Compare commits

..

No commits in common. "dev.embedder" and "main" have entirely different histories.

154 changed files with 2 additions and 25668 deletions

1
.gitattributes vendored
View File

@ -1,3 +1,2 @@
Exam/Deep_Learning_2025_VIII.pdf filter=lfs diff=lfs merge=lfs -text
Assets/** filter=lfs diff=lfs merge=lfs -text
Assets/Dataset/1-hop/dataset.csv filter=lfs diff=lfs merge=lfs -text

7
.gitignore vendored
View File

@ -189,8 +189,7 @@ ipython_config.py
.LSOverride
# Icon must end with two \r
Icon
Icon
# Thumbnails
._*
@ -252,7 +251,3 @@ $RECYCLE.BIN/
# .nfs files are created when an open file is removed but is still being accessed
.nfs*
# ---> Custom
**/Tmp/**
**/cache/**
!**/.gitkeep

View File

@ -1,14 +0,0 @@
{
"recommendations": [
"bierner.github-markdown-preview",
"bierner.markdown-checkbox",
"bierner.markdown-emoji",
"bierner.markdown-footnotes",
"bierner.markdown-mermaid",
"bierner.markdown-preview-github-styles",
"bierner.markdown-yaml-preamble",
"davidanson.vscode-markdownlint",
"kejun.markdown-alert",
"yzhang.markdown-all-in-one"
]
}

16
.vscode/launch.json vendored
View File

@ -1,16 +0,0 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python Debugger: Current File with Arguments",
"type": "debugpy",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"args": "${command:pickArgs}"
}
]
}

55
.vscode/settings.json vendored
View File

@ -1,55 +0,0 @@
{
// Always treat the project root as the working dir for Jupyter
"jupyter.notebookFileRoot": "${workspaceFolder}",
// When you click "Run Python File in Terminal", DON'T cd into the file's folder
"python.terminal.executeInFileDir": false,
// Start new integrated terminals at the project root
"terminal.integrated.cwd": "${workspaceFolder}",
// Make pytest run from the root without needing a pytest.ini
"python.testing.pytestEnabled": true,
"python.testing.cwd": "${workspaceFolder}",
"python.testing.pytestArgs": [
"src/test"
],
// Help Pylance resolve imports like `from src...` without red squiggles
"python.analysis.extraPaths": [
"${workspaceFolder}"
],
// For linux
"terminal.integrated.env.linux": {
"PYTHONPATH": "${workspaceFolder}"
},
// For OSX
"terminal.integrated.env.osx": {
"PYTHONPATH": "${workspaceFolder}"
},
// For Windows
"terminal.integrated.env.windows": {
"PYTHONPATH": "${workspaceFolder}"
},
"python.analysis.typeCheckingMode": "standard"
}
// {
// // Always treat the project root as the working dir for Jupyter
// "jupyter.notebookFileRoot": "${workspaceFolder}",
//
// // When you click "Run Python File in Terminal", DON'T cd into the file's folder
// "python.terminal.executeInFileDir": false,
//
// // Start new integrated terminals at the project root
// "terminal.integrated.cwd": "${workspaceFolder}",
//
// // Ensure Python can import from the project root no matter which file you run
// // (so `src/` is on sys.path). Linux shown here; add osx/windows if needed.
// "terminal.integrated.env.windows": {
// "PYTHONPATH": "${workspaceFolder}"
// },
//
// // Make pytest run from the root without needing a pytest.ini
// "python.testing.pytestEnabled": true,
// "python.testing.cwd": "${workspaceFolder}",
// "python.testing.pytestArgs": ["src/test"],
//
// // Help Pylance resolve imports like `from src...` without red squiggles
// "python.analysis.extraPaths": ["${workspaceFolder}"]
// }

BIN
Assets/Dataset/1-hop/curated/corpus.txt (Stored with Git LFS)

Binary file not shown.

BIN
Assets/Dataset/1-hop/dataset.csv (Stored with Git LFS)

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:331d8ef4e99c5200f1323e7149bd8aade39dc17ee5778b553bb32c593ff601cf
3 size 2443211793

BIN
Assets/Dataset/1-hop/movie-pageid.csv (Stored with Git LFS)

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:88e387ed1338bdfd34ded22f3f8bebb2be5127857bf36fcffc266b35c534587c
3 size 10148507

BIN
Assets/Dataset/1-hop/movies.csv (Stored with Git LFS)

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:8d81c8801ea79bd46747769a288cd0c507b3b94b2fb4bbb9605e282776ca5efb
3 size 8808636

BIN
Assets/Dataset/1-hop/reverse.csv (Stored with Git LFS)

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:b4878aed66c382e73982b19fa02129d5b3c3e3e8690c28e4dd662257e1d9b119
3 size 32343972

BIN
Assets/Dataset/1-hop/small/corpus.txt (Stored with Git LFS)

Binary file not shown.

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:80da574017b251c9f07ecbce837d9d36a9ee8183a2a3bdbe0a2e31e22226ab79
3 size 12773126

BIN
Assets/Dataset/1-hop/small/rdf_text.csv (Stored with Git LFS)

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:41b30ab739a01482036c40b6560adfe751c5905ae80aafef6ee0f1a716849c68
3 size 13222824

BIN
Assets/Dataset/1-hop/toy/corpus.txt (Stored with Git LFS)

Binary file not shown.

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:39012a1e59eaa740d01515aa6b9744267dbb3ae13941b28558060795a94d90e0
3 size 86122

BIN
Assets/Dataset/1-hop/toy/rdf_mask.csv (Stored with Git LFS)

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:8f31602eba47f7daff3b13bb243abaf429ff5900a8d26ae854ba790fda47d287
3 size 517642

BIN
Assets/Dataset/1-hop/toy/rdf_text.csv (Stored with Git LFS)

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:1189e04d3ba9d9138a4e216200313f5842b8a49de1745bb553ba2e3abf18d818
3 size 102533

BIN
Assets/Dataset/1-hop/uri-abbreviations.csv (Stored with Git LFS)

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:c1fcb1ad61a69145145c45c639ab42b36ffc63caa0ef9832eb81491197883ff4
3 size 8086

BIN
Assets/Dataset/1-hop/wikipedia-movie.csv (Stored with Git LFS)

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:1730dc111c0290b16d094a4b6a6577d966978d97ee9ef4202e86148cc9d8e8e8
3 size 17445736

BIN
Assets/Dataset/1-hop/wikipedia-summary.csv (Stored with Git LFS)

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:ef7b680257f16b193a9b4ea2914564b58c676955809e6b9d58058adaab7855c1
3 size 73089553

BIN
Assets/Dataset/DatawareHouse/dataset.db (Stored with Git LFS)

Binary file not shown.

BIN
Assets/Model/small/bpe-small.json (Stored with Git LFS)

Binary file not shown.

BIN
Assets/Model/toy_10/README.md (Stored with Git LFS)

Binary file not shown.

BIN
Assets/Model/toy_10/toy_dictionary.json (Stored with Git LFS)

Binary file not shown.

