(self.__pad)
|
||||
|
||||
continue_generating = True
|
||||
token_idx = 0
|
||||
|
||||
while continue_generating:
|
||||
|
||||
decoder_in_x = self.__decoder_embedder(decoder_in)
|
||||
|
||||
decoder_output, _, _, _, _, _ = self.__decoder(
|
||||
(decoder_in_x, encoder_output, encoder_output, padding, decoder_in_pad_mask, False)
|
||||
)
|
||||
|
||||
logits: torch.Tensor = self.__detokener(decoder_output)
|
||||
|
||||
logits = torch.softmax(logits, 2)
|
||||
|
||||
tokens = torch.argmax(logits, 2)
|
||||
|
||||
if token_idx < self.__sentence_len - 1:
|
||||
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
|
||||
decoder_in_pad_mask = decoder_in.eq(self.__pad)
|
||||
|
||||
if token_idx == self.__sentence_len - 1:
|
||||
continue_generating = False
|
||||
continue
|
||||
|
||||
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
|
||||
continue_generating = False
|
||||
continue
|
||||
|
||||
|
||||
token_idx += 1
|
||||
|
||||
return decoder_in
|
||||
|
||||
|
||||
def __masking(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
|
||||
|
||||
x, padding = args
|
||||
|
||||
encoder_tensor = self.__encoder_embedder(x)
|
||||
x, _ = self.__encoder((encoder_tensor, padding))
|
||||
|
||||
logits: torch.Tensor = self.__encoder_detokener(x)
|
||||
del x
|
||||
|
||||
logits = torch.softmax(logits, 2)
|
||||
|
||||
tokens = torch.argmax(logits, 2)
|
||||
|
||||
return tokens
|
||||
|
||||
|
||||
def __continue_rdf(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
|
||||
|
||||
decoder_in, _ = args
|
||||
decoder_in_prefix_mask = decoder_in.eq(self.__pad)
|
||||
decoder_in_pad_mask = decoder_in.eq(self.__pad)
|
||||
|
||||
continue_generating = True
|
||||
token_idx: int= int((decoder_in[0] == self.__continuerdf).nonzero()[0].item()) + 1
|
||||
|
||||
|
||||
|
||||
while continue_generating:
|
||||
|
||||
decoder_x = self.__decoder_embedder(decoder_in)
|
||||
|
||||
decoder_output, _, _, _, _, _ = self.__decoder(
|
||||
(decoder_x, decoder_in, decoder_in, decoder_in_prefix_mask, decoder_in_pad_mask, True)
|
||||
)
|
||||
|
||||
logits: torch.Tensor = self.__detokener(decoder_output)
|
||||
|
||||
logits = torch.softmax(logits, 2)
|
||||
|
||||
tokens = torch.argmax(logits, 2)
|
||||
|
||||
if token_idx < self.__sentence_len - 1:
|
||||
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
|
||||
decoder_in_pad_mask = decoder_in.eq(self.__pad)
|
||||
|
||||
if token_idx == self.__sentence_len - 1:
|
||||
continue_generating = False
|
||||
continue
|
||||
|
||||
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
|
||||
continue_generating = False
|
||||
continue
|
||||
|
||||
token_idx += 1
|
||||
|
||||
|
||||
|
||||
|
||||
return decoder_in
|
||||
|
||||
def take_pieces(self):
|
||||
|
||||
return (
|
||||
(self.__encoder_embedder, self.__encoder, self.__encoder_detokener),
|
||||
(self.__decoder_embedder, self.__decoder, self.__detokener)
|
||||
)
|
||||
|
||||
def load_pieces(
|
||||
self,
|
||||
encoder_embedder: Embedder.NanoSocratesEmbedder,
|
||||
decoder_embedder: Embedder.NanoSocratesEmbedder,
|
||||
encoder: torch.nn.Sequential,
|
||||
decoder: torch.nn.Sequential,
|
||||
encoder_detokener: DeToken,
|
||||
decoder_detokener: DeToken
|
||||
):
|
||||
self.__encoder_embedder = encoder_embedder
|
||||
self.__decoder_embedder = decoder_embedder
|
||||
self.__encoder = encoder
|
||||
self.__decoder = decoder
|
||||
self.__encoder_detokener = encoder_detokener
|
||||
self.__detokener = decoder_detokener
|
||||
@@ -36,6 +36,7 @@ class TrainingModel(torch.nn.Module):
|
||||
self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
|
||||
|
||||
self.__detokener = DeToken(latent_space, vocabulary_size)
|
||||
self.__encoder_detokener = DeToken(latent_space, vocabulary_size)
|
||||
|
||||
def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
|
||||
|
||||
@@ -46,10 +47,17 @@ class TrainingModel(torch.nn.Module):
|
||||
|
||||
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
|
||||
|
||||
decoder_output, _, _, _, _ = self.__decoder(
|
||||
(decoder_tensor, encoder_output, encoder_output, src_padding, tgt_padding)
|
||||
decoder_output, _, _, _, _, _ = self.__decoder(
|
||||
(decoder_tensor, encoder_output, encoder_output, src_padding, tgt_padding, False)
|
||||
)
|
||||
|
||||
logits: torch.Tensor = self.__detokener(decoder_output)
|
||||
|
||||
return logits
|
||||
|
||||
def take_pieces(self):
|
||||
|
||||
return (
|
||||
(self.__encoder_embedder, self.__encoder, self.__encoder_detokener),
|
||||
(self.__decoder_embedder, self.__decoder, self.__detokener)
|
||||
)
|
||||
@@ -1,5 +1,11 @@
|
||||
from .TrainingModel import TrainingModel
|
||||
from .NanoSocratEncoder import NanoSocratEncoder
|
||||
from .NanoSocraDecoder import NanoSocraDecoder
|
||||
from .NanoSocrates import NanoSocratesCore
|
||||
|
||||
__all__ = [
|
||||
"TrainingModel"
|
||||
"TrainingModel",
|
||||
"NanoSocratEncoder",
|
||||
"NanoSocraDecoder",
|
||||
"NanoSocratesCore"
|
||||
]
|
||||
@@ -4,6 +4,8 @@ from .post_tokenization import truncate_sequence, pad_sequence, normalize_sequen
|
||||
from .inference_masking import inference_masking
|
||||
from .truncate_rdf_list import truncate_rdf_list
|
||||
from .decode_out import tensor2token
|
||||
from .decoder_input import get_decoder_input
|
||||
|
||||
|
||||
__all__ = [
|
||||
"TaskType",
|
||||
@@ -15,5 +17,6 @@ __all__ = [
|
||||
"normalize_sequence",
|
||||
"inference_masking",
|
||||
"truncate_rdf_list",
|
||||
"tensor2token"
|
||||
"tensor2token",
|
||||
"get_decoder_input"
|
||||
]
|
||||
@@ -9,3 +9,22 @@ def get_causal_attention_mask_batched(seq_len: int, batch_size: int ) -> torch.T
|
||||
base_mask = get_causal_attention_mask(seq_len)
|
||||
return base_mask.unsqueeze(0).expand(batch_size, -1, -1) # add another dimension at the beginning, big as batch_size
|
||||
# the result is that z,x,y where x,y are repeated along z
|
||||
|
||||
def get_causal_attention_mask_with_prefix(seq_len, prefix):
|
||||
mask = torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool), diagonal=1)
|
||||
mask[:,:prefix] = False
|
||||
return mask
|
||||
|
||||
def get_prefix_causal_mask_from_padding_mask(seq_len:int, prefix_mask, att_heads:int=1):
|
||||
expanded_padding_mask = prefix_mask.unsqueeze(-1).repeat(1, 1, seq_len) # B,T,T
|
||||
expanded_padding_mask = expanded_padding_mask.permute(0,2,1) # B,T,T
|
||||
mask = torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool), diagonal=1) # T,T
|
||||
tri_batched = mask.unsqueeze(0) # 1,T,T will broadcast over B
|
||||
prefix_causal_mask = expanded_padding_mask & tri_batched
|
||||
prefix_causal_mask = prefix_causal_mask.repeat_interleave(att_heads, dim=0) # B*H,T,T
|
||||
return prefix_causal_mask
|
||||
|
||||
#def get_prefix_causal_mask():
|
||||
# continue_rdf =
|
||||
|
||||
|
||||
|
||||
14
Project_Model/Libs/Transformer/Utils/decoder_input.py
Normal file
14
Project_Model/Libs/Transformer/Utils/decoder_input.py
Normal file
@@ -0,0 +1,14 @@
|
||||
import torch
|
||||
from ..Utils import normalize_sequence
|
||||
# from Project_Model.Libs.Embedder import NanoSocratesEmbedder as Embedder
|
||||
|
||||
|
||||
def get_decoder_input(batch_size, sos_token,pad_token, seq_len):
|
||||
|
||||
single_decoder_input, _ = normalize_sequence([sos_token],seq_len,pad_token, end_token=0, add_ending=False)
|
||||
tensor_decoder_input = torch.tensor(single_decoder_input[:])
|
||||
# embedded_decoder_intput = embedder(tensor_decoder_input)
|
||||
|
||||
batch_decoder_input = tensor_decoder_input.unsqueeze(0).repeat(batch_size, 1)
|
||||
return batch_decoder_input
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from enum import Enum, auto
|
||||
|
||||
class TaskType(Enum):