View File

@ -1,193 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ddfb4457",
"metadata": {},
"outputs": [
{
"ename": "AssertionError",
"evalue": "target id 3872 >= V (256). Fix TOKEN_SPACE_SIZE.",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mAssertionError\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 126\u001b[39m\n\u001b[32m 124\u001b[39m \u001b[38;5;66;03m# sanity guard (helps debug vocab mismatches fast)\u001b[39;00m\n\u001b[32m 125\u001b[39m max_seen = tgt[:, :Tp].max().item()\n\u001b[32m--> \u001b[39m\u001b[32m126\u001b[39m \u001b[38;5;28;01massert\u001b[39;00m max_seen < V \u001b[38;5;129;01mor\u001b[39;00m (tgt[:, :Tp] == PAD_TOKEN).all(), \\\n\u001b[32m 127\u001b[39m \u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mtarget id \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmax_seen\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m >= V (\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mV\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m). Fix TOKEN_SPACE_SIZE.\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 129\u001b[39m \u001b[38;5;66;03m# CE over all tokens produced so far (0..t). PAD is ignored by ignore_index\u001b[39;00m\n\u001b[32m 130\u001b[39m loss_t = cross_entropy(\n\u001b[32m 131\u001b[39m logits_btV.reshape(-\u001b[32m1\u001b[39m, V), \u001b[38;5;66;03m# [B*(t+1), V]\u001b[39;00m\n\u001b[32m 132\u001b[39m tgt[:, :Tp].reshape(-\u001b[32m1\u001b[39m) \u001b[38;5;66;03m# [B*(t+1)]\u001b[39;00m\n\u001b[32m 133\u001b[39m )\n",
"\u001b[31mAssertionError\u001b[39m: target id 3872 >= V (256). Fix TOKEN_SPACE_SIZE."
]
}
],
"source": [
"import random\n",
"import torch\n",
"import pandas as pd\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"import Project_Model.Libs.TorchShims as torch_shims\n",
"from Project_Model.Libs.Training.learning_rade_shedulers import CustomLR\n",
"from Project_Model.Libs.Training.logistic_collector import LogitsCollector # external collector\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"DEVICE = torch_shims.get_default_device()\n",
"torch.set_default_device(DEVICE)\n",
"\n",
"# BPE Init\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"# Constants (TEMP size; will be corrected after dataset scan below)\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_MULTIPLIER = 4\n",
"ATTENTION_HEADS = 4\n",
"SENTENCE_LENGTH = 256\n",
"NUMBER_OF_BLOCKS = 2\n",
"MAX_EPOCHS = int(1e4)\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"\n",
"# Load CSV\n",
"TOY_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"TOY_DATASET = pd.read_csv(TOY_DATASET_PATH)\n",
"\n",
"TOY_BATCH_INPUT_LIST: list[list[int]] = []\n",
"TOY_BATCH_PADDING_LIST: list[list[bool]] = []\n",
"TOY_BATCH_TARGET_LIST: list[list[int]] = []\n",
"TOY_BATCH_DECODER_DEFAULT: list[list[int]] = []\n",
"\n",
"for index, row in TOY_DATASET.iterrows():\n",
" RDFs: str = row[\"RDFs\"]\n",
" Abstract: str = row[\"Abstract\"]\n",
"\n",
" input_tokens = TOKENANO.encode(RDFs) # encoder input ids\n",
" output_tokens = TOKENANO.encode(Abstract)[1:] # decoder target ids (shifted left)\n",
" decoder_default_tokens = TOKENANO.encode(\"<SOS>\") # decoder input starts with <SOS>\n",
"\n",
" input_tokens, padding = Transformer.normalize_sequence(\n",
" input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" ) # pad/trim + end token\n",
" output_tokens, _ = Transformer.normalize_sequence(\n",
" output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" ) # pad/trim + end token\n",
" decoder_default_tokens = Transformer.pad_sequence(\n",
" decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN\n",
" ) # pad with PAD up to SENTENCE_LENGTH\n",
"\n",
" TOY_BATCH_INPUT_LIST.append(input_tokens)\n",
" TOY_BATCH_PADDING_LIST.append(padding)\n",
" TOY_BATCH_TARGET_LIST.append(output_tokens)\n",
" TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)\n",
"\n",
"# fix V to cover ALL ids (including specials) # <- important\n",
"max_enc_id = max(max(row) for row in TOY_BATCH_INPUT_LIST) if TOY_BATCH_INPUT_LIST else 0\n",
"max_tgt_id = max(max(row) for row in TOY_BATCH_TARGET_LIST) if TOY_BATCH_TARGET_LIST else 0\n",
"TOKEN_SPACE_SIZE = max(TOKEN_SPACE_SIZE, max(PAD_TOKEN, END_TOKEN, max_enc_id, max_tgt_id) + 1)\n",
"\n",
"# Training loop\n",
"LOSS_HISTORY = []\n",
"NANOSOCRATES = Transformer.TrainingModel(\n",
" TOKEN_SPACE_SIZE,\n",
" EMBEDDED_SIZE,\n",
" FEED_FORWARD_MULTIPLIER,\n",
" ATTENTION_HEADS,\n",
" NUMBER_OF_BLOCKS,\n",
")\n",
"\n",
"collector = LogitsCollector(PAD_TOKEN, END_TOKEN, TOKENANO) # collects logits and decodes\n",
"\n",
"NANOSOCRATES.train()\n",
"cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)\n",
"optimizer = torch.optim.AdamW(NANOSOCRATES.parameters(), lr=1.0) # base lr works as factor\n",
"scheduler = CustomLR(optimizer, EMBEDDED_SIZE, warmup_steps=4000, factor=1.0) # step each optimizer step\n",
"\n",
"current_epoch = 0\n",
"BATCH_SIZE = min(32, len(TOY_BATCH_INPUT_LIST)) # small batch to stabilize\n",
"\n",
"while current_epoch < MAX_EPOCHS:\n",
" # simple fixed mini-batch from the top; later you can shuffle/slice\n",
" enc = torch.tensor(TOY_BATCH_INPUT_LIST[:BATCH_SIZE], dtype=torch.long) # [B,T] encoder token ids\n",
" pad = torch.tensor(TOY_BATCH_PADDING_LIST[:BATCH_SIZE], dtype=torch.bool) # [B,T] True where encoder PAD is present\n",
" tgt = torch.tensor(TOY_BATCH_TARGET_LIST[:BATCH_SIZE], dtype=torch.long) # [B,T] decoder targets (ground-truth)\n",
"\n",
" # decoder prefix buffer: <SOS> at pos 0, PAD elsewhere (no shift here) # we will fill it step by step\n",
" dec = torch.tensor(TOY_BATCH_DECODER_DEFAULT[:BATCH_SIZE], dtype=torch.long) # [B,T]\n",
"\n",
" total_loss = 0.0\n",
" collector.reset() # start fresh for this epoch\n",
"\n",
" T = tgt.size(1) # sequence length\n",
" for t in range(T):\n",
" # skip all-PAD steps to avoid CE divide-by-zero late in the sequence\n",
" if (tgt[:, t] == PAD_TOKEN).all(): # all PAD at this timestep\n",
" break\n",
"\n",
" optimizer.zero_grad(set_to_none=True) # clear grads for this token step\n",
"\n",
" prefix = dec[:, : t + 1] # [B, t+1] current decoder prefix\n",
" dec_pad_mask = prefix.eq(PAD_TOKEN) # [B, t+1] True where PAD inside prefix\n",
"\n",
" # now decoder returns all steps up to t -> [B, t+1, V]\n",
" logits_btV: torch.Tensor = NANOSOCRATES((enc, pad, prefix, dec_pad_mask)) # full logits for learning\n",
" collector.add(logits_btV) # collector will take the last step\n",
"\n",
" Tp = logits_btV.size(1) # t+1\n",
" V = logits_btV.size(-1) # vocab size\n",
"\n",
" # sanity guard (helps debug vocab mismatches fast)\n",
" max_seen = tgt[:, :Tp].max().item()\n",
" assert max_seen < V or (tgt[:, :Tp] == PAD_TOKEN).all(), \\\n",
" f\"target id {max_seen} >= V ({V}). Fix TOKEN_SPACE_SIZE.\"\n",
"\n",
" # CE over all tokens produced so far (0..t). PAD is ignored by ignore_index\n",
" loss_t = cross_entropy(\n",
" logits_btV.reshape(-1, V), # [B*(t+1), V]\n",
" tgt[:, :Tp].reshape(-1) # [B*(t+1)]\n",
" )\n",
"\n",
" loss_t.backward() # backprop for this step\n",
" optimizer.step() # update params\n",
" scheduler.step() # Noam/warmup: step per optimizer step\n",
"\n",
" total_loss = float(loss_t.detach()) # keep last step loss for logging\n",
"\n",
" # teacher forcing: reveal the correct token for next position\n",
" if t < T - 1:\n",
" dec[:, t + 1] = tgt[:, t] # write ground-truth into next slot\n",
"\n",
" current_epoch += 1\n",
" print(f\"EPOCH {current_epoch}\\n\\tLoss: {total_loss:.6f}\") # simple log\n",
" collector.print_decoded() # print decoded predictions for the batch\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