|
||||
TEXT2RDF = auto()
|
||||
RDF2TEXT = auto()
|
||||
MASK = auto()
|
||||
COMPLETATION = auto()
|
||||
@@ -27,7 +27,6 @@ def truncate_rdf_list(
|
||||
END_OF_TRIPLES.append(i + 1)
|
||||
|
||||
TRIPLES_TOKENS: list[int] = []
|
||||
TARGET_TRIPLES: list[int] = []
|
||||
|
||||
start_of_triple = 0
|
||||
exit_loop = False
|
||||
@@ -56,10 +55,10 @@ def truncate_rdf_list(
|
||||
EOT = END_OF_TRIPLES.popleft()
|
||||
|
||||
TRIPLE = sequence[start_of_triple:EOT]
|
||||
TARGET_TRIPLES.extend(TRIPLE)
|
||||
TRIPLES_TOKENS.extend(TRIPLE)
|
||||
|
||||
start_of_triple = EOT
|
||||
|
||||
|
||||
return (TRIPLES_TOKENS, TARGET_TRIPLES)
|
||||
return (TRIPLES_TOKENS, TRIPLES_TOKENS)
|
||||
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
from .Classes import *
|
||||
from .Enums import *
|
||||
from .Utils import *
|
||||
from .Models import *
|
||||
|
||||
from . import Classes
|
||||
from . import Enums
|
||||
from . import Utils
|
||||
from . import Models
|
||||
6
Project_Model/Libs/TransformerUtils/ModelType.py
Normal file
6
Project_Model/Libs/TransformerUtils/ModelType.py
Normal file
@@ -0,0 +1,6 @@
|
||||
from enum import Enum, auto
|
||||
|
||||
class ModelType(Enum):
|
||||
|
||||
ENCODER_ONLY = auto()
|
||||
DECODER_ONLY = auto()
|
||||
14
Project_Model/Libs/TransformerUtils/__init__.py
Normal file
14
Project_Model/Libs/TransformerUtils/__init__.py
Normal file
@@ -0,0 +1,14 @@
|
||||
from .model_utils import decompose_nano_socrates, create_standalone_model, train2inference
|
||||
from .ModelType import ModelType
|
||||
from .decode_batch import decode_batch
|
||||
from .metrics import precision, recall, accuracy, f1, meteor, bleu, rouge, average, rdf2txt, txt2rdf, rdf_completion_1, rdf_completion_2, remove_padding, balance_paddings
|
||||
|
||||
__all__ = [
|
||||
"ModelType",
|
||||
"decompose_nano_socrates",
|
||||
"create_standalone_model",
|
||||
"decode_batch",
|
||||
"train2inference",
|
||||
"precision", "recall", "accuracy", "f1", "meteor", "bleu", "rouge", "average",
|
||||
"rdf2txt", "txt2rdf", "rdf_completion_1", "rdf_completion_2", "remove_padding", "balance_paddings"
|
||||
]
|
||||
16
Project_Model/Libs/TransformerUtils/decode_batch.py
Normal file
16
Project_Model/Libs/TransformerUtils/decode_batch.py
Normal file
@@ -0,0 +1,16 @@
|
||||
import torch
|
||||
import Project_Model.Libs.BPE as BPE
|
||||
|
||||
def decode_batch(batch: torch.Tensor, tokenizer: BPE.TokeNanoCore ,uknonw_token: int) -> list[str]:
|
||||
|
||||
strings = []
|
||||
|
||||
BATCH, _ = batch.shape
|
||||
|
||||
for i in range(0, BATCH):
|
||||
|
||||
tokens: list[int] = batch.tolist()[i]
|
||||
tokens = list(map(lambda x: uknonw_token if x > tokenizer.vocabulary_size else x, tokens))
|
||||
strings.append(tokenizer.decode(tokens))
|
||||
|
||||
return strings
|
||||
100
Project_Model/Libs/TransformerUtils/metrics.py
Normal file
100
Project_Model/Libs/TransformerUtils/metrics.py
Normal file
@@ -0,0 +1,100 @@
|
||||
import evaluate as eval
|
||||
|
||||
BLEU = eval.load("bleu")
|
||||
ROUGE = eval.load("rouge")
|
||||
METEOR = eval.load("meteor")
|
||||
|
||||
def precision(ref: list[int], pred: list[int]):
|
||||
metric = eval.load("precision")
|
||||
return metric.compute(predictions=pred, references=ref, average="weighted", zero_division=0)
|
||||
|
||||
|
||||
def recall(ref: list[int], pred: list[int]):
|
||||
metric = eval.load("recall")
|
||||
return metric.compute(predictions=pred, references=ref, average="weighted", zero_division=0)
|
||||
|
||||
|
||||
def accuracy(ref: list[int], pred: list[int]):
|
||||
metric = eval.load("accuracy")
|
||||
return metric.compute(predictions=pred, references=ref)
|
||||
|
||||
|
||||
def meteor(ref: list[str], pred: list[str]):
|
||||
metric = METEOR
|
||||
return metric.compute(predictions=pred, references=ref)
|
||||
|
||||
|
||||
def bleu(ref: list[str], pred: list[str]):
|
||||
metric = BLEU
|
||||
return metric.compute(predictions=pred, references=ref)
|
||||
|
||||
|
||||
def rouge(ref: list[str], pred: list[str]):
|
||||
metric = ROUGE
|
||||
return metric.compute(predictions=pred, references=ref)
|
||||
|
||||
|
||||
def f1(precision: float, recall: float):
|
||||
divisor = max((precision + recall), 1E-5)
|
||||
return (2 * recall * precision) / divisor
|
||||
|
||||
|
||||
def average(array: list[float]):
|
||||
return sum(array) / len(array)
|
||||
|
||||
|
||||
def rdf2txt(ref: list[str], pred: list[str]):
|
||||
|
||||
b_m = bleu(ref, pred)
|
||||
r_m = rouge(ref, pred)
|
||||
m_m = meteor(ref, pred)
|
||||
|
||||
return (b_m, r_m, m_m)
|
||||
|
||||
def txt2rdf(ref: list[int], pred: list[int]):
|
||||
|
||||
p_m = precision(ref, pred)
|
||||
r_m = recall(ref, pred)
|
||||
|
||||
return (p_m, r_m)
|
||||
|
||||
def rdf_completion_1(ref: list[int], pred: list[int]):
|
||||
|
||||
a_m = accuracy(ref, pred)
|
||||
|
||||
return a_m
|
||||
|
||||
|
||||
def rdf_completion_2(ref: list[int], pred: list[int]):
|
||||
|
||||
p_m = precision(ref, pred)
|
||||
r_m = recall(ref, pred)
|
||||
|
||||
return (p_m, r_m)
|
||||
|
||||
|
||||
def remove_padding(seq: list[int], pad_token: int, end_token: int):
|
||||
clean_seq = list(filter(lambda x: x != pad_token, seq))
|
||||
|
||||
if clean_seq[-1] == end_token:
|
||||
return clean_seq
|
||||
|
||||
clean_seq.append(
|
||||
end_token
|
||||
)
|
||||
|
||||
return clean_seq
|
||||
|
||||
|
||||
def balance_paddings(seq_1: list[int], seq_2: list[int], pad_token: int):
|
||||
SEQ_1_LEN = len(seq_1)
|
||||
SEQ_2_LEN = len(seq_2)
|
||||
|
||||
if SEQ_1_LEN > SEQ_2_LEN:
|
||||
PAD = [pad_token] * (SEQ_1_LEN - SEQ_2_LEN)
|
||||
seq_2.extend(PAD)
|
||||
|
||||
if SEQ_2_LEN > SEQ_1_LEN:
|
||||
seq_2 = seq_2[:SEQ_1_LEN]
|
||||
|
||||
return (seq_1, seq_2)
|
||||
72
Project_Model/Libs/TransformerUtils/model_utils.py
Normal file
72
Project_Model/Libs/TransformerUtils/model_utils.py
Normal file
@@ -0,0 +1,72 @@
|
||||
import torch
|
||||
from Project_Model.Libs.Embedder import NanoSocratesEmbedder
|
||||
from Project_Model.Libs.Transformer import TrainingModel,NanoSocratesCore, NanoSocraDecoder, NanoSocratEncoder, DeToken, Encoder, Decoder
|
||||
from .ModelType import ModelType
|
||||
|
||||
|
||||
|
||||
def decompose_nano_socrates(
|
||||
model: TrainingModel | NanoSocratesCore , vocabulary_size: int, embedding_size: int
|
||||
) -> tuple[TrainingModel | NanoSocratesCore, NanoSocratEncoder, NanoSocraDecoder]:
|
||||
|
||||
encoder_pieces, decoder_pieces = model.take_pieces()
|
||||
encoder_embedder, encoder, encoder_detokener = encoder_pieces
|
||||
decoder_embedder, decoder, decoder_detokener = decoder_pieces
|
||||
|
||||
return (
|
||||
model,
|
||||
NanoSocratEncoder(encoder_embedder, encoder, encoder_detokener),
|
||||
NanoSocraDecoder(decoder_embedder, decoder, decoder_detokener),
|
||||
)
|
||||
|
||||
def train2inference(
|
||||
train_model: TrainingModel,
|
||||
inference_model: NanoSocratesCore
|
||||
) -> NanoSocratesCore:
|
||||
|
||||
encoder_pieces, decoder_pieces = train_model.take_pieces()
|
||||
enc_emb, encoder, enc_det = encoder_pieces
|
||||
dec_emb, decoder, dec_det = decoder_pieces
|
||||
inference_model.load_pieces(
|
||||
enc_emb,
|
||||
dec_emb,
|
||||
encoder,
|
||||
decoder,
|
||||
enc_det,
|
||||
dec_det
|
||||
)
|
||||
|
||||
return inference_model
|
||||
|
||||
|
||||
|
||||
def create_standalone_model(
|
||||
model_type: ModelType,
|
||||
vocabulary_size: int,
|
||||
latent_space: int = 256,
|
||||
feed_forward_multiplier: int = 4,
|
||||
attention_heads: int = 4,
|
||||
layer_number: int = 2,
|
||||
) -> NanoSocratEncoder | NanoSocraDecoder:
|
||||
|
||||
feed_forward_latent_space = latent_space * feed_forward_multiplier
|
||||
|
||||
embedder = NanoSocratesEmbedder(vocabulary_size, latent_space)
|
||||
detokener = DeToken(latent_space, vocabulary_size)
|
||||
|
||||
if model_type == ModelType.ENCODER_ONLY:
|
||||
TMP_ENCODERS = [
|
||||
Encoder(latent_space, feed_forward_latent_space, attention_heads)
|
||||
] * layer_number
|
||||
|
||||
encoder = torch.nn.Sequential(*TMP_ENCODERS)
|
||||
|
||||
return NanoSocratEncoder(embedder, encoder, detokener)
|
||||
|
||||
TMP_DECODERS = [
|
||||
Decoder(latent_space, feed_forward_latent_space, attention_heads)
|
||||
] * layer_number
|
||||
|
||||
decoder = torch.nn.Sequential(*TMP_DECODERS)
|
||||
|
||||
return NanoSocraDecoder(embedder, decoder, detokener)
|
||||
@@ -2,3 +2,4 @@ from . import BPE
|
||||
from . import Embedder
|
||||
from . import Transformer
|
||||
from . import TorchShims
|
||||
from . import TransformerUtils
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,7 +1,7 @@
|
||||
import pandas as pd
|
||||
|
||||
# do not worry about circular dependencies, this class will never call something else
|
||||
from Scripts.DataCleaning.filter import PipelineApplier
|
||||
from Scripts.DataCleaning.legacy.filter import PipelineApplier
|
||||
|
||||
class RDF_mask_task_dataset():
|
||||
"""
|
||||
|
||||
29
Scripts/DataCleaning/hold_out/divide.py
Normal file
29
Scripts/DataCleaning/hold_out/divide.py
Normal file
@@ -0,0 +1,29 @@
|
||||
import pandas as pd
|
||||
|
||||
def split_csv_by_percent(csv_path, train=70, val=15, test=15, seed=42):
|
||||
# 1) Read and shuffle rows with a fixed seed for reproducibility
|
||||
df = pd.read_csv(csv_path).sample(frac=1, random_state=seed).reset_index(drop=True)
|
||||
|
||||
# 2) Turn the three inputs into proportions relative to their sum
|
||||
total = train + val + test # eheh you got it there :p
|
||||
n = len(df)
|
||||
n_train = int(n * train / total) # floor to keep indices integral
|
||||
n_val = int(n * val / total)
|
||||
# 3) Give the remainder to test to ensure every row is assigned
|
||||
# (this naturally absorbs any rounding loss)
|
||||
train_df = df.iloc[:n_train].reset_index(drop=True)
|
||||
val_df = df.iloc[n_train:n_train + n_val].reset_index(drop=True)
|
||||
test_df = df.iloc[n_train + n_val:].reset_index(drop=True)
|
||||
|
||||
return train_df, val_df, test_df
|
||||
|
||||
# usage:
|
||||
DATASET = "Assets/Dataset/Tmp/rdf_text.csv"
|
||||
TRAIN = "Assets/Dataset/Tmp/hold_out/train.csv"
|
||||
TEST = "Assets/Dataset/Tmp/hold_out/test.csv"
|
||||
EVALUATION = "Assets/Dataset/Tmp/hold_out/evaluation.csv"
|
||||
train_df, val_df, test_df = split_csv_by_percent(DATASET, train=80, val=10, test=10, seed=42)
|
||||
|
||||
train_df.to_csv(TRAIN)
|
||||
val_df.to_csv(EVALUATION)
|
||||
test_df.to_csv(TEST)
|
||||
381
Scripts/DataCleaning/legacy/deprecated.py
Normal file
381
Scripts/DataCleaning/legacy/deprecated.py
Normal file
@@ -0,0 +1,381 @@
|
||||
# This file deletes in the pipeline the unwanted relationship by different rules
|
||||
# -----------------------------------------------------------------------------
|
||||
# SQL-FIRST VERSION
|
||||
# -----------------------------------------------------------------------------
|
||||
# In the original (pandas) version this module:
|
||||
# - stored frequency filters in DataFrames,
|
||||
# - filtered/cleaned DataFrames in-memory,
|
||||
# - added special tokens via string ops,
|
||||
# - rebuilt one row per movie using groupby/aggregation.
|
||||
#
|
||||
# In this rewrite:
|
||||
# - Every transformation RETURNS a SQLAlchemy `Select` object instead of a DataFrame.
|
||||
# - Your pipeline can pass this `Select` (a "dataview") from one stage to the next,
|
||||
# composing more SQL lazily. Nothing is executed until you call `session.execute(...)`.
|
||||
# - Frequency filters are represented as SUBSELECTS, applied with `WHERE IN (subquery)`.
|
||||
#
|
||||
# Notes:
|
||||
# - We keep the same CLASS and METHOD NAMES to preserve call sites.
|
||||
# - Method comments/docstrings from your original file are carried over and updated
|
||||
# to reflect Select-based behavior and return types.
|
||||
# - We drop pandas/numpy/sqlite3 imports because filtering is pushed into SQL.
|
||||
# - `GROUP_CONCAT` is used for the rebuild phase (SQLite-compatible). For other DBs,
|
||||
# swap with an equivalent string-agg function.
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import Optional
|
||||
|
||||
from sqlalchemy import select, func, literal
|
||||
from sqlalchemy.sql import Select
|
||||
|
||||
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
|
||||
|
||||
|
||||
class PipelineApplier():
|
||||
"""
|
||||
SQL-first pipeline applier.
|
||||
|
||||
In the pandas version, frequency filters were stored as DataFrames (self.MOVIE_FILTER / self.REL_FILTER)
|
||||
and every method worked with/returned pandas.DataFrame. In this SQLAlchemy rewrite:
|
||||
|
||||
- self.MOVIE_FILTER and self.REL_FILTER become *subselects* (Select objects) that yield a single
|
||||
column each (MovieID or RelationshipURI). These subselects can be applied via `WHERE IN (subquery)`.
|
||||
|
||||
- Every method that previously returned a DataFrame now returns a *Select* that represents the same
|
||||
logical transformation, but pushed into the database engine.
|
||||
|
||||
- Comments and docstrings are updated to reflect SQL semantics while preserving your original intent.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
# In the pandas version these were DataFrames storing allowed keys.
|
||||
# Here they are Select objects (single-column subselects) or None.
|
||||
# Expected column names:
|
||||
# - self.MOVIE_FILTER: "MovieID"
|
||||
# - self.REL_FILTER: "RelationshipURI"
|
||||
self.MOVIE_FILTER: Optional[Select] = None
|
||||
self.REL_FILTER: Optional[Select] = None
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
# Relationship deletion
|
||||
# -------------------------------------------------------------------------
|
||||
def delete_relationship_by_str(self, RDF: Select, uri: str) -> Select:
|
||||
"""
|
||||
Return a Select where rows having the given relationship URI are removed.
|
||||
|
||||
Original signature (pandas):
|
||||
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame
|
||||
|
||||
Updated behavior:
|
||||
- RDF is a Select with columns: MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
|
||||
- We apply a WHERE clause: RelationshipURI != <uri>
|
||||
- Returns a Select you can continue composing.
|
||||
|
||||
Args:
|
||||
RDF (Select): a selectable representing the RDF joined view
|
||||
uri (str): RelationshipURI to exclude
|
||||
|
||||
Returns:
|
||||
Select: filtered selectable (no execution yet)
|
||||
"""
|
||||
sc = RDF.selected_columns
|
||||
return RDF.where(sc.RelationshipURI != literal(uri))
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
# Frequency filter: MOVIE
|
||||
# -------------------------------------------------------------------------
|
||||
def generate_frequency_movie_filter(self, MOVIE_COUNT: Select, min_treshold: int, max_treshold: int):
|
||||
"""
|
||||
You MUST call this before filtering by movie frequency [filter_by_frequency_movie_id()],
|
||||
since this method creates such filter.
|
||||
|
||||
Original behavior:
|
||||
- Input MOVIE_COUNT as DataFrame ["MovieID","Count"]
|
||||
- Keep rows where Count in [min_treshold, max_treshold)
|
||||
- Store the filtered keys in self.MOVIE_FILTER
|
||||
|
||||
Updated behavior (SQL):
|
||||
- MOVIE_COUNT is a Select that yields ["MovieID","Count"].
|
||||
- We build and store a *subselect* of allowed MovieID (single column) to be used by WHERE IN.
|
||||
- No query is executed here; we only create a new Select.