View File

@ -1,308 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"id": "7a311d4b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[7706, 290, 756, 4270, 7357, 115, 351, 1507, 1213, 410, 3382, 317, 497, 4740, 2784, 7712], [7706, 290, 756, 4270, 7357, 115, 351, 1507, 1213, 410, 3382, 317, 497, 4740, 2784, 7712], [7706, 290, 756, 4270, 7357, 115, 351, 1507, 1213, 410, 3382, 317, 497, 4740, 2784, 7712]]\n",
"3\n",
"Embedder Tensor: torch.Size([3, 16, 256])\n",
"Values:\n",
"tensor([[[-0.6981, 0.0804, -2.1672, ..., 0.3919, 0.3341, 1.0794],\n",
" [ 2.5818, -0.2308, 0.6001, ..., -0.0500, -0.0408, -0.9852],\n",
" [-0.6967, 0.8109, 1.3108, ..., 2.1693, 1.4143, -0.1236],\n",
" ...,\n",
" [ 2.1226, 2.5695, -1.6178, ..., -0.0652, -0.0802, 0.1103],\n",
" [ 0.8770, -2.4782, 0.8536, ..., 2.0471, -1.5702, 0.7387],\n",
" [ 1.4284, -0.4654, 0.1394, ..., 1.6520, 0.6728, 1.3851]],\n",
"\n",
" [[-0.6981, 0.0804, -2.1672, ..., 0.3919, 0.3341, 1.0794],\n",
" [ 2.5818, -0.2308, 0.6001, ..., -0.0500, -0.0408, -0.9852],\n",
" [-0.6967, 0.8109, 1.3108, ..., 2.1693, 1.4143, -0.1236],\n",
" ...,\n",
" [ 2.1226, 2.5695, -1.6178, ..., -0.0652, -0.0802, 0.1103],\n",
" [ 0.8770, -2.4782, 0.8536, ..., 2.0471, -1.5702, 0.7387],\n",
" [ 1.4284, -0.4654, 0.1394, ..., 1.6520, 0.6728, 1.3851]],\n",
"\n",
" [[-0.6981, 0.0804, -2.1672, ..., 0.3919, 0.3341, 1.0794],\n",
" [ 2.5818, -0.2308, 0.6001, ..., -0.0500, -0.0408, -0.9852],\n",
" [-0.6967, 0.8109, 1.3108, ..., 2.1693, 1.4143, -0.1236],\n",
" ...,\n",
" [ 2.1226, 2.5695, -1.6178, ..., -0.0652, -0.0802, 0.1103],\n",
" [ 0.8770, -2.4782, 0.8536, ..., 2.0471, -1.5702, 0.7387],\n",
" [ 1.4284, -0.4654, 0.1394, ..., 1.6520, 0.6728, 1.3851]]],\n",
" grad_fn=<AddBackward0>)\n",
"ENCODER Tensor: torch.Size([3, 1, 256])\n",
"Values:\n",
"tensor([[[ 8.0069e-01, 4.0532e-01, -1.8316e+00, -1.3902e+00, -1.1784e+00,\n",
" 1.3667e+00, -9.7890e-01, 6.0696e-01, -1.4899e+00, 5.5765e-01,\n",
" 4.5991e-02, 5.1214e-01, 3.1901e-01, 4.7577e-01, -2.9585e-01,\n",
" -1.0811e+00, -1.5281e+00, -6.3773e-01, -9.5954e-01, 1.8497e+00,\n",
" -1.1789e+00, -9.7387e-01, 1.1931e-01, -7.2703e-01, 5.3108e-01,\n",
" -6.4877e-01, -4.5188e-01, 1.5185e+00, -8.3408e-01, 3.2824e-01,\n",
" -1.8166e+00, 1.9548e+00, -5.2419e-01, -1.0693e+00, -1.8510e+00,\n",
" 1.5440e+00, -3.2370e-01, -1.3990e+00, -4.6940e-01, 6.5840e-02,\n",
" -9.2057e-01, 1.2513e+00, -5.9168e-01, 7.8198e-01, -1.3121e+00,\n",
" 1.1492e+00, -2.3695e-01, -1.8935e+00, 1.1639e+00, -5.8169e-01,\n",
" 2.5051e-01, -8.1654e-01, -1.0328e+00, 1.4285e+00, -8.1485e-01,\n",
" 1.0614e+00, -3.3834e-01, -4.1667e-02, -1.1920e-01, 3.1383e-01,\n",
" -5.9857e-01, 1.7327e-01, -1.6854e+00, -1.5174e+00, -2.6508e-01,\n",
" -6.0082e-01, 5.1468e-01, 2.7909e-01, -2.5296e-01, -1.4670e+00,\n",
" -1.3587e+00, -8.8864e-02, 3.2825e-01, 1.0950e+00, -1.0371e+00,\n",
" 1.1744e+00, 5.2984e-01, 4.1751e-01, -9.8803e-01, 3.5631e-01,\n",
" 4.7484e-01, 2.2435e-01, 1.4022e+00, 1.2242e+00, 1.1447e+00,\n",
" -5.4052e-01, -9.1786e-01, -1.2299e+00, 1.1656e+00, 9.1570e-01,\n",
" 1.8956e+00, 7.4344e-01, 4.2187e-01, -9.5426e-02, -3.2428e-01,\n",
" 9.6364e-01, -2.3252e-01, 2.9036e-01, -2.4432e+00, 9.8019e-01,\n",
" -4.6697e-02, 8.3910e-01, -4.3541e-01, -7.1915e-01, -7.5638e-01,\n",
" 9.0217e-01, 2.0919e+00, -7.9533e-01, -1.5413e-01, -6.9260e-01,\n",
" -1.3086e+00, 7.8925e-01, 1.8855e-01, 7.4043e-01, -3.8834e-01,\n",
" 1.0272e-02, 1.0763e+00, 4.2142e-01, 6.6520e-01, 4.5996e-01,\n",
" -8.5060e-01, -9.0101e-01, -4.2090e-01, 2.5596e-01, -1.4946e+00,\n",
" 1.0925e-01, -7.5359e-01, -3.0447e-01, 1.0679e+00, 1.9398e+00,\n",
" 8.1472e-01, 1.3498e+00, 1.1107e+00, 6.3288e-01, 3.1149e-01,\n",
" -1.9333e+00, -1.5274e+00, 2.1794e-01, -3.1895e-02, 1.0756e+00,\n",
" 1.0215e+00, 1.6938e+00, -1.0939e+00, 2.2690e+00, -7.0921e-01,\n",
" 6.4212e-01, -6.5468e-01, 1.6839e+00, 5.7296e-01, -1.4031e+00,\n",
" 3.9133e-01, -5.3541e-01, 4.3439e-01, -1.6785e+00, 5.2030e-03,\n",
" 4.5155e-01, -7.0953e-01, -1.9656e-01, -3.8671e-02, -1.0927e+00,\n",
" -3.0405e-01, -1.3818e-02, -3.7748e-01, 1.4412e+00, -1.4254e-01,\n",
" 7.9939e-01, -8.5402e-01, -1.0330e+00, 1.7661e+00, -3.6084e-01,\n",
" 1.5622e+00, 1.0240e+00, 1.9056e-01, -4.1480e-01, 6.9056e-01,\n",
" 1.7204e+00, -9.9218e-01, -1.6504e-01, -1.1807e+00, 1.0827e+00,\n",
" 1.5973e+00, 1.4849e-01, -2.2867e+00, 7.7322e-01, -6.8401e-01,\n",
" -6.0493e-01, 1.0616e+00, -1.8034e-01, -1.8828e+00, 1.1031e-01,\n",
" 2.5452e-01, -4.2489e-02, 8.1171e-01, 1.3429e+00, -6.5058e-01,\n",
" -1.3531e+00, -1.2263e+00, 1.1226e+00, 1.2407e+00, -9.7453e-01,\n",
" 9.4696e-01, 6.6186e-01, -5.0804e-01, 1.2647e-01, -1.1777e+00,\n",
" 6.8443e-02, -1.3043e-01, 2.9595e-01, -1.5330e+00, -6.5733e-01,\n",
" 1.1291e+00, 6.9629e-01, 4.4690e-01, 8.0151e-01, -1.2406e+00,\n",
" 2.6085e+00, -2.0310e-01, -1.0226e+00, -6.9182e-02, 7.6600e-01,\n",
" -9.9842e-01, 2.0896e+00, 2.6334e-01, -1.1559e-01, -6.6876e-01,\n",
" -6.6295e-01, -1.6461e-01, 2.8270e+00, 3.2727e-01, 1.3724e+00,\n",
" -1.0749e+00, 3.7782e-01, -1.5472e+00, 3.0822e-01, 5.7273e-02,\n",
" 3.9136e-01, 8.2948e-01, 2.1438e-01, -9.8623e-01, 5.6053e-01,\n",
" -1.5617e+00, -3.9595e-01, 1.0451e-02, -1.1860e+00, -1.4994e-01,\n",
" 1.6566e+00, 2.0369e+00, -4.3995e-01, -4.4262e-01, -3.1014e-01,\n",
" 5.9083e-01, -1.0765e+00, -5.2906e-01, 4.6039e-02, -1.0154e+00,\n",
" 5.9942e-01]],\n",
"\n",
" [[ 1.2683e+00, -4.3200e-01, -1.3333e+00, -3.6705e-01, -5.8895e-01,\n",
" 9.9266e-01, -4.2914e-01, 9.2765e-01, -1.0935e+00, 1.4975e+00,\n",
" -5.3739e-01, -2.8332e-01, 9.1166e-01, 1.5010e+00, -2.1787e-01,\n",
" -1.4258e+00, -2.7524e-01, -1.2602e+00, 2.0117e-01, 2.3906e+00,\n",
" -9.6397e-01, -7.5872e-01, 3.3948e-01, -7.9353e-01, 9.1668e-01,\n",
" 8.7734e-04, -3.0271e-01, 1.7087e+00, -1.0273e+00, 1.5174e+00,\n",
" -2.6405e-02, 1.4236e+00, -9.9093e-01, 5.4787e-01, -1.0904e+00,\n",
" 5.2156e-01, -6.3470e-01, -7.7688e-01, -1.2538e+00, -3.9307e-01,\n",
" -7.6707e-01, 1.3733e+00, -7.2709e-01, 1.1185e+00, -1.5860e+00,\n",
" -2.6148e-01, -3.7984e-01, -1.3604e+00, 9.2864e-02, -7.9642e-01,\n",
" 1.0956e+00, 3.1202e-01, -4.1234e-01, 3.6488e-02, -1.4639e+00,\n",
" 1.0947e+00, -7.9230e-01, 4.6913e-01, -2.3407e-01, 4.1768e-02,\n",
" -1.5921e+00, 6.9743e-01, -7.0222e-01, -5.4705e-01, -6.5663e-01,\n",
" -4.1810e-01, 2.7744e-01, 7.9178e-01, 7.5886e-01, -7.6302e-01,\n",
" -1.2204e+00, -1.1103e+00, -1.3646e-01, 1.9589e+00, -1.3637e+00,\n",
" 9.0804e-01, 2.3094e-01, -5.5953e-02, -6.7626e-01, 1.4242e+00,\n",
" 1.0167e+00, 1.0705e+00, 2.2947e+00, 9.1274e-01, 1.2281e+00,\n",
" -7.0638e-01, -1.2249e+00, -8.9208e-02, 1.1016e+00, 1.1940e+00,\n",
" 3.5834e-01, 1.2961e+00, -4.6674e-01, 3.4572e-01, -4.3458e-01,\n",
" 1.1008e+00, 3.7783e-01, -6.5841e-01, -2.3127e+00, 1.4617e+00,\n",
" -1.2826e-01, 1.3463e-01, -8.5268e-01, -8.4144e-01, -1.8594e+00,\n",
" 1.9260e-01, 1.6432e+00, -2.0640e-02, -5.0030e-01, -1.5334e-01,\n",
" -6.1072e-01, -1.3694e-01, -3.7308e-01, 1.6603e+00, 1.1246e-01,\n",
" 6.0823e-02, 7.8749e-01, -1.7002e-01, 1.2058e+00, 8.5615e-01,\n",
" 1.2525e-01, -1.0584e+00, -4.7931e-01, 1.4088e-01, -1.8149e+00,\n",
" 1.4654e+00, -1.0936e+00, 5.3182e-01, 9.5694e-01, 3.2472e+00,\n",
" 3.4877e-01, 1.8491e+00, -1.5184e-01, 1.4711e+00, -7.6064e-01,\n",
" -2.2144e+00, -1.8952e+00, -4.9502e-01, -6.6836e-01, 1.4946e+00,\n",
" 6.7616e-01, 1.1501e+00, -9.4747e-01, 1.1009e+00, -1.4211e+00,\n",
" 3.9528e-01, -9.5220e-01, 1.4886e+00, 7.1784e-01, -1.9941e+00,\n",
" 6.7901e-02, -1.3109e-01, 1.1695e+00, 1.2861e-01, -2.8123e-01,\n",
" -6.1611e-01, 1.5513e-01, -3.9289e-01, -4.5543e-02, -2.8628e-01,\n",
" 2.6118e-01, 2.2623e-01, -6.3705e-01, 7.3591e-01, -7.8799e-01,\n",
" 2.5053e-01, -1.5923e-01, -4.9584e-01, 1.9009e+00, -2.3263e-01,\n",
" 1.2213e+00, 1.0313e+00, 2.0177e-02, -6.2209e-01, -3.5161e-01,\n",
" 1.5143e+00, -7.2332e-02, 2.3909e-02, -2.1261e+00, 8.5199e-01,\n",
" 1.9084e+00, 4.6845e-02, -2.3554e+00, 1.3735e+00, -7.3909e-01,\n",
" -8.3949e-01, -3.9314e-01, -4.3324e-01, -9.6804e-01, -5.3124e-01,\n",
" -6.5091e-01, -1.1738e+00, 1.3315e+00, 6.5606e-01, -1.4131e-01,\n",
" -1.7712e+00, -1.1628e+00, 9.6813e-01, 8.7314e-01, -9.8027e-01,\n",
" 6.9376e-01, 5.3878e-01, -1.6169e+00, 2.2860e-01, -6.2179e-01,\n",
" -1.1043e-01, -3.9658e-01, 2.8712e-01, 8.2201e-02, 2.0888e-01,\n",
" -5.9884e-01, 7.3092e-01, 6.9128e-01, 5.3977e-01, -1.5728e+00,\n",
" 1.6878e+00, -8.2669e-01, -9.8076e-01, -3.4203e-01, 4.6939e-02,\n",
" -1.3158e-01, 2.1923e+00, -6.6483e-02, -4.0687e-01, -1.2715e+00,\n",
" -8.1549e-01, -1.2047e+00, 1.3547e+00, -4.2072e-01, 1.1674e+00,\n",
" -5.1421e-01, 1.3055e+00, -1.1277e+00, 1.8372e+00, -1.1215e+00,\n",
" 1.4797e+00, 2.8354e-01, -6.3974e-01, -1.2869e+00, -2.7897e-01,\n",
" -1.0397e+00, 1.8622e-01, -5.0397e-02, -4.4865e-02, -7.6067e-01,\n",
" 1.7715e+00, 1.5040e+00, -2.6854e-01, -5.2802e-01, -5.3407e-01,\n",
" 2.0313e-02, -2.6276e-01, -7.0748e-01, -8.7328e-01, -3.4108e-01,\n",
" 1.4313e+00]],\n",
"\n",
" [[ 7.7464e-01, -4.2187e-01, -2.0571e+00, -8.6709e-01, -1.5722e+00,\n",
" 4.9540e-01, -1.5270e+00, 1.0499e+00, -1.9579e+00, -2.5298e-02,\n",
" 4.3419e-01, 5.8822e-01, 1.3392e+00, 6.9604e-01, -9.7883e-01,\n",
" -9.1354e-01, -9.1852e-01, -6.0951e-01, -6.6255e-02, 1.3907e+00,\n",
" -6.2912e-01, -2.7524e-01, 1.9520e-02, -2.7154e-01, 1.5162e-01,\n",
" 1.3318e-02, -8.9196e-01, 9.0976e-01, -1.3544e+00, 2.4276e-01,\n",
" -7.4038e-01, 9.7062e-01, 3.2011e-01, 3.4486e-01, -2.3374e+00,\n",
" 1.3311e+00, -3.1871e-02, -1.4468e+00, -1.5968e+00, 3.0418e-01,\n",
" -7.7136e-01, 1.3427e+00, -1.2493e+00, 1.4114e+00, -1.2475e+00,\n",
" 7.0239e-01, -9.6120e-02, -4.4365e-01, 5.3238e-01, -1.4933e+00,\n",
" 5.4476e-01, -1.8490e-02, -5.9936e-01, 1.0878e+00, -1.8892e+00,\n",
" 1.2810e+00, -1.0747e+00, 5.3514e-01, 1.7422e-01, 1.1354e+00,\n",
" -7.4837e-01, 4.0327e-01, -1.8950e+00, -7.2336e-01, 2.4441e-01,\n",
" -1.3650e-01, -4.8344e-01, 3.3921e-02, 5.0889e-01, -1.3769e+00,\n",
" -2.5907e-01, -2.7549e-01, -1.9128e-01, 1.9751e+00, -7.1191e-01,\n",
" 5.1910e-01, 1.0902e-01, 2.9995e-01, -3.5180e-01, -6.2139e-01,\n",
" 7.2905e-01, -5.3177e-01, 4.3340e-01, 1.0071e+00, 1.7586e+00,\n",
" -3.9963e-01, -2.5139e-01, -9.4213e-01, 9.2847e-01, 1.1298e+00,\n",
" 7.8545e-01, 1.3188e+00, 3.7466e-01, 9.0773e-01, -4.0454e-02,\n",