|
||||
|
||||
Args:
|
||||
MOVIE_COUNT (Select): yields columns MovieID, Count
|
||||
min_treshold (int):
|
||||
max_treshold (int):
|
||||
"""
|
||||
sc = MOVIE_COUNT.selected_columns
|
||||
filtered = MOVIE_COUNT.where(sc.Count >= min_treshold).where(sc.Count < max_treshold)
|
||||
# Keep only the key column so it can be used in an IN (subquery)
|
||||
self.MOVIE_FILTER = select(filtered.selected_columns.MovieID)
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
# Frequency filter: RELATIONSHIP
|
||||
# -------------------------------------------------------------------------
|
||||
def generate_frequency_relationship_filter(self, REL_COUNT: Select, min_treshold: int, max_treshold: int):
|
||||
"""
|
||||
Original behavior:
|
||||
- Input REL_COUNT as DataFrame ["RelationshipURI","Count"]
|
||||
- Keep rows where Count in [min_treshold, max_treshold)
|
||||
- Store the filtered keys in self.REL_FILTER
|
||||
|
||||
Updated behavior (SQL):
|
||||
- REL_COUNT is a Select that yields ["RelationshipURI","Count"].
|
||||
- We build and store a *subselect* of allowed RelationshipURI (single column) to be used by WHERE IN.
|
||||
- No query is executed here; we only create a new Select.
|
||||
|
||||
Args:
|
||||
REL_COUNT (Select): yields columns RelationshipURI, Count
|
||||
min_treshold (int):
|
||||
max_treshold (int):
|
||||
"""
|
||||
sc = REL_COUNT.selected_columns
|
||||
filtered = REL_COUNT.where(sc.Count >= min_treshold).where(sc.Count < max_treshold)
|
||||
self.REL_FILTER = select(filtered.selected_columns.RelationshipURI)
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
# Apply frequency filters
|
||||
# -------------------------------------------------------------------------
|
||||
def filter_by_frequency_movie_id(self, RDF: Select) -> Select:
|
||||
"""
|
||||
Original behavior (pandas):
|
||||
RDF = RDF[RDF["MovieID"].isin(self.MOVIE_FILTER["MovieID"])]
|
||||
|
||||
Updated behavior (SQL):
|
||||
- If self.MOVIE_FILTER is present, apply: WHERE MovieID IN ( <subselect> )
|
||||
- Otherwise, return RDF unchanged.
|
||||
|
||||
Args:
|
||||
RDF (Select): current dataset
|
||||
|
||||
Returns:
|
||||
Select: filtered dataset (or unchanged if no filter exists)
|
||||
"""
|
||||
if self.MOVIE_FILTER is None:
|
||||
return RDF
|
||||
sc = RDF.selected_columns
|
||||
return RDF.where(sc.MovieID.in_(self.MOVIE_FILTER))
|
||||
|
||||
def filter_by_frequency_relationship(self, RDF: Select) -> Select:
|
||||
"""
|
||||
Original behavior (pandas):
|
||||
RDF = RDF[RDF["RelationshipURI"].isin(self.REL_FILTER["RelationshipURI"])]
|
||||
|
||||
Updated behavior (SQL):
|
||||
- If self.REL_FILTER is present, apply: WHERE RelationshipURI IN ( <subselect> )
|
||||
- Otherwise, return RDF unchanged.
|
||||
|
||||
Args:
|
||||
RDF (Select): current dataset
|
||||
|
||||
Returns:
|
||||
Select: filtered dataset (or unchanged if no filter exists)
|
||||
"""
|
||||
if self.REL_FILTER is None:
|
||||
return RDF
|
||||
sc = RDF.selected_columns
|
||||
return RDF.where(sc.RelationshipURI.in_(self.REL_FILTER))
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
# Token prefixing (SubjectURI/RelationshipURI/ObjectURI)
|
||||
# -------------------------------------------------------------------------
|
||||
def rdf_add_special_token(self, RDF: Select) -> Select:
|
||||
"""
|
||||
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI,
|
||||
OBJ to ObjectURI, REL to RelationshipURI. Check
|
||||
Scripts/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
|
||||
|
||||
It only adds the special token of the three elements of the RDF; no other special token.
|
||||
|
||||
Original behavior (pandas):
|
||||
- String concatenation with columns in a DataFrame.
|
||||
- Returned a new DataFrame.
|
||||
|
||||
Updated behavior (SQL):
|
||||
- Build projected columns using SQL string concatenation.
|
||||
- Return a new Select with the same output column names:
|
||||
["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"].
|
||||
|
||||
Args:
|
||||
RDF (Select): current dataset
|
||||
|
||||
Returns:
|
||||
Select: projected dataset with tokenized SubjectURI/RelationshipURI/ObjectURI
|
||||
"""
|
||||
sc = RDF.selected_columns
|
||||
subj_tok = literal(SpecialToken.SUBJECT.value) + sc.SubjectURI
|
||||
rel_tok = literal(SpecialToken.RELATIONSHIP.value) + sc.RelationshipURI
|
||||
obj_tok = literal(SpecialToken.OBJECT.value) + sc.ObjectURI
|
||||
|
||||
return RDF.with_only_columns(
|
||||
sc.MovieID.label("MovieID"),
|
||||
subj_tok.label("SubjectURI"),
|
||||
rel_tok.label("RelationshipURI"),
|
||||
obj_tok.label("ObjectURI"),
|
||||
sc.Abstract.label("Abstract"),
|
||||
)
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
# NA/empty drop on key columns (SubjectURI, RelationshipURI, ObjectURI)
|
||||
# -------------------------------------------------------------------------
|
||||
def drop_na_from_dataset(self, RDF: Select) -> Select:
|
||||
"""
|
||||
Dataset has SubjectURI, RelationshipURI, ObjectURI. We want to drop rows
|
||||
where any of these is empty or NULL.
|
||||
|
||||
Original behavior (pandas):
|
||||
- Replace '' with NaN and dropna on the three columns.
|
||||
|
||||
Updated behavior (SQL):
|
||||
- Apply WHERE clauses checking for NOT NULL and not empty string.
|
||||
|
||||
Args:
|
||||
RDF (Select): current dataset
|
||||
|
||||
Returns:
|
||||
Select: dataset filtered to non-empty SubjectURI/RelationshipURI/ObjectURI
|
||||
"""
|
||||
sc = RDF.selected_columns
|
||||
return RDF.where(
|
||||
(sc.SubjectURI.is_not(None)) & (sc.SubjectURI != "") &
|
||||
(sc.RelationshipURI.is_not(None)) & (sc.RelationshipURI != "") &
|
||||
(sc.ObjectURI.is_not(None)) & (sc.ObjectURI != "")
|
||||
)
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
# Rebuild by movie (one row per movie)
|
||||
# -------------------------------------------------------------------------
|
||||
def rebuild_by_movie(self, RDF: Select) -> Select:
|
||||
"""
|
||||
To execute this method you have to have iterated by movie_id conceptually,
|
||||
because as design we want at the end one row for each movie.
|
||||
|
||||
Original behavior (pandas):
|
||||
- Build per-row "Triple" as SubjectURI + RelationshipURI + ObjectURI,
|
||||
wrapped with START_TRIPLE/END_TRIPLE.
|
||||
- Group by ["MovieID", "Abstract"] and join ("".join) all Triple strings into one.
|
||||
- Prefix the whole list with START_TRIPLE_LIST and Abstract with ABSTRACT.
|
||||
- Return DataFrame [["MovieID","Triple","Abstract"]].
|
||||
|
||||
Updated behavior (SQL):
|
||||
- Build per-row Triple using SQL string concatenation and constants.
|
||||
- Use GROUP_CONCAT (empty separator) to aggregate per-movie.
|
||||
- Prefix with START_TRIPLE_LIST and ABSTRACT in SQL.
|
||||
- Return a Select with columns: ["MovieID","Triple","Abstract"].
|
||||
|
||||
Args:
|
||||
RDF (Select): current dataset with columns
|
||||
MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
|
||||
|
||||
Returns:
|
||||
Select: aggregated dataset with one row per movie
|
||||
"""
|
||||
sc = RDF.selected_columns
|
||||
|
||||
# Per-row triple with START/END_TRIPLE tokens
|
||||
row_triple = (
|
||||
literal(SpecialToken.START_TRIPLE.value) +
|
||||
(sc.SubjectURI + sc.RelationshipURI + sc.ObjectURI) +
|
||||
literal(SpecialToken.END_TRIPLE.value)
|
||||
).label("Triple")
|
||||
|
||||
# Prefixed abstract
|
||||
abstract_tok = (literal(SpecialToken.ABSTRACT.value) + sc.Abstract).label("Abstract")
|
||||
|
||||
# Subquery of per-row triples / abstracts
|
||||
row_view = RDF.with_only_columns(
|
||||
sc.MovieID.label("MovieID"),
|
||||
row_triple,
|
||||
abstract_tok,
|
||||
).subquery()
|
||||
|
||||
# Concatenate all triples for each movie (SQLite syntax; adjust for other DBs)
|
||||
triple_concat = (
|
||||
literal(SpecialToken.START_TRIPLE_LIST.value) +
|
||||
func.group_concat(row_view.c.Triple, literal(""))
|
||||
).label("Triple")
|
||||
|
||||
return (
|
||||
select(
|
||||
row_view.c.MovieID.label("MovieID"),
|
||||
triple_concat,
|
||||
row_view.c.Abstract.label("Abstract"),
|
||||
)
|
||||
.group_by(row_view.c.MovieID, row_view.c.Abstract)
|
||||
)
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
# Build triple(s) projection
|
||||
# -------------------------------------------------------------------------
|
||||
@staticmethod
|
||||
def build_triple(RDF: Select) -> Select:
|
||||
"""
|
||||
Obtains joined RDF triple in one element, together with START and END special tokens.
|
||||
|
||||
Original behavior (pandas):
|
||||
- Returned a Series/DataFrame column "Triple" built from three string columns.
|
||||
|
||||
Updated behavior (SQL):
|
||||
- Returns a Select with a single column "Triple" built in SQL.
|
||||
|
||||
Args:
|
||||
RDF (Select): at least columns ["SubjectURI", "RelationshipURI", "ObjectURI"]
|
||||
|
||||
Returns:
|
||||
Select: a projection containing one column named "Triple"
|
||||
"""
|
||||
sc = RDF.selected_columns
|
||||
triple = (
|
||||
literal(SpecialToken.START_TRIPLE.value) +
|
||||
(sc.SubjectURI + sc.RelationshipURI + sc.ObjectURI) +
|
||||
literal(SpecialToken.END_TRIPLE.value)
|
||||
).label("Triple")
|
||||
return RDF.with_only_columns(triple)
|
||||
|
||||
@staticmethod
|
||||
def build_incomplete_triple(RDF: Select) -> Select:
|
||||
"""
|
||||
Method helper used for the third task: "Predicting a masked component within an RDF triple".
|
||||
Obtains joined RDF triple in one element, together with START and END special tokens.
|
||||
The MISSING element will be replaced by the special token <MASK>.
|
||||
|
||||
Original behavior (pandas):
|
||||
- Created a Series "Triple" using fallback values for missing columns.
|
||||
|
||||
Updated behavior (SQL):
|
||||
- Uses COALESCE to replace NULLs with <MASK> directly in SQL.
|
||||
- Returns a Select with a single column "Triple".
|
||||
|
||||
Args:
|
||||
RDF (Select): 2 of the following columns present ["SubjectURI", "RelationshipURI", "ObjectURI"]
|
||||
|
||||
Returns:
|
||||
Select: projection with column "Triple"
|
||||
"""
|
||||
sc = RDF.selected_columns
|
||||
mask = literal(SpecialToken.MASK.value)
|
||||
|
||||
triple = (
|
||||
literal(SpecialToken.START_TRIPLE.value) +
|
||||
(func.coalesce(sc.SubjectURI, mask) +
|
||||
func.coalesce(sc.RelationshipURI, mask) +
|
||||
func.coalesce(sc.ObjectURI, mask)) +
|
||||
literal(SpecialToken.END_TRIPLE.value)
|
||||
).label("Triple")
|
||||
return RDF.with_only_columns(triple)
|
||||
|
||||
@staticmethod
|
||||
def build_for_mask_task(RDF_incomplete: Select, MISSING) -> None:
|
||||
"""
|
||||
Currently not used.
|
||||
|
||||
Original intention:
|
||||
Given two DataFrames (one incomplete RDF and another with just the missing component),
|
||||
apply special tokens accordingly.
|
||||
|
||||
Updated note:
|
||||
This stub remains for API parity. If needed in the future, it can be implemented
|
||||
as a Select-building helper that merges/COALESCEs columns from different selects.
|
||||
"""
|
||||
return None
|
||||
148
Scripts/DataCleaning/legacy/fast_filter.py
Normal file
148
Scripts/DataCleaning/legacy/fast_filter.py
Normal file
@@ -0,0 +1,148 @@
|
||||
# This file deletes in the pipeline the unwanted relationship by different rules
|
||||
import pandas as pd
|
||||
import sqlite3 # kept for compatibility
|
||||
import numpy as np
|
||||
|
||||
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
|
||||
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||
|
||||
|
||||
class PipelineApplier:
|
||||
def __init__(self):
|
||||
# Fast internal caches for O(1) membership checks
|
||||
self._MOVIE_FILTER_SET = set()
|
||||
self._REL_FILTER_SET = set()
|
||||
|
||||
# ------------------------------
|
||||
# Filters
|
||||
# ------------------------------
|
||||
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame:
|
||||
# Vectorized boolean mask
|
||||
return RDF.loc[RDF["RelationshipURI"] != uri]
|
||||
|
||||
def generate_frequency_movie_filter(self, MOVIE_COUNT: pd.DataFrame, min_threshold: int, max_threshold: int):
|
||||
"""
|
||||
You MUST call this before filter the dataset by movie frequency [filter_by_frequency_movie_id()],
|
||||
since this method creates such filter.
|
||||
Args:
|
||||
MOVIE_COUNT (pd.DataFrame): ["MovieID","Count"]
|
||||
"""
|
||||
sel = (MOVIE_COUNT["Count"] >= min_threshold) & (MOVIE_COUNT["Count"] < max_threshold)
|
||||
self._MOVIE_FILTER_SET = set(MOVIE_COUNT.loc[sel, "MovieID"].tolist())
|
||||
|
||||
def generate_frequency_relationship_filter(self, REL_COUNT: pd.DataFrame, min_threshold: int, max_threshold: int):
|
||||
sel = (REL_COUNT["Count"] >= min_threshold) & (REL_COUNT["Count"] < max_threshold)
|
||||
self._REL_FILTER_SET = set(REL_COUNT.loc[sel, "RelationshipURI"].tolist())
|
||||
|
||||
def filter_by_frequency_movie_id(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||
# Set-backed isin is the fastest path
|
||||
return RDF.loc[RDF["MovieID"].isin(self._MOVIE_FILTER_SET)]
|
||||
|
||||
def filter_by_frequency_relationship(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||
return RDF.loc[RDF["RelationshipURI"].isin(self._REL_FILTER_SET)]
|
||||
|
||||
# ------------------------------
|
||||
# Cleaning & preprocessing
|
||||
# ------------------------------
|
||||
def rdf_add_special_token(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Adds RDF special token to SubjectURI / RelationshipURI / ObjectURI.
|
||||
Returns a new DataFrame (no inplace modification of the caller's object).
|
||||
"""
|
||||
subj = np.char.add(SpecialToken.SUBJECT.value, RDF["SubjectURI"].to_numpy(dtype=object))
|
||||
rel = np.char.add(SpecialToken.RELATIONSHIP.value, RDF["RelationshipURI"].to_numpy(dtype=object))
|
||||
obj = np.char.add(SpecialToken.OBJECT.value, RDF["ObjectURI"].to_numpy(dtype=object))
|
||||
return RDF.assign(SubjectURI=subj, RelationshipURI=rel, ObjectURI=obj)
|
||||
|
||||
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Replace '' with NaN only on key columns, then drop rows missing any of them.
|
||||
"""
|
||||
cols = ["SubjectURI", "RelationshipURI", "ObjectURI"]
|
||||
rdf = RDF.copy()
|
||||
for c in cols:
|
||||
m = rdf[c] == ""
|
||||
if m.any():
|
||||
rdf.loc[m, c] = np.nan
|
||||
return rdf.dropna(subset=cols)
|
||||
|
||||
# ------------------------------
|
||||
# Building triples
|
||||
# ------------------------------
|
||||
@staticmethod
|
||||
def build_triple(RDF: pd.DataFrame):
|
||||
"""
|
||||
Obtains joined RDF triple in one element, together with START and END special token.
|
||||
Returns:
|
||||
pd.Series: RDF["Triple"] (just this column). Side-effect: sets RDF["Triple"].
|
||||
"""
|
||||
start = SpecialToken.START_TRIPLE.value
|
||||
end = SpecialToken.END_TRIPLE.value
|
||||
|
||||
subj = RDF["SubjectURI"].to_numpy(dtype=object)
|
||||
rel = RDF["RelationshipURI"].to_numpy(dtype=object)
|
||||
obj = RDF["ObjectURI"].to_numpy(dtype=object)
|
||||
|
||||
arr = np.char.add(np.char.add(np.char.add(start, subj),
|
||||
np.char.add(rel, obj)),
|
||||
end)
|
||||
RDF["Triple"] = pd.Series(arr, index=RDF.index, dtype=object, name="Triple")
|
||||
return RDF["Triple"]
|
||||
|
||||
@staticmethod
|
||||
def build_incomplete_triple(RDF: pd.DataFrame):
|
||||
"""
|
||||
Helper used for the third task: "Predicting a masked component within an RDF triple".
|
||||
Accepts any subset of ["SubjectURI","RelationshipURI","ObjectURI"] (typically 2 of 3).
|
||||
Missing components are replaced by <MASK>.
|
||||
Returns:
|
||||
pd.Series: RDF["Triple"] (just this column). Side-effect: sets RDF["Triple"].
|
||||
"""
|
||||
start = SpecialToken.START_TRIPLE.value
|
||||
end = SpecialToken.END_TRIPLE.value
|
||||
maskv = SpecialToken.MASK.value
|
||||
n = len(RDF.index)
|
||||
|
||||
subj = RDF["SubjectURI"].to_numpy(dtype=object) if "SubjectURI" in RDF else np.full(n, maskv, dtype=object)
|
||||
rel = RDF["RelationshipURI"].to_numpy(dtype=object) if "RelationshipURI" in RDF else np.full(n, maskv, dtype=object)
|
||||
obj = RDF["ObjectURI"].to_numpy(dtype=object) if "ObjectURI" in RDF else np.full(n, maskv, dtype=object)
|
||||
|
||||
arr = np.char.add(np.char.add(np.char.add(start, subj),
|
||||
np.char.add(rel, obj)),
|
||||
end)
|
||||
RDF["Triple"] = pd.Series(arr, index=RDF.index, dtype=object, name="Triple")
|
||||
return RDF["Triple"]
|
||||
|
||||
def rebuild_by_movie(self, RDF: pd.DataFrame):
|
||||
"""
|
||||
Collapse triples + abstract into a single row per movie.