" 1.3444e+00, 6.0301e-01, 8.9929e-02, -2.0754e+00, 4.8614e-01,\n",
" -9.7160e-01, 8.2446e-01, -1.1813e+00, -9.6185e-01, -9.2922e-02,\n",
" 6.0154e-01, 1.6640e+00, -1.0461e+00, 1.5868e-01, -5.7239e-01,\n",
" -6.2726e-01, 3.2848e-01, 5.9609e-01, 1.5563e+00, -4.0883e-01,\n",
" 4.4902e-01, 1.4004e+00, 2.2426e-01, 3.8314e-01, -2.0641e-01,\n",
" -1.6465e-01, -6.4645e-01, 1.5772e-01, 6.8907e-01, -1.2703e+00,\n",
" 1.8914e-01, -6.2678e-01, 3.0179e-01, 1.2687e+00, 1.6849e+00,\n",
" 1.5690e+00, 1.0999e+00, 1.5820e+00, -6.4808e-01, 5.1003e-01,\n",
" -1.6674e+00, -1.2224e+00, 1.9769e-01, -1.3883e-01, 1.2179e+00,\n",
" 1.2971e+00, 4.6259e-01, -5.8717e-01, 1.4532e+00, -1.0540e+00,\n",
" 2.8689e-01, -1.3895e+00, 1.4014e+00, -4.0430e-01, -2.6099e+00,\n",
" -1.0293e+00, -1.1097e+00, 8.6266e-01, -1.0535e+00, 7.1789e-01,\n",
" 6.0642e-01, -1.2493e+00, -3.7762e-01, -4.1281e-02, -7.3049e-01,\n",
" -7.2913e-04, -7.3122e-02, -2.3850e-01, 1.2546e+00, 1.8802e-01,\n",
" 1.3135e+00, -5.0367e-01, 1.2456e-01, 2.7475e+00, -1.2486e+00,\n",
" 1.4441e+00, 8.7469e-01, -5.6901e-01, -1.2145e-01, 3.1091e-01,\n",
" 1.9406e+00, -8.1891e-01, 3.1316e-02, -1.2867e+00, 8.0780e-01,\n",
" 7.0041e-01, 2.8903e-01, -1.6387e+00, 6.6553e-01, -1.3696e+00,\n",
" -7.9454e-01, 3.3899e-01, -5.5822e-01, -8.1969e-01, -1.2410e-01,\n",
" -3.7024e-01, -7.2536e-01, 7.5648e-01, 1.6899e+00, -1.7404e-01,\n",
" -1.7191e+00, -7.2603e-01, 1.5046e+00, 8.3216e-01, -1.5304e+00,\n",
" -1.8264e-01, 3.3451e-01, -5.6636e-02, 6.1099e-01, -9.8517e-01,\n",
" 4.4856e-01, -8.6275e-01, 6.9264e-02, -1.1572e+00, 2.3373e-01,\n",
" 5.9896e-01, 1.2384e-01, 1.0309e+00, 1.4273e+00, -8.4776e-01,\n",
" 2.6236e+00, -9.0133e-01, -4.0009e-01, -4.9727e-01, 3.7945e-01,\n",
" -9.0712e-01, 1.5725e+00, 1.6298e-01, 1.1544e-01, -4.3125e-01,\n",
" -8.7131e-01, -2.5880e-01, 2.9032e+00, 2.7154e-01, 1.3677e+00,\n",
" -8.8544e-01, 5.6083e-01, -1.8256e+00, 9.4832e-01, -1.0762e+00,\n",
" 7.5421e-01, 6.5008e-01, -8.6361e-01, -1.4911e+00, -7.5930e-02,\n",
" -1.6896e+00, 1.5223e-02, -1.5283e-01, -1.8741e+00, 1.1400e-01,\n",
" 1.8822e+00, 2.6615e+00, 2.1607e-01, -5.6243e-01, 3.6730e-01,\n",
" 4.0374e-01, -1.1973e+00, -5.3006e-01, -3.4750e-01, -4.4187e-01,\n",
" 7.4358e-01]]], grad_fn=<NativeLayerNormBackward0>)\n"
]
}
],
"source": [
"import random\n",
"import torch\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"\n",
"TEXT = (\n",
" \"<ABS>The Dark Knight is a 2008 superhero film directed by Christopher Nolan,<SOTL>\"\n",
")\n",
"OUT_TEXT = \"<START>\"\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"\n",
"ENCODER_INPUT = TOKENANO.encode(TEXT)\n",
"DECODER_INPUT = TOKENANO.encode(OUT_TEXT)\n",
"MAX_LEN = len(ENCODER_INPUT) + 1\n",
"\n",
"EN_IN, PAD_MASK = Transformer.normalize_sequence(ENCODER_INPUT, MAX_LEN, PAD_TOKEN, END_TOKEN)\n",
"DEC_IN, _ = Transformer.normalize_sequence(DECODER_INPUT, MAX_LEN, PAD_TOKEN, END_TOKEN)\n",
"BATCH_LEN = 3\n",
"\n",
"INPUT_TOKENIZATION = [\n",
" EN_IN\n",
"] * BATCH_LEN\n",
"OUTPUT_TOKENIZATION = [\n",
" DEC_IN\n",
"] * BATCH_LEN\n",
"\n",
"\n",
"print(INPUT_TOKENIZATION)\n",
"\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_DIM = EMBEDDED_SIZE * 4\n",
"\n",
"EMBEDDER = Embedder.NanoSocratesEmbedder(TOKEN_SPACE_SIZE, EMBEDDED_SIZE)\n",
"encoder_tensor: torch.Tensor = EMBEDDER(INPUT_TOKENIZATION)\n",
"ENCODER = torch.nn.Sequential(\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
")\n",
"decoder_tensor: torch.Tensor = EMBEDDER(OUTPUT_TOKENIZATION)\n",
"DECODER = torch.nn.Sequential(\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
")\n",
"\n",
"print(len(INPUT_TOKENIZATION))\n",
"print(f\"Embedder Tensor: {encoder_tensor.shape}\")\n",
"print(f\"Values:\\n{encoder_tensor}\")\n",
"\n",
"BATCH_SIZE, TOKENS, DIMENSIONS = encoder_tensor.shape\n",
"PAD_MASK = torch.tensor([PAD_MASK] * BATCH_LEN)\n",
"\n",
"encoder_out, _ = ENCODER((encoder_tensor, PAD_MASK))\n",
"tensor: torch.Tensor\n",
"tensor, _, _, _ = DECODER((decoder_tensor, encoder_out, encoder_out, None))\n",
"\n",
"print(f\"ENCODER Tensor: {tensor.shape}\")\n",
"print(f\"Values:\\n{tensor}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,131 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "c64b0e24",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[7706, 290, 756, 4270, 7357, 115, 351, 1507, 1213, 410, 3382, 317, 497, 4740, 2784, 7700], [7706, 290, 756, 4270, 7357, 115, 351, 1507, 1213, 410, 3382, 317, 497, 4740, 2784, 7700]]\n",
"2\n",
"Embedder Tensor: torch.Size([2, 16, 256])\n",
"Values:\n",
"tensor([[[-0.6981, 0.0804, -2.1672, ..., 0.3919, 0.3341, 1.0794],\n",
" [ 2.5818, -0.2308, 0.6001, ..., -0.0500, -0.0408, -0.9852],\n",
" [-0.6967, 0.8109, 1.3108, ..., 2.1693, 1.4143, -0.1236],\n",
" ...,\n",
" [ 2.1226, 2.5695, -1.6178, ..., -0.0652, -0.0802, 0.1103],\n",
" [ 0.8770, -2.4782, 0.8536, ..., 2.0471, -1.5702, 0.7387],\n",
" [-0.0495, -1.8601, 0.0405, ..., 2.3944, -0.4297, 1.1141]],\n",
"\n",
" [[-0.6981, 0.0804, -2.1672, ..., 0.3919, 0.3341, 1.0794],\n",
" [ 2.5818, -0.2308, 0.6001, ..., -0.0500, -0.0408, -0.9852],\n",
" [-0.6967, 0.8109, 1.3108, ..., 2.1693, 1.4143, -0.1236],\n",
" ...,\n",
" [ 2.1226, 2.5695, -1.6178, ..., -0.0652, -0.0802, 0.1103],\n",
" [ 0.8770, -2.4782, 0.8536, ..., 2.0471, -1.5702, 0.7387],\n",
" [-0.0495, -1.8601, 0.0405, ..., 2.3944, -0.4297, 1.1141]]],\n",
" grad_fn=<AddBackward0>)\n",
"ENCODER Tensor: torch.Size([2, 16, 256])\n",
"Values:\n",
"tensor([[[-1.6325, 0.4094, -2.1403, ..., 0.4654, 0.5993, 0.9683],\n",
" [ 1.8236, 0.4025, -0.6972, ..., 0.2430, 0.2536, -1.0889],\n",
" [-0.0587, 0.1618, -0.2335, ..., 1.7609, 1.2664, -0.4452],\n",
" ...,\n",
" [ 2.0337, 1.3184, -1.3165, ..., -0.3303, 0.6572, 0.0884],\n",
" [ 0.5752, -2.5594, -0.2393, ..., 1.3318, -1.4236, 0.4686],\n",
" [ 1.0075, -2.4273, -0.4593, ..., 1.6660, 0.0359, 0.2927]],\n",
"\n",
" [[-1.8300, -0.3079, -1.6585, ..., 0.4859, 0.5652, 0.8072],\n",
" [ 1.5461, -0.5666, -0.0330, ..., 0.5651, 0.2974, -1.0879],\n",
" [-0.9060, 0.2700, -0.4585, ..., 2.0363, 1.2657, -0.7060],\n",
" ...,\n",
" [ 1.6688, 1.7038, -1.9549, ..., -0.2052, 0.6270, 0.4598],\n",
" [ 0.0482, -2.3951, -0.4351, ..., 1.6230, -1.3662, -0.0390],\n",
" [ 0.8146, -2.6169, -0.6188, ..., 1.4525, 0.0507, 0.5177]]],\n",
" grad_fn=<NativeLayerNormBackward0>)\n"
]
}
],
"source": [
"import random\n",
"import torch\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"\n",
"TEXT = \"<ABS>The Dark Knight is a 2008 superhero film directed by Christopher Nolan,<SOTL>\"\n",
"\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(\n",
" VOCABULARY,\n",
" SPECIAL_VOC\n",
")\n",
"\n",
"TOKENIZATION = [TOKENANO.encode(TEXT), TOKENANO.encode(TEXT)]\n",
"print(TOKENIZATION)\n",
"\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_DIM = EMBEDDED_SIZE * 4\n",
"\n",
"EMBEDDER = Embedder.NanoSocratesEmbedder(TOKEN_SPACE_SIZE, EMBEDDED_SIZE)\n",
"tensor: torch.Tensor = EMBEDDER(TOKENIZATION)\n",
"ENCODER = torch.nn.Sequential(\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
")\n",
"print(len(TOKENIZATION))\n",
"print(f\"Embedder Tensor: {tensor.shape}\")\n",
"print(f\"Values:\\n{tensor}\")\n",
"\n",
"BATCH_SIZE, TOKENS, DIMENSIONS = tensor.shape\n",
"PAD_MASK = torch.tensor([[True] * TOKENS] * BATCH_SIZE, dtype=torch.bool)\n",
"tensor, _ = ENCODER((tensor, PAD_MASK))\n",
"print(f\"ENCODER Tensor: {tensor.shape}\")\n",
"print(f\"Values:\\n{tensor}\")\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,157 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "f5762da9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([3, 17, 7714])\n",
"torch.Size([3, 17])\n",
"tensor([[2034, 6523, 5406, 3985, 5406, 6523, 2034, 2034, 5745, 643, 5406, 7405,\n",
" 6523, 6230, 6419, 5745, 657],\n",
" [2458, 830, 5745, 5745, 5406, 3741, 2034, 5745, 6302, 6419, 5406, 2411,\n",
" 719, 830, 5745, 3189, 2775],\n",
" [2034, 5745, 5327, 4696, 6523, 643, 6419, 1671, 6302, 4406, 5745, 643,\n",
" 643, 1901, 1914, 1914, 719]])\n"
]
}
],
"source": [
"import random\n",
"import torch\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"\n",
"# BPE Init\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"\n",
"# Constants\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_DIM = EMBEDDED_SIZE * 4\n",
"\n",
"\n",
"# Model Init\n",
"ENCODER_EMBEDDER = Embedder.NanoSocratesEmbedder(TOKEN_SPACE_SIZE, EMBEDDED_SIZE)\n",
"DECODER_EMBEDDER = Embedder.NanoSocratesEmbedder(TOKEN_SPACE_SIZE, EMBEDDED_SIZE)\n",
"\n",
"ENCODER = torch.nn.Sequential(\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
")\n",
"\n",
"DECODER = torch.nn.Sequential(\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
")\n",
"\n",
"DETOKENER = Transformer.DeToken(\n",
" EMBEDDED_SIZE,\n",
" TOKEN_SPACE_SIZE\n",
")\n",
"\n",
"\n",
"# Data\n",
"TEXT = (\n",
" \"<ABS>The Dark Knight is a 2008 superhero film directed by Christopher Nolan,<SOTL>\"\n",
")\n",
"OUT_TEXT = \"<START>\"\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"\n",
"ENCODER_INPUT = TOKENANO.encode(TEXT)\n",
"DECODER_INPUT = TOKENANO.encode(OUT_TEXT)\n",
"MAX_LEN = len(ENCODER_INPUT) + 1\n",
"\n",
"EN_IN, PAD_MASK = Transformer.normalize_sequence(ENCODER_INPUT, MAX_LEN, PAD_TOKEN, END_TOKEN)\n",
"DEC_IN, _ = Transformer.normalize_sequence(DECODER_INPUT, MAX_LEN, PAD_TOKEN, END_TOKEN)\n",
"\n",
"BATCH_LEN = 3\n",
"\n",
"INPUT_TOKENIZATION = [\n",
" EN_IN\n",
"] * BATCH_LEN\n",
"OUTPUT_TOKENIZATION = [\n",
" DEC_IN\n",
"] * BATCH_LEN\n",
"\n",
"encoder_tensor_input = ENCODER_EMBEDDER(INPUT_TOKENIZATION)\n",
"encoder_padding_mask = torch.tensor([PAD_MASK] * BATCH_LEN)\n",
"\n",
"encoder_output, _ = ENCODER((encoder_tensor_input, encoder_padding_mask))\n",
"\n",
"decoder_tensor_input = DECODER_EMBEDDER(OUTPUT_TOKENIZATION)\n",
"decoder_padding_mask = torch.tensor([[False] * MAX_LEN] * BATCH_LEN)\n",
"\n",
"decoder_output, _, _, _ = DECODER((decoder_tensor_input, encoder_output, encoder_output, None))\n",
"\n",
"logits: torch.Tensor = DETOKENER(decoder_output)\n",
"\n",
"print(logits.shape)\n",
"\n",
"# print(logits)\n",
"\n",
"most_probable_tokens = torch.argmax(logits, 2)\n",
"\n",
"print(most_probable_tokens.shape)\n",
"print(most_probable_tokens)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