|
||||
Returns: ["MovieID","Triple","Abstract"]
|
||||
"""
|
||||
# Build triples once (vectorized); method also sets RDF["Triple"]
|
||||
triples = self.build_triple(RDF)
|
||||
|
||||
# Minimal frame for grouping (avoid carrying extra columns)
|
||||
tmp = pd.DataFrame({
|
||||
"MovieID": RDF["MovieID"].to_numpy(),
|
||||
"Abstract": RDF["Abstract"].to_numpy(),
|
||||
"Triple": triples.to_numpy(),
|
||||
})
|
||||
|
||||
# Factorize high-cardinality keys to fast integer codes, group on codes,
|
||||
# then map back to labels; sum concatenates strings for object dtype.
|
||||
mid_codes, mid_uniques = pd.factorize(tmp["MovieID"], sort=False)
|
||||
abs_codes, abs_uniques = pd.factorize(tmp["Abstract"], sort=False)
|
||||
|
||||
tmp["_mid"] = mid_codes
|
||||
tmp["_abs"] = abs_codes
|
||||
|
||||
grouped = tmp.groupby(["_mid", "_abs"], sort=False, as_index=False)["Triple"].sum()
|
||||
|
||||
grouped["MovieID"] = grouped["_mid"].map(lambda i: mid_uniques[i])
|
||||
grouped["Abstract"] = grouped["_abs"].map(lambda i: abs_uniques[i])
|
||||
|
||||
# Final tokens
|
||||
grouped["Triple"] = SpecialToken.START_TRIPLE_LIST.value + grouped["Triple"]
|
||||
grouped["Abstract"] = SpecialToken.ABSTRACT.value + grouped["Abstract"]
|
||||
|
||||
return grouped[["MovieID", "Triple", "Abstract"]]
|
||||
@@ -26,6 +26,7 @@ class PipelineApplier():
|
||||
"""Remove rows whose RelationshipURI is in the stored filter. Generate it first callig the generate_list_relationship_filter"""
|
||||
return RDF[~RDF["RelationshipURI"].isin(self.relationship_filter_list)]
|
||||
|
||||
# def filter_movie_by_rel_uri_frequence()
|
||||
|
||||
def generate_frequency_movie_filter(self, MOVIE_COUNT: pd.DataFrame ,min_treshold: int, max_treshold: int):
|
||||
"""
|
||||
@@ -1,6 +1,6 @@
|
||||
import re
|
||||
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||
from Scripts.DataCleaning.filter import PipelineApplier
|
||||
from Scripts.DataCleaning.legacy.filter import PipelineApplier
|
||||
# tasks dataset builder
|
||||
from Scripts.DataCleaning.data_output_models.rdf_mask_task import RDF_mask_task_dataset
|
||||
from Scripts.DataCleaning.data_output_models.bpe_corpus import BPE_corpus
|
||||
@@ -25,13 +25,16 @@ class Pipeline():
|
||||
MOVIE_COUNT = self.sql_endpoint.get_movies_id_count()
|
||||
REL_COUNT = self.sql_endpoint.get_relationship_count()
|
||||
self.filter_applier.generate_frequency_movie_filter(MOVIE_COUNT,50,3000)
|
||||
self.filter_applier.generate_frequency_relationship_filter(REL_COUNT, 50, 2395627)
|
||||
self.filter_applier.generate_frequency_relationship_filter(REL_COUNT, 50, 2395627) # from 2718 to 3069
|
||||
# prepare the filter on the relationshipURI you want to delete:
|
||||
relationship_uri_banned_list = [
|
||||
"dbp-dbp:wikiPageUsesTemplate","w3:2000/01/rdf-schema#label","dbp-dbo:abstract",
|
||||
"dbp-dbo:wikiPageID","dbp-dbo:wikiPageRevisionID", "dbp-dbo:wikiPageDisambiguates",
|
||||
"w3:2002/07/owl#sameAs","dbp-dbp:image","dbp-dbo:wikiPageLength", "w3:2000/01/rdf-schema#comment",
|
||||
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type"]
|
||||
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type",
|
||||
"dbp-dbp:id","dbp-dbp:totalWidth", "w3:ns/prov#wasDerivedFrom", "dbp-dbp:n", "dbp-dbp:alt",
|
||||
"dbp-dbo:soundRecording"
|
||||
]
|
||||
self.filter_applier.generate_list_relationship_filter(relationship_uri_banned_list)
|
||||
|
||||
|
||||
86
Scripts/DataCleaning/pipeline/cleaner.py
Normal file
86
Scripts/DataCleaning/pipeline/cleaner.py
Normal file
@@ -0,0 +1,86 @@
|
||||
# This file deletes in the pipeline the unwanted relationship by different rules
|
||||
import pandas as pd
|
||||
import sqlite3
|
||||
import numpy as np
|
||||
|
||||
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
|
||||
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||
|
||||
|
||||
class PipelineApplier():
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def rdf_add_special_token(self, RDF: pd.DataFrame):
|
||||
"""
|
||||
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI, OBJ to ObjectURI, REL to RelationshipURI.
|
||||
Check Scrits/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
|
||||
It only adds the special token of the three element of the RDF, no other special token.
|
||||
Args:
|
||||
RDF (pd.DataFrame):
|
||||
Returns:
|
||||
pd.DataFrame: ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
|
||||
"""
|
||||
# if the filter runned before sliced the RDF and created a View, here the problem is resolved
|
||||
# for more context: SettingWithCopyWarning
|
||||
RDF = RDF.copy()
|
||||
# at the beginning of SubjectURI RelationshipURI ObjectURI, add their special token
|
||||
RDF["SubjectURI"] = SpecialToken.SUBJECT.value + RDF["SubjectURI"]
|
||||
RDF["ObjectURI"] = SpecialToken.OBJECT.value + RDF["ObjectURI"]
|
||||
RDF["RelationshipURI"] = SpecialToken.RELATIONSHIP.value + RDF["RelationshipURI"]
|
||||
return RDF
|
||||
|
||||
|
||||
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||
RDF = RDF.replace('', np.nan)
|
||||
# Drop rows where any of the key columns are NaN
|
||||
RDF = RDF.dropna(subset=["SubjectURI", "RelationshipURI", "ObjectURI"])
|
||||
return RDF
|
||||
|
||||
def rebuild_by_movie(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Args:
|
||||
RDF (pd.DataFrame): ["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: ["MovieID","Triple","Abstract"]
|
||||
"""
|
||||
# to execute this method you have to have itereted by movie_id
|
||||
# because as design we want at the end one row for each movie
|
||||
# MovieID and abstract can be given as input for a more generic method
|
||||
# first let's combine each row creating column triple as join of rdf
|
||||
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
|
||||
# special token
|
||||
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
|
||||
# combine rows into one
|
||||
# MovieID and Abstract are unique for each other 1 <-> 1
|
||||
RDF = RDF.groupby(["MovieID", "Abstract"])["Triple"].apply("".join).reset_index()
|
||||
# add special token for: start of triple, end of triple and start of abstract
|
||||
RDF["Triple"] = SpecialToken.START_TRIPLE_LIST.value + RDF["Triple"]+SpecialToken.END_OF_SENTENCE.value
|
||||
RDF["Abstract"] = SpecialToken.ABSTRACT.value + RDF["Abstract"] + SpecialToken.END_OF_SENTENCE.value
|
||||
return RDF[["MovieID","Triple","Abstract"]]
|
||||
|
||||
|
||||
@staticmethod
|
||||
def build_triple(RDF: pd.DataFrame):
|
||||
"""
|
||||
Obtains joined RDF triple in one element, togheter with START and END special token
|
||||
Args:
|
||||
RDF (pd.DataFrame): at least ["SubjectURI", "RelationshipURI", "ObjectURI"]
|
||||
Returns:
|
||||
pd.DataFrame: RDF["Triple"] (just this column)
|
||||
"""
|
||||
# let's combine each row creating column triple as join of rdf
|
||||
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
|
||||
# special token
|
||||
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
|
||||
return RDF["Triple"]
|
||||
|
||||
|
||||
def regex_on_objects(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||
RDF["ObjectURI"] = (RDF["ObjectURI"].astype("string")
|
||||
.str.replace(r"\r?\n+", ", ", regex=True) # newlines -> ", "
|
||||
.str.replace(r"\*", "", regex=True)) # delete all asterisks
|
||||
|
||||
return RDF
|
||||
103
Scripts/DataCleaning/pipeline/movie_filter.py
Normal file
103
Scripts/DataCleaning/pipeline/movie_filter.py
Normal file
@@ -0,0 +1,103 @@
|
||||
import pandas as pd
|
||||
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||
|
||||
class MovieFilter:
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.sql_endpoint = SqlEndpoint()
|
||||
# first obtain all movie_id
|