View File

@ -1,112 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "4ae47336",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"B, T, D = 4, 7, 32\n",
"x = torch.randn(B, T, D)\n",
"attn_mask = torch.triu(torch.ones(T, T, dtype=torch.bool), diagonal=1) # [T,T]\n",
"pad_mask = torch.zeros(B, T, dtype=torch.bool) # no pads\n",
"mha = torch.nn.MultiheadAttention(D, num_heads=4, batch_first=True)\n",
"y, _ = mha(x, x, x, attn_mask=attn_mask, key_padding_mask=pad_mask) # should work\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e38e3fb5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],\n",
" [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]],\n",
"\n",
" [[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],\n",
" [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],\n",
" [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]]])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"torch.nn.functional.one_hot(torch.tensor([\n",
" [4, 1, 9],\n",
" [2,4,5]\n",
"]))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7119ad53",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"device(type='cpu')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"torch.get_default_device()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8c95691a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"xpu\n"
]
}
],
"source": [
"from Project_Model.Libs.TorchShims import get_default_device\n",
"\n",
"print(get_default_device())"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,170 +0,0 @@
import random
import torch
import pandas as pd
from pathlib import Path
import Project_Model.Libs.Embedder as Embedder
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
import Project_Model.Libs.TorchShims as torch_shims
# set a fixed seed
torch.manual_seed(0)
random.seed(0)
DEVICE = torch_shims.get_default_device()
torch.set_default_device(DEVICE)
# set a default device
# BPE Init
VOCABULARY_PATH = Path("Assets/Model/toy_10/toy_dictionary.json")
SPECIAL_VOC = BPE.default_special_tokens()
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
# Constants
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1
EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 8
SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 4
MAX_EPOCHS = int(1e3)
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
END_TOKEN = TOKENANO.encode("<END>")[0]
# Load CSV
TOY_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
TOY_DATASET = pd.read_csv(TOY_DATASET_PATH)
TOY_BATCH_INPUT_LIST: list[list[int]] = []
TOY_BATCH_PADDING_LIST: list[list[bool]] = []
TOY_BATCH_TARGET_LIST: list[list[int]] = []
TOY_BATCH_DECODER_DEFAULT: list[list[int]]= []
for index, row in TOY_DATASET.iterrows():
RDFs: str = row["RDFs"]
Abstract: str = row["Abstract"]
input_tokens = TOKENANO.encode(RDFs)
output_tokens = TOKENANO.encode(Abstract)[1:]
decoder_default_tokens = TOKENANO.encode("<SOS>")
input_tokens, padding = Transformer.normalize_sequence(
input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
)
output_tokens, _ = Transformer.normalize_sequence(
output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
)
decoder_default_tokens, _ = Transformer.normalize_sequence(
decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN, False
)
TOY_BATCH_INPUT_LIST.append(input_tokens)
TOY_BATCH_PADDING_LIST.append(padding)
TOY_BATCH_TARGET_LIST.append(output_tokens)
TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)
output_tokens = TOKENANO.encode(RDFs)
input_tokens = TOKENANO.encode(Abstract)[1:]
decoder_default_tokens = TOKENANO.encode("<SOS>")
input_tokens, padding = Transformer.normalize_sequence(
input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
)
output_tokens, _ = Transformer.normalize_sequence(
output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
)
decoder_default_tokens, _ = Transformer.normalize_sequence(
decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN, False
)
TOY_BATCH_INPUT_LIST.append(input_tokens)
TOY_BATCH_PADDING_LIST.append(padding)
TOY_BATCH_TARGET_LIST.append(output_tokens)
TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)
# Training loop
LOSS_HISTORY = []
NANOSOCRATES = Transformer.TrainingModel(
TOKEN_SPACE_SIZE,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS
)
cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
optimizer = torch.optim.AdamW(NANOSOCRATES.parameters())
scheduler = Transformer.WarmupLR(optimizer, 4000, EMBEDDED_SIZE)
last_loss = 0
current_epoch = 0
while current_epoch < MAX_EPOCHS:
optimizer.zero_grad()
encoder_list = torch.tensor(TOY_BATCH_INPUT_LIST[:])
decoder_list = torch.tensor(TOY_BATCH_DECODER_DEFAULT[:])
src_padding = torch.tensor(TOY_BATCH_PADDING_LIST[:], dtype=torch.bool)
# Transform target into logits
target_logits = torch.tensor(TOY_BATCH_TARGET_LIST[:])
last_loss = 0
last_prediction: torch.Tensor
for i in range(0, SENTENCE_LENGTH):
optimizer.zero_grad()
tgt_padding = decoder_list.eq(PAD_TOKEN)
logits: torch.Tensor = NANOSOCRATES((encoder_list, src_padding, decoder_list, tgt_padding))
prob = torch.softmax(logits, 2)
most_probable_tokens = torch.argmax(prob, 2)
last_prediction = most_probable_tokens
logits = logits[:,:i,:]
logits = logits.permute(0, 2, 1)
loss : torch.Tensor = cross_entropy(logits, target_logits[:, 0:i])
# loss : torch.Tensor = cross_entropy(logits, target_logits)
last_loss = loss
loss.backward()
optimizer.step()
scheduler.step()
if i < SENTENCE_LENGTH - 1:
decoder_list[:,i+1] = target_logits[:,i]
current_epoch += 1
if current_epoch % 1 == 0:
print(f"EPOCH {current_epoch}\n\tLoss: {last_loss}")
for encoded_sentence, expected_sentence in zip(
Transformer.tensor2token(last_prediction[:,:], END_TOKEN), # type: ignore
Transformer.tensor2token(target_logits[:,:], END_TOKEN)
):
decoded_sentence = TOKENANO.decode(encoded_sentence)
decoded_target = TOKENANO.decode(expected_sentence)
print(f"\tACTUAL:\n\t\t{decoded_sentence}\n\tEXPECTED:\n\t\t{decoded_target}\n")

View File

@ -1,60 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "dd23cc94",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Current detected architecture is: xpu\n"
]
}
],
"source": [
"import torch\n",
"from Project_Model.Libs.TorchShims import get_default_device\n",
"\n",
"DEVICE = get_default_device()\n",
"\n",
"print(f\"Current detected architecture is: {DEVICE.type}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6584882e",
"metadata": {},
"outputs": [],
"source": [
"import Project_Model.Libs.Transformer as Transformer\n",
"DECODER = Transformer.Decoder(256, 1024, 4)\n",
"print()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,4 +0,0 @@
from abc import ABC
class Encoder(ABC):
pass

View File

@ -1,164 +0,0 @@
from collections import deque
import datetime
from pathlib import Path
import re
from ..Classes import (
NanoSocratesBPE,
NanoSocratesChunker,
NanoSocratesSplitter,
NanoSocratesBatchMemoryBPE,
)
from ..Enums import TokenType
from ..Utils import (
special_regex_maker,
iterator_with_checks,
save_nanos_vocabulary,
load_nanos_vocabulary,
save_json,
load_json,
)
class NanoSocraTraineRam:
def __init__(
self,
max_vocabulary: int,
special_vocabulary: list[str],
merge_treshold: int = 0,
max_iterations: int = 0,
print_after_iterations: int = 1,
) -> None:
# Bytes
BYTE_RESERVED_TOKENS = 256
SPECIAL_RESERVED_TOKENS = len(special_vocabulary)
RESERVED_TOKENS = BYTE_RESERVED_TOKENS + SPECIAL_RESERVED_TOKENS
self.__max_vocabulary = max_vocabulary - RESERVED_TOKENS
self.__max_iterations = max_iterations
self.__merge_treshold = merge_treshold
self.__special_token_regex = special_regex_maker(special_vocabulary)
self.__print_after_iterations = print_after_iterations
def trainBPE(
self,
path: Path,
bpe: NanoSocratesBPE | None = None,
) -> NanoSocratesBPE:
if not path.is_file():
raise FileNotFoundError()
if bpe is None:
bpe = NanoSocratesBPE()
BPE = bpe
if BPE.vocabulary_size > self.__max_vocabulary:
return BPE
exit = False
current_iteration = 0
data = self.__gather_data_from_file(path)
while not exit:
current_iteration = self.__increment_counter(current_iteration)
LAST_VOC_SIZE = BPE.vocabulary_size
last_memory = None
_, data, last_memory = self.__round_train(BPE, data)
NEW_VOC_SIZE = BPE.vocabulary_size
if current_iteration % self.__print_after_iterations == 0:
DELIMITER = "==============="
DEBUG = "\n".join(
[
DELIMITER,
f"ITERATION: {current_iteration}",
DELIMITER,
f"\tVocabulary size: {BPE.vocabulary_size}\n",
f"\tFrequencies:\n{last_memory.frequencies}\n", # type: ignore (pretty sure it's not None)
f"\tvocabulary:\n{BPE.vocabulary}",
DELIMITER,
"",
]
)
print(DEBUG)
if LAST_VOC_SIZE == NEW_VOC_SIZE:
exit = True
continue
if current_iteration == self.__max_iterations:
exit = True
continue
if BPE.vocabulary_size == self.__max_vocabulary:
exit = True
continue
return BPE
def __round_train(self, bpe: NanoSocratesBPE, data: list[list[int]]):
DATA_LEN = len(data)
NEW_DATA = []
counter = 0
memory = NanoSocratesBatchMemoryBPE({}, 0)
while len(data) > 0:
counter += 1
last_batch = len(data) == 1
piece = data.pop()
bpe, memory, output = bpe.fit(piece, memory, last_batch)
if counter % int(1E6) == 0:
print(f"Fitted: {counter}/{DATA_LEN}")
if len(output) < 2:
continue
NEW_DATA.append(output)
return (bpe, NEW_DATA, memory)
def __gather_data_from_file(self, path: Path) -> list[list[int]]:
SPLITTER = NanoSocratesSplitter(self.__special_token_regex)
DATA: list[list[int]] = []
FILE = open(path, "r", encoding="utf-8")
file_string = FILE.read()
FILE.close()
for piece, type in SPLITTER.split_text(file_string):
if type != TokenType.BPE:
continue
int_list = self.__make_list_ids(piece)
DATA.append(int_list)
return DATA
def __increment_counter(self, counter: int):
# What if overflows???
try:
counter += 1
except:
print("Integer overflow")
counter = 1
return counter
def __make_list_ids(self, corpus: str):
return list(corpus.encode("utf-8"))

View File

@ -1,248 +0,0 @@
from collections import deque
import datetime
from pathlib import Path
import re
from ..Classes import (
NanoSocratesBPE,
NanoSocratesChunker,
NanoSocratesSplitter,
NanoSocratesBatchMemoryBPE,
)
from ..Enums import TokenType
from ..Utils import (
special_regex_maker,
iterator_with_checks,
save_nanos_vocabulary,
load_nanos_vocabulary,
save_json,
load_json,
)
class NanoSocraTrainer:
def __init__(
self,
max_vocabulary: int,
special_vocabulary: list[str],
chunk_size: int,
merge_treshold: int = 0,
max_iterations: int = 0,
print_after_iterations: int = 1,
) -> None:
# Bytes
BYTE_RESERVED_TOKENS = 256
SPECIAL_RESERVED_TOKENS = len(special_vocabulary)
RESERVED_TOKENS = BYTE_RESERVED_TOKENS + SPECIAL_RESERVED_TOKENS
self.__max_vocabulary = max_vocabulary - RESERVED_TOKENS
self.__max_iterations = max_iterations
self.__chunk_size = chunk_size
self.__merge_treshold = merge_treshold
self.__special_token_regex = special_regex_maker(special_vocabulary)
self.__print_after_iterations = print_after_iterations
def trainBPE(
self,
path: Path,
cache_dir: Path,
bpe: NanoSocratesBPE | None = None,
resume_from_iter: int = 0,
) -> NanoSocratesBPE:
if not path.is_file():
raise FileNotFoundError()
if not cache_dir.is_dir():
raise NotADirectoryError()
if bpe is None:
bpe = NanoSocratesBPE()
BPE = bpe
if BPE.vocabulary_size > self.__max_vocabulary:
return BPE
exit = False
cached = False
current_iteration = 0
input_path = path
NEXT_ITERATION = resume_from_iter + 1 if resume_from_iter != 0 else 0
PATH_GEN = self.__switch_paths(path, cache_dir, NEXT_ITERATION)
MEMORY_PATH_GEN = self.__switch_memory(cache_dir, resume_from_iter)
if resume_from_iter != 0:
cached = True
current_iteration = resume_from_iter
input_path = next(PATH_GEN)
# UGLY: fixes a bug immediately, unfortunately
_, _ = next(MEMORY_PATH_GEN)
_, voc_cache_path = next(MEMORY_PATH_GEN)
vocabulary = load_nanos_vocabulary(voc_cache_path)
BPE = NanoSocratesBPE(vocabulary)
while not exit:
out_path = next(PATH_GEN)
internal_cache_path, vocabulary_cache = next(MEMORY_PATH_GEN)
current_iteration = self.__increment_counter(current_iteration)
LAST_VOC_SIZE = BPE.vocabulary_size
FILE = open(out_path, "w")
last_memory = None
for _, memory, output in self.__round_train(input_path, BPE, cached):
last_memory = memory
FILE.write(output)
FILE.close()
internal_cache = {
"finished_iter": current_iteration,
"read_from": f"{input_path}",
"wrote_to": f"{out_path}",
"at": datetime.datetime.now(datetime.timezone.utc).strftime(
"%Y-%m-%d %H:%M:%S.%f"
)[:-3],
}
VOCABULARY = BPE.vocabulary
save_json(internal_cache, internal_cache_path)
save_nanos_vocabulary(VOCABULARY, vocabulary_cache)
cached = True
input_path = out_path
NEW_VOC_SIZE = BPE.vocabulary_size
if current_iteration % self.__print_after_iterations == 0:
DELIMITER = "==============="
DEBUG = "\n".join(
[
DELIMITER,
f"ITERATION: {current_iteration}",
DELIMITER,
f"\tVocabulary size: {BPE.vocabulary_size}\n",
f"\tFrequencies:\n{last_memory.frequencies}\n", # type: ignore (pretty sure it's not None)
f"\tvocabulary:\n{BPE.vocabulary}",
DELIMITER,
"",
]
)
print(DEBUG)
if LAST_VOC_SIZE == NEW_VOC_SIZE:
exit = True
continue
if current_iteration == self.__max_iterations:
exit = True
continue
if BPE.vocabulary_size == self.__max_vocabulary:
exit = True
continue
return BPE
def __round_train(self, path: Path, bpe: NanoSocratesBPE, cached: bool):
CHUNKER = NanoSocratesChunker(self.__chunk_size, self.__special_token_regex)
SPLITTER = NanoSocratesSplitter(self.__special_token_regex)
BPE = bpe
memory = NanoSocratesBatchMemoryBPE({}, self.__merge_treshold)
CHUNKER_GENERATOR = iterator_with_checks(CHUNKER.chunk(path))
for chunk, last_chunk in CHUNKER_GENERATOR:
PIECE_GENERATOR = iterator_with_checks(SPLITTER.split_text(chunk))
for piece, last_piece in PIECE_GENERATOR:
LAST_BATCH = last_chunk and last_piece
PIECE, TOKEN_TYPE = piece
if TOKEN_TYPE != TokenType.BPE:
_, _, out = BPE.fit([], memory, LAST_BATCH)
yield (BPE, memory, PIECE)
continue
PIECE_DATA = self.__make_list_ids(PIECE, cached)
_, _, out = BPE.fit(PIECE_DATA, memory, LAST_BATCH)
OUT_STRING = f"{out}"
yield (BPE, memory, OUT_STRING)
def __increment_counter(self, counter: int):
# What if overflows???
try:
counter += 1
except:
print("Integer overflow")
counter = 1
return counter
def __make_list_ids(self, corpus: str, cached: bool):
if not cached:
return list(corpus.encode("utf-8"))
REDUCED_CORPUS_LEN = len(corpus) - 1
# Skip these cars "[" "]"
INTS = corpus[1:REDUCED_CORPUS_LEN]
INT_LIST = list(map(int, INTS.split(",")))
return INT_LIST
def __switch_paths(self, path: Path, cache_path: Path, initial_iteration: int):
CORPUS_TMP_1 = cache_path / "corpus-tmp1.txt"
CORPUS_TMP_2 = cache_path / "corpus-tmp2.txt"
switch = True
if initial_iteration % 2 == 1:
switch = False
del initial_iteration
while True:
if switch:
yield CORPUS_TMP_1
else:
yield CORPUS_TMP_2
switch = not switch
def __switch_memory(self, cache_path: Path, initial_iteration: int):
INTERNAL_TMP_1 = cache_path / "internal-tmp1.json"
INTERNAL_TMP_2 = cache_path / "internal-tmp2.json"
VOCAB_TMP_1 = cache_path / "voc-tmp1.json"
VOCAB_TMP_2 = cache_path / "voc-tmp2.json"
switch = False
if initial_iteration % 2 == 1:
switch = True
del initial_iteration
while True:
if switch:
yield (INTERNAL_TMP_1, VOCAB_TMP_1)
else:
yield (INTERNAL_TMP_2, VOCAB_TMP_2)
switch = not switch