||||
movie_query = "SELECT MovieID FROM Movies"
|
||||
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(movie_query)
|
||||
|
||||
|
||||
def frequency_filter(self, min_treshold:int, max_treshold:int):
|
||||
movie_list_placeholder = ",".join(["?"] * len(self.MOVIE_FILTER))
|
||||
|
||||
filter_query = f"""
|
||||
SELECT MovieID
|
||||
FROM RDFs
|
||||
WHERE MovieID IN ({movie_list_placeholder})
|
||||
GROUP BY MovieID
|
||||
HAVING COUNT(*) BETWEEN {min_treshold} AND {max_treshold};
|
||||
"""
|
||||
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, tuple(self.MOVIE_FILTER["MovieID"].to_list()))
|
||||
|
||||
|
||||
def get_movie_id(self):
|
||||
return self.MOVIE_FILTER
|
||||
|
||||
|
||||
def relation_filter(self, parsed_rel_uri: str, min_treshold:int, max_treshold:int):
|
||||
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
|
||||
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
|
||||
|
||||
filter_query = f"""
|
||||
SELECT MovieID
|
||||
FROM RDFs
|
||||
JOIN ParsedRelationships ON ParsedRelationships.RelationshipID = RDFs.RelationshipID
|
||||
WHERE MovieID IN ({movie_list_placeholder})
|
||||
GROUP BY MovieID
|
||||
HAVING SUM(CASE WHEN ParsedRelationships.RelationshipURI = '{parsed_rel_uri}' THEN 1 ELSE 0 END)
|
||||
BETWEEN {min_treshold} AND {max_treshold};
|
||||
"""
|
||||
|
||||
params = tuple(movie_ids) # + (parsed_rel_uri, min_treshold, max_treshold)
|
||||
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)
|
||||
|
||||
|
||||
def filter_by_director(self):
|
||||
director_list = ['dbp-dbo:director','dbp-dbp:director']
|
||||
|
||||
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
|
||||
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
|
||||
|
||||
filter_query = f"""
|
||||
SELECT DISTINCT RDFs.MovieID
|
||||
FROM RDFs
|
||||
JOIN ParsedRelationships USING (RelationshipID)
|
||||
WHERE RDFs.MovieID IN ({movie_list_placeholder})
|
||||
AND ParsedRelationships.RelationshipURI IN {tuple(director_list)};
|
||||
"""
|
||||
|
||||
params = tuple(movie_ids)
|
||||
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)
|
||||
|
||||
|
||||
def filter_by_english_movies(self):
|
||||
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
|
||||
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
|
||||
|
||||
relationship = ["dbp-dbp:language"]
|
||||
objects_list = ["English", "dbp-dbr:English_language"]
|
||||
|
||||
filter_query = f"""
|
||||
SELECT DISTINCT RDFs.MovieID
|
||||
FROM RDFs
|
||||
INNER JOIN ParsedRelationships USING (RelationshipID)
|
||||
INNER JOIN ParsedObjects USING (ObjectID)
|
||||
WHERE RDFs.MovieID IN ({movie_list_placeholder})
|
||||
AND ParsedRelationships.RelationshipURI IN ('{relationship[0]}')
|
||||
AND ParsedObjects.ObjectURI in {tuple(objects_list)};
|
||||
"""
|
||||
|
||||
other_query = f"""
|
||||
SELECT RDFs.MovieID
|
||||
FROM RDFs
|
||||
INNER JOIN ParsedRelationships USING (RelationshipID)
|
||||
INNER JOIN ParsedObjects USING (ObjectID)
|
||||
WHERE RDFs.MovieID IN ({movie_list_placeholder})
|
||||
AND ParsedRelationships.RelationshipURI IN ('{relationship[0]}')
|
||||
GROUP BY RDFs.MovieID
|
||||
HAVING
|
||||
SUM(CASE WHEN ParsedObjects.ObjectURI IN {tuple(objects_list)} THEN 1 ELSE 0 END) >= 1
|
||||
AND
|
||||
SUM(CASE WHEN ParsedObjects.ObjectURI NOT IN {tuple(objects_list)} THEN 1 ELSE 0 END) = 0;
|
||||
"""
|
||||
|
||||
params = tuple(movie_ids)
|
||||
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(other_query, params)
|
||||
|
||||
|
||||
|
||||
# movie_filter = MovieFilter()
|
||||
# movie_filter.frequency_filter(5,10)
|
||||
155
Scripts/DataCleaning/pipeline/pipeline.py
Normal file
155
Scripts/DataCleaning/pipeline/pipeline.py
Normal file
@@ -0,0 +1,155 @@
|
||||
from movie_filter import MovieFilter
|
||||
from relationship_filter import RelationshipFilter
|
||||
from rdf_filter import RdfFilter
|
||||
from cleaner import PipelineApplier
|
||||
|
||||
from Scripts.DataCleaning.data_output_models.bpe_corpus import BPE_corpus
|
||||
from Scripts.DataCleaning.data_output_models.rdf_text_tasks import RDF_text_task_dataset
|
||||
from Scripts.DataCleaning.data_output_models.rdf_completation_task import RDF_completation_task_dataset
|
||||
from Scripts.DataCleaning.data_output_models.debug_csv import Debug_csv
|
||||
|
||||
import pandas as pd
|
||||
|
||||
RELATIONSHIP_FILTER_LIST = [
|
||||
"dbp-dbp:wikiPageUsesTemplate","w3:2000/01/rdf-schema#label","dbp-dbo:abstract",
|
||||
"dbp-dbo:wikiPageID","dbp-dbo:wikiPageRevisionID", "dbp-dbo:wikiPageDisambiguates",
|
||||
"w3:2002/07/owl#sameAs","dbp-dbp:image","dbp-dbo:wikiPageLength", "w3:2000/01/rdf-schema#comment",
|
||||
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type",
|
||||
"dbp-dbp:id","dbp-dbp:totalWidth", "w3:ns/prov#wasDerivedFrom", "dbp-dbp:n", "dbp-dbp:alt",
|
||||
"dbp-dbo:soundRecording", "dbp-dbp:align", "dbp-dbp:format",
|
||||
"dbp-dbp:filename", "dbp-dbp:wikt", "foaf:isPrimaryTopicOf", "dbp-dbp:quote", "foaf:homepage",
|
||||
"dbp-dbp:wordnet_type", "dbp-dbp:length","dbp-dbp:caption", "dbp-dbo:imdbId", "dbp-dbp:border", "dbp-dbp:note",
|
||||
"dbp-dbp:postalCodeType", "dbp-dbp:extraColumn", "foaf:homepage", "dbp-dbp:bgcolor","dbp-dbp:prevTitle",
|
||||
"dbp-dbp:imageUpright", "dbp-dbp:url", "dbp-dbp:italicTitle", "dbp-dbp:imageSize", "dbp-dbp:text",
|
||||
"dbp-dbp:captionAlign", "dbp-dbp:headerAlign", "dbp-dbp:height", "dbp-dbp:link", "dbp-dbo:wikiPageInterLanguageLink",
|
||||
"w3:2003/01/geo/wgs84_pos#lat", "w3:2003/01/geo/wgs84_pos#long", "http://www.georss.org/georss/point",
|
||||
"dbp-dbp:bgcolor", "dbp-dbp:mc", "dbp-dbp:rev3score", "dbp-dbp:rev4score", "dbp-dbp:imageAlt",
|
||||
"dbp-dbp:b", "dbp-dbp:s", "dbp-dbp:c", "dbp-dbp:d", "dbp-dbp:m", "dbp-dbp:v", "dbp-dbp:mw", "dbp-dbp:fontsize",
|
||||
"dbp-dbp:salign", "dbp-dbp:q", "dbp-dbp:portal", "dbp-dbp:dSearch", "dbp-dbp:header", "w3:2003/01/geo/wgs84_pos#geometry",
|
||||
"dbp-dbp:shortsummary", "dbp-dbp:fixAttempted", "dbp-dbo:developer", "dbp-dbp:no", "dbp-dbp:ref", "dbp-dbp:infoa"
|
||||
"dbp-dbp:infob", "dbp-dbp:1a", "dbp-dbp:1p", "dbp-dbp:2a", "dbp-dbp:2p", "http://rdvocab.info/RDARelationshipsWEMI/manifestationOfWork",
|
||||
"dbp-dbp:isbn", "dbp-dbp:titleWidth", "dbp-dbp:prodcode", "dbp-dbp:page", "w3:2004/02/skos/core#closeMatch",
|
||||
"dbp-dbp:colwidth", "dbp-dbp:imagesize", "dbp-dbp:rr", "dbp-dbp:date", "dbp-dbp:type", "dbp-dbp:list",
|
||||
"dbp-dbp:listEpisodes", "dbp-dbp:footerAlign", "dbp-dbp:float", "dbp-dbp:bot", "dbp-dbp:p", "dbp-dbp:l", "dbp-dbp:t", "dbp-dbp:j",
|
||||
"dbp-dbp:1y", "dbp-dbp:2y", "dbp-dbp:1pp", "dbp-dbp:vgs", "dbp-dbp:3a", "dbp-dbp:3p", "dbp-dbp:3y", "dbp-dbp:4a", "dbp-dbp:4y",
|
||||
"dbp-dbp:website"
|
||||
]
|
||||
|
||||
RELATIONSHIP_WHITE_LIST = [
|
||||
"dbp-dbp:director","dbp-dbo:starring", "dbp-dbo:writer", "dbp-dbp:name", "dbp-dbp:genre", "purl:dc/terms/subject"
|
||||
]
|
||||
"""
|
||||
SELECT DISTINCT field3
|
||||
FROM debug
|
||||
"""
|
||||
|
||||
class Pipeline():
|
||||
|
||||
def __init__(self) -> None:
|
||||
self._movie_filter = MovieFilter()
|
||||
self._relationship_filter = RelationshipFilter()
|
||||
self._rdf_filter = RdfFilter()
|
||||
self._pipeline = PipelineApplier()
|
||||
|
||||
self.task_bpe_corpus = BPE_corpus("./Assets/Dataset/Tmp/corpus.txt")
|
||||
self.task_rdf_text = RDF_text_task_dataset("./Assets/Dataset/Tmp/rdf_text.csv")
|
||||
self.task_rdf_completation = RDF_completation_task_dataset("./Assets/Dataset/Tmp/rdf_completation.csv")
|
||||
|
||||
self._movie_filter.frequency_filter(50,3000)
|
||||
self._relationship_filter.frequency_filter(25, 2395627) # from 2718 to 3069
|
||||