View File

@ -1,280 +0,0 @@
from collections import deque
import datetime
import itertools
from multiprocessing import Pool
import os
from pathlib import Path
import re
import time
from ..Classes import (
NanoSocratesBPE,
NanoSocratesChunker,
NanoSocratesSplitter,
NanoSocratesBatchMemoryBPE,
)
from ..Enums import TokenType
from ..Utils import (
special_regex_maker,
iterator_with_checks,
save_nanos_vocabulary,
load_nanos_vocabulary,
save_json,
load_json,
)
def split(a, n):
k, m = divmod(len(a), n)
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
def split_fit(object: tuple[NanoSocratesBPE, list[list[int]]]):
bpe, data = object
NEW_DATA: list[list[int]] = []
memory = NanoSocratesBatchMemoryBPE({}, 0)
while len(data) > 0:
piece = data.pop()
bpe, memory, output = bpe.fit(piece, memory, False)
if len(output) < 2:
continue
# We are sure of its type
NEW_DATA.append(piece) # type: ignore
return (bpe, NEW_DATA, memory)
def split_encode(object: tuple[NanoSocratesBPE, list[list[int]]]):
bpe, data = object
NEW_DATA: list[list[int]] = []
for index, piece in zip(range(0, len(data)), data):
output = bpe.encode_intermediate(piece)
if len(output) < 2:
continue
# We are sure of its type
NEW_DATA.append(data[index]) # type: ignore
return NEW_DATA
class NanoSocraTrainerPool:
def __init__(
self,
max_vocabulary: int,
special_vocabulary: list[str],
merge_treshold: int = 0,
max_iterations: int = 0,
print_after_iterations: int = 1,
) -> None:
# Bytes
BYTE_RESERVED_TOKENS = 256
SPECIAL_RESERVED_TOKENS = len(special_vocabulary)
RESERVED_TOKENS = BYTE_RESERVED_TOKENS + SPECIAL_RESERVED_TOKENS
self.__max_vocabulary = max_vocabulary - RESERVED_TOKENS
self.__max_iterations = max_iterations
self.__merge_treshold = merge_treshold
self.__special_token_regex = special_regex_maker(special_vocabulary)
self.__print_after_iterations = print_after_iterations
# TODO: add a resume function
def trainBPE(
self,
path: Path,
cache_file: Path,
bpe: NanoSocratesBPE | None = None,
) -> NanoSocratesBPE:
if not path.is_file():
raise FileNotFoundError()
if not cache_file.is_file():
file = cache_file.open("w")
file.close()
if bpe is None:
bpe = NanoSocratesBPE()
BPE = bpe
if BPE.vocabulary_size >= self.__max_vocabulary:
return BPE
exit = False
current_iteration = 0
data = self.__gather_data_from_file(path)
data = self.__encode_from_cache(BPE, data)
while not exit:
current_iteration = self.__increment_counter(current_iteration)
LAST_VOC_SIZE = BPE.vocabulary_size
last_memory = None
start = time.time_ns()
_, data, last_memory = self.__round_train(BPE, data)
end = time.time_ns()
NEW_VOC_SIZE = BPE.vocabulary_size
VOCABULARY = BPE.vocabulary
save_nanos_vocabulary(VOCABULARY, cache_file)
if current_iteration % self.__print_after_iterations == 0:
DELIMITER = "==============="
DEBUG = "\n".join(
[
DELIMITER,
f"ITERATION: {current_iteration}",
DELIMITER,
f"\tVocabulary size: {BPE.vocabulary_size - 256}\n",
f"\tTime elapsed: {(end - start)/1E9}s",
DELIMITER,
"",
]
)
print(DEBUG)
if LAST_VOC_SIZE == NEW_VOC_SIZE:
exit = True
continue
if current_iteration == self.__max_iterations:
exit = True
continue
if BPE.vocabulary_size == self.__max_vocabulary:
exit = True
continue
return BPE
def __round_train(self, bpe: NanoSocratesBPE, data: list[list[int]]):
NEW_DATA: list[list[int]] = []
MEMORY = NanoSocratesBatchMemoryBPE({}, self.__merge_treshold)
fit_funct = split_fit
CPU_COUNT = os.process_cpu_count()
if CPU_COUNT is None:
raise Exception()
VOCABULARY = bpe.vocabulary
data_chunks = split(data, CPU_COUNT)
JOBS = [(NanoSocratesBPE(VOCABULARY), chunk) for chunk in data_chunks]
JOB_RESULTS: list[
tuple[NanoSocratesBPE, list[list[int]], NanoSocratesBatchMemoryBPE]
]
with Pool() as pool:
JOB_RESULTS = pool.map(fit_funct, JOBS)
for i, res in zip(range(0, CPU_COUNT), JOB_RESULTS):
_, job_output, job_memory = res
NEW_DATA.extend(job_output)
for key, value in job_memory.frequencies.items():
frequency = MEMORY.frequencies.get(key)
if frequency is None:
frequency = 0
MEMORY.frequencies[key] = 0
frequency += value
MEMORY.frequencies[key] = frequency
del job_output
del job_memory
print(f"Joined {i + 1} out of {CPU_COUNT}")
# Get new token
bpe.fit([], MEMORY, True)
print(f"Sentences from {len(data)} to {len(NEW_DATA)}")
return (bpe, NEW_DATA, MEMORY)
def __gather_data_from_file(self, path: Path) -> list[list[int]]:
SPLITTER = NanoSocratesSplitter(self.__special_token_regex)
DATA: list[list[int]] = []
FILE = open(path, "r", encoding="utf-8")
file_string = FILE.read()
FILE.close()
for piece, type in SPLITTER.split_text(file_string):
if type != TokenType.BPE:
continue
int_list = self.__make_list_ids(piece)
DATA.append(int_list)
return DATA
def __encode_from_cache(self, bpe: NanoSocratesBPE, data: list[list[int]]):
NEW_DATA : list[list[int]]= []
CPU_COUNT = os.process_cpu_count()
if CPU_COUNT is None:
raise Exception()
VOCABULARY = bpe.vocabulary
data_chunks = split(data, CPU_COUNT)
JOBS = [(NanoSocratesBPE(VOCABULARY), chunk) for chunk in data_chunks]
JOB_RESULTS: list[list[list[int]]]
with Pool() as pool:
JOB_RESULTS = pool.map(split_encode, JOBS)
for i, res in zip(range(0, CPU_COUNT), JOB_RESULTS):
job_output = res
NEW_DATA.extend(job_output)
del job_output
print(f"Joined {i + 1} out of {CPU_COUNT}")
print(f"Sentences from {len(data)} to {len(NEW_DATA)}")
return NEW_DATA
def __increment_counter(self, counter: int):
# What if overflows???
try:
counter += 1
except:
print("Integer overflow")
counter = 1
return counter
def __make_list_ids(self, corpus: str):
return list(corpus.encode("utf-8"))