self._relationship_filter.delete_relationship_uri_by_list(RELATIONSHIP_FILTER_LIST)
|
||||
|
||||
def other_filter(self):
|
||||
self._movie_filter.relation_filter("purl:dc/terms/subject",5,100)
|
||||
self._movie_filter.filter_by_director()
|
||||
self._movie_filter.filter_by_english_movies()
|
||||
self._movie_filter.relation_filter("dbp-dbp:budget",1,100) # the most important film have relationship budget
|
||||
self._movie_filter.relation_filter("dbp-dbp:released",1,100) # to cut to 2000 :(
|
||||
|
||||
def _get_cleaned_movie_rows(self):
|
||||
movie_ids = self._movie_filter.get_movie_id()
|
||||
rel_ids = self._relationship_filter.get_relationship_id()
|
||||
# rel_ids = self._relationship_filter.get_relationship_id_from_white_list(RELATIONSHIP_WHITE_LIST)
|
||||
|
||||
for RDF in self._rdf_filter.yield_movie_abbreviated_rdfs(movie_ids,rel_ids):
|
||||
RDF = self._pipeline.drop_na_from_dataset(RDF)
|
||||
RDF = self._pipeline.regex_on_objects(RDF)
|
||||
RDF = self._pipeline.rdf_add_special_token(RDF)
|
||||
|
||||
if RDF.empty:
|
||||
continue
|
||||
yield RDF
|
||||
|
||||
|
||||
def execute_task_bpe_corpus(self):
|
||||
for RDF in self._get_cleaned_movie_rows():
|
||||
RDF = self._pipeline.rebuild_by_movie(RDF)
|
||||
RDF = RDF[["Triple","Abstract"]]
|
||||
self.task_bpe_corpus.write_from_df(RDF)
|
||||
self._end_file_handler()
|
||||
|
||||
|
||||
def execute_tasks_rdf_text(self):
|
||||
for RDF in self._get_cleaned_movie_rows():
|
||||
RDF = self._pipeline.rebuild_by_movie(RDF)
|
||||
self.task_rdf_text.write(RDF)
|
||||
self._end_file_handler()
|
||||
|
||||
|
||||
def execute_task_rdf_completation(self):
|
||||
for RDF in self._get_cleaned_movie_rows():
|
||||
RDF["Triple"] = self._pipeline.build_triple(RDF)
|
||||
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
|
||||
self._end_file_handler()
|
||||
|
||||
|
||||
def _end_file_handler(self):
|
||||
self.task_bpe_corpus.close()
|
||||
self.task_rdf_text.close()
|
||||
self.task_rdf_completation.close()
|
||||
|
||||
|
||||
def execute_all_task(self):
|
||||
for RDF in self._get_cleaned_movie_rows():
|
||||
completation_RDF = RDF.copy()
|
||||
completation_RDF["Triple"] = self._pipeline.build_triple(completation_RDF)
|
||||
self.task_rdf_completation.write(completation_RDF[["MovieID","Triple"]])
|
||||
|
||||
RDF = self._pipeline.rebuild_by_movie(RDF)
|
||||
|
||||
self.task_rdf_text.write(RDF)
|
||||
self.task_bpe_corpus.write_from_df(RDF[["Triple","Abstract"]])
|
||||
|
||||
self._end_file_handler()
|
||||
|
||||
|
||||
def use_toy_dataset(self):
|
||||
# CHOOSEN MOVIE:
|
||||
# The Dark Knight : 117248
|
||||
# Inception : 147074
|
||||
# The Avengers : 113621
|
||||
# Cast Away : 1123
|
||||
# The Departed : 117586
|
||||
# American Psycho : 90177
|
||||
# Avatar : 71587
|
||||
# Django Unchained : 138952
|
||||
# Spirited Away : 144137
|
||||
# Knives Out : 148025
|
||||
# [106465,106466,106467,106468,106469,106470,106471,106472,106473]
|
||||
movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
|
||||
self._movie_filter.MOVIE_FILTER = pd.DataFrame({"MovieID": movie_list})
|
||||
|
||||
def generate_csv_debug_file(self, debug_path:str):
|
||||
debug_csv = Debug_csv(debug_path)
|
||||
|
||||
for RDF in self._get_cleaned_movie_rows():
|
||||
debug_csv.write(RDF)
|
||||
|
||||
debug_csv.close()
|
||||
|
||||
|
||||
pipe = Pipeline()
|
||||
#pipe.use_toy_dataset()
|
||||
pipe.other_filter()
|
||||
# pipe.execute_all_task()
|
||||
pipe.generate_csv_debug_file("Assets/Dataset/Tmp/debug.csv")
|
||||
32
Scripts/DataCleaning/pipeline/rdf_filter.py
Normal file
32
Scripts/DataCleaning/pipeline/rdf_filter.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import pandas as pd
|
||||
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||
|
||||
class RdfFilter:
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.sql_endpoint = SqlEndpoint()
|
||||
|
||||
|
||||
# def delete_hyperum_when_movie(self):
|
||||
# purl:linguistics/gold/hypernym
|
||||
# is almost ever as "dbp-dbr:Movie" or "dbp-dbr:Film"
|
||||
# banned triple
|
||||
|
||||
def yield_movie_abbreviated_rdfs(self, MOVIE_ID: pd.DataFrame, REL_ID: pd.DataFrame):
|
||||
relationship_placeholder = ",".join(["?"] * len(REL_ID))
|
||||
|
||||
param = tuple(REL_ID["RelationshipID"].to_list())
|
||||
|
||||
QUERY = f"""
|
||||
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
|
||||
FROM RDFs
|
||||
INNER JOIN ParsedSubjects USING (SubjectID)
|
||||
INNER JOIN ParsedRelationships USING (RelationshipID)
|
||||
INNER JOIN ParsedObjects USING (ObjectID)
|
||||
INNER JOIN WikipediaAbstracts USING (MovieID)
|
||||
WHERE MovieID = (?) AND RelationshipID IN ({relationship_placeholder});
|
||||
"""
|
||||
|
||||
for movie_id in MOVIE_ID["MovieID"].to_list():
|
||||
params = (movie_id,) + param
|
||||
yield self.sql_endpoint.get_dataframe_from_query(QUERY, params=params)
|
||||
54
Scripts/DataCleaning/pipeline/relationship_filter.py
Normal file
54
Scripts/DataCleaning/pipeline/relationship_filter.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import pandas as pd
|
||||
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||
|
||||
class RelationshipFilter:
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.sql_endpoint = SqlEndpoint()
|
||||
# first obtain all relationship_id
|
||||
relationship_query = "SELECT RelationshipID FROM Relationships"
|
||||
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(relationship_query)
|
||||
|
||||
|
||||
def frequency_filter(self, min_treshold:int, max_treshold:int):
|
||||
movie_list_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
|
||||
|
||||
filter_query = f"""
|
||||
SELECT RelationshipID
|
||||
FROM RDFs
|
||||
WHERE RelationshipID IN ({movie_list_placeholder})
|
||||
GROUP BY RelationshipID
|
||||
HAVING COUNT(*) BETWEEN {min_treshold} AND {max_treshold};
|
||||
"""
|
||||
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()))
|
||||
|
||||
|
||||
def get_relationship_id(self):
|
||||
return self.RELATIONSHIP_FILTER
|
||||
|
||||
def get_relationship_id_from_white_list(self, relationship_list: list[str]):
|
||||
ids_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
|
||||
uri_placeholder = ",".join(["?"] * len(relationship_list))
|
||||
filter_query = f"""
|
||||
SELECT RelationshipID
|
||||
FROM ParsedRelationships
|
||||
WHERE RelationshipID IN ({ids_placeholder})
|
||||
AND RelationshipURI IN ({uri_placeholder});
|
||||
"""
|
||||
params = tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()) + tuple(relationship_list)
|
||||
return self.sql_endpoint.get_dataframe_from_query(filter_query, params)
|
||||
|
||||
|
||||
|
||||
def delete_relationship_uri_by_list(self, filter_list: list[str]):
|
||||
ids_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
|
||||
uri_placeholder = ",".join(["?"] * len(filter_list))
|
||||
|
||||
filter_query = f"""
|
||||
SELECT RelationshipID
|
||||
FROM ParsedRelationships
|
||||
WHERE RelationshipID IN ({ids_placeholder})
|
||||
AND RelationshipURI NOT IN ({uri_placeholder});
|
||||
"""
|
||||
params = tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()) + tuple(filter_list)
|
||||
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)
|
||||
@@ -134,6 +134,11 @@ class SqlEndpoint():
|
||||
"""
|
||||
return pd.read_sql_query(QUERY, self.sql_engine)
|
||||
|
||||
def get_dataframe_from_query(self, query: str, params=None):
|
||||
if params is None:
|
||||
return pd.read_sql_query(query, self.sql_engine)
|
||||
return pd.read_sql_query(query, self.sql_engine, params=params)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__" :
|
||||
|
||||
BIN
requirements.txt
BIN
requirements.txt
Binary file not shown.
Reference in New Issue
Block a user