View File

@ -1,219 +0,0 @@
from collections import deque
from .Encoder import Encoder
from ..Errors import OutOfDictionaryException, DuplicateWordException
# ABOUT THE DICTIONARY:
# the string is converted into utf-char bytes, that is: each char is rappresented with a set of bytes from 1 to 4.
# each bytes get casted into an integer; such that, if an integer has its value lower then 256,
# then it is rappresenting an utf-char-byte, otherwise it is a token-ID.
class NanoSocratesBatchMemoryBPE:
"""Memory to batch training. Keeps token couple frequencies, and merge_treshold"""
def __init__(
self, frequencies: dict[tuple[int, int], int], merge_treshold: int
) -> None:
self.frequencies = frequencies
self.merge_treshold = merge_treshold
class NanoSocratesBPE(Encoder):
def __init__(self, vocabulary: dict[tuple[int, int], int] | None = None) -> None:
super().__init__()
self.__vocabulary: dict[tuple[int, int], int] = {}
self.__reverse_vocabulary: dict[int, tuple[int, int]] = {}
if vocabulary is None:
return
for key, value in vocabulary.items():
if value < 256:
raise OutOfDictionaryException()
# values under 256 are used for unpaired char
# TODO: check if they are in order
self.__vocabulary[key] = value
self.__reverse_vocabulary[value] = key
@property
def vocabulary_size(self):
return len(self.__vocabulary) + 256
@property
def vocabulary(self):
return self.__vocabulary
@property
def __next_id(self) -> int:
"""
Gets the next it
Returns:
int:
"""
return self.vocabulary_size
# TODO: implement fit
def fit(
self,
chunk_data: list[int],
memory: NanoSocratesBatchMemoryBPE,
last_batch: bool,
):
ENCODED_CHUNK = self.encode_intermediate(chunk_data)
DATA_LEN_BEFORE_LAST = len(ENCODED_CHUNK) - 1
# update frequency of each couple of element
for i in range(0, DATA_LEN_BEFORE_LAST):
CANDIDATE_COUPLE = (ENCODED_CHUNK[i], ENCODED_CHUNK[i + 1])
frequency = memory.frequencies.get(CANDIDATE_COUPLE)
# Initialize frequency
if frequency is None:
frequency = 0
memory.frequencies[CANDIDATE_COUPLE] = 0
frequency += 1
memory.frequencies[CANDIDATE_COUPLE] = frequency
if not last_batch:
return (self, memory, ENCODED_CHUNK)
if len(memory.frequencies) < 1:
return (self, memory, ENCODED_CHUNK)
FREQUENCIES = memory.frequencies
MAX_COUPLE = max(FREQUENCIES.items(), key=lambda item: item[1])[0]
FREQUENCY = FREQUENCIES[MAX_COUPLE]
if FREQUENCY < memory.merge_treshold:
return (self, memory, ENCODED_CHUNK)
self.__learn_word(MAX_COUPLE)
return (self, memory, ENCODED_CHUNK)
def encode(self, piece: str) -> list[int]:
"""Encode a String into token IDs, it firt convert it into utf-8, then pass the list of integer to encode_intermediate()
Args:
piece (str):
Returns:
list[int]:
"""
converted_piece = list(piece.encode("utf-8"))
return self.encode_intermediate(converted_piece)
def encode_intermediate(self, piece: list[int]) -> list[int]:
"""Encode a piece (as list of integer) till its maximum
Args:
piece (list[int]): piece to encode
Returns:
list[int]: piece encoded
"""
current_piece = piece
new_piece = self.__round_encode(current_piece)
# until current_piece is bigger then new_piece, keep encoding
while len(current_piece) != len(new_piece):
current_piece = new_piece
new_piece = self.__round_encode(current_piece)
return current_piece
def __round_encode(self, piece: list[int]):
"""A single round of encode that traverse all the object. Multiple round are needed for a full encode: \n
1) "ABAB" -> "XX"
2) "XX" -> "Y"
Args:
piece (list[int]): the object to encode as a list of integer
Returns:
(list[int]): the one time encoded object
"""
if len(piece) == 1:
return piece
PIECE_LENGTH = len(piece) - 1
NEW_PIECE: list[int] = []
index = 0
while index < PIECE_LENGTH:
CANDIDATE_WORD = (
piece[index],
piece[index + 1],
) # take a tuple of consecutive element [int]
CANDIDATE_TOKEN = self.__vocabulary.get(CANDIDATE_WORD)
# if no token to substitute the tuple, append the first element
if CANDIDATE_TOKEN is None:
NEW_PIECE.append(piece[index])
index += 1
# if the latter element of the tuple is the last element of the piece, append it
if index == PIECE_LENGTH:
NEW_PIECE.append(piece[index])
continue
# in this case there was a candidate token to substitute the couple of element
NEW_PIECE.append(CANDIDATE_TOKEN)
index += 2
if index == PIECE_LENGTH:
NEW_PIECE.append(piece[index])
return NEW_PIECE
# TODO: Remake decode to take a list of token IDs
def decode(self, token_ids: list[int]) -> str:
# deque: double ended queue
token_stack: deque[int] = deque(token_ids)
UTF_8_STRING_ARR: bytearray = bytearray()
while len(token_stack) > 0:
TOKEN_ID = token_stack.popleft()
if TOKEN_ID < 256:
UTF_8_STRING_ARR.append(TOKEN_ID)
continue
left_token, right_token = self.__token_decode(TOKEN_ID)
token_stack.appendleft(right_token)
token_stack.appendleft(left_token)
return UTF_8_STRING_ARR.decode("utf-8", errors="ignore")
def __token_decode(self, token_id: int) -> tuple[int, int]:
CANDIDATE_DECODED = self.__reverse_vocabulary.get(token_id)
if CANDIDATE_DECODED is None:
raise OutOfDictionaryException()
return CANDIDATE_DECODED
def __learn_word(self, words: tuple[int, int]):
"""learn a new couple of object in the vocabulary
Args:
words (tuple[int, int]): the Pair of element to substitute with a new tokenID
Raises:
DuplicateWordException: it launch if there is a duplicate of the new tokenID in the dictionary
"""
ID = self.__next_id
DUPLICATE = self.__vocabulary.get(words)
if DUPLICATE is not None:
raise DuplicateWordException()
self.__vocabulary[words] = ID
self.__reverse_vocabulary[ID] = words

View File

@ -1,70 +0,0 @@
from pathlib import Path
import re
from ..Errors import DelimiterNotFoundException
class NanoSocratesChunker:
def __init__(self, max_size: int, special_token_regex: re.Pattern) -> None:
self.__max_size: int = max_size
self.__special_token_regex: re.Pattern = special_token_regex
self.__residual: str = ""
# max theorethical size of chars
# between special tokens:
# - min: size - len(longest_token)
# - MAX: size - len(shortest_token)
def chunk(self, file_path: Path):
# read_file
FILE = open(file_path, "r", encoding="utf-8")
exit = False
while not exit:
REMAINING_SIZE = self.__max_size - len(self.__residual)
READ_SIZE = min(self.__max_size, REMAINING_SIZE)
FILE_CHUNK = FILE.read(READ_SIZE)
if len(FILE_CHUNK) == 0:
exit = True
continue
CHUNK = self.__append_residuals(FILE_CHUNK)
boundaries = self.__identify_boudaries(CHUNK)
if boundaries is None:
# boundaries not found in 2 chunks,
if len(CHUNK) > self.__max_size - 1:
raise DelimiterNotFoundException()
if exit:
yield CHUNK
self.__set_residual(0, CHUNK)
continue
start, end = boundaries
self.__set_residual(end, CHUNK)
yield CHUNK[start:end]
def __identify_boudaries(self, corpus: str) -> tuple[int, int] | None:
end = 0
for match in self.__special_token_regex.finditer(corpus):
# print(match)
end = match.end()
if end == 0:
return None
return (0, end)
def __append_residuals(self, corpus: str) -> str:
RESIDUAL = self.__residual
self.__residual = ""
return RESIDUAL + corpus
def __set_residual(self, index: int, corpus: str):
self.__residual = corpus[index:]

View File

@ -1,68 +0,0 @@
from .Encoder import Encoder
from ..Errors import OutOfDictionaryException
class NanoSocratesSpecial(Encoder):
def __init__(
self, bpe_vocabulary_size: int, special_tokens: list[str] = []
) -> None:
super().__init__()
self.__bpe_offset = bpe_vocabulary_size
self.__vocabulary: dict[str, int] = {}
self.__reverse_vocabulary: dict[int, str] = {}
if len(special_tokens) == 0:
return
for index, TOKEN in zip(range(0, len(special_tokens)), special_tokens):
CANDIDATE_ID = self.__bpe_offset + index + 1
self.__vocabulary[TOKEN] = CANDIDATE_ID
self.__reverse_vocabulary[CANDIDATE_ID] = TOKEN
@property
def __next_id(self):
BPE_OFFSET = self.__bpe_offset
VOC_LENGTH = len(self.__vocabulary)
return BPE_OFFSET + VOC_LENGTH + 1
@property
def vocabulary_size(self) -> int:
return len(self.vocabulary)
@property
def vocabulary(self) -> dict[str, int]:
return self.__vocabulary
@property
def reverse_vocabulary(self) -> dict[int, str]:
return self.__reverse_vocabulary
def add_special_word_to_vocabulary(self, word: str):
CANDIDATE_INDEX = self.__next_id
self.__vocabulary[word] = CANDIDATE_INDEX
self.__reverse_vocabulary[CANDIDATE_INDEX] = word
def encode(self, word: str) -> list[int]:
ID = self.__vocabulary.get(word)
if ID is None:
raise OutOfDictionaryException()
return [ID]
def decode(self, token_id: list[int]) -> str:
if len(token_id) != 1:
raise OutOfDictionaryException()
ID = token_id[0]
WORD = self.__reverse_vocabulary.get(ID)
if WORD is None:
raise OutOfDictionaryException()
return WORD

View File

@ -1,98 +0,0 @@
import re
from collections import deque
from typing import Generator
from ..Enums import TokenType
class NanoSocratesSplitter:
def __init__(
self, special_token_regex: re.Pattern, max_bpe_token_id: int = 255
) -> None:
# attention the regex got already compiled
self.__special_token_regex = special_token_regex
self.__max_bpe_token_id: int = max_bpe_token_id # used for decoding
def split_text(self, corpus: str) -> Generator[tuple[str, TokenType]]:
"""Split a text using a regex given
Args:
corpus (str): all the corpus string to split
Yields:
Generator[tuple[str, TokenType]]: each time returns a piece of the splitted text: string and its TokenType. \n
TokenType describe if the string is for the BPE or a special Token [BPE, SPECIAL]
"""
bpe_start = 0
bpe_end = len(corpus) # this can be deleted!
for special_token_start, special_token_end in self.__find_boundaries(corpus):
# FIND BPE
bpe_end = special_token_start
BPE_TOKEN_TEXT = corpus[bpe_start:bpe_end]
if BPE_TOKEN_TEXT != "":
for WORD in self.__split_words(BPE_TOKEN_TEXT):
yield (WORD, TokenType.BPE)
# FIND SPECIAL TOKEN
SPECIAL_TOKEN_TEXT = corpus[special_token_start:special_token_end]
if SPECIAL_TOKEN_TEXT != "":
yield (SPECIAL_TOKEN_TEXT, TokenType.SPECIAL)
# now save the new bpe start point
# it will used in the next interaction
bpe_start = special_token_end
def __find_boundaries(self, corpus: str) -> Generator[tuple[int, int]]:
"""
Find each time the start and end (not included) of the special token
Args:
corpus (str): the string where the special token will be searched
Yields:
Generator[tuple[int, int]]: Note the end is not included
"""
for match in self.__special_token_regex.finditer(corpus):
start = match.start()
end = match.end()
yield (start, end)
# make the last boundary be the end of corpus
# eof = len(corpus)
# yield(eof,eof)
def __split_words(self, bpe_piece: str) -> Generator[str]:
END_OF_STRING = len(bpe_piece)
bound_start = 0
bound_end = END_OF_STRING + 1
for i in range(0, END_OF_STRING):
CANDIDATE_CHAR = bpe_piece[i]
if CANDIDATE_CHAR != " ":
continue
bound_end = i
yield bpe_piece[bound_start:bound_end]
bound_start = bound_end
bound_end = END_OF_STRING + 1
yield bpe_piece[bound_start:bound_end]
def split_tokens(self, corpus: list[int]) -> Generator[tuple[list[int], TokenType]]:
not_special_token_list: list[int] = []
for token in corpus:
if token > self.__max_bpe_token_id:
if len(not_special_token_list) > 0:
yield (not_special_token_list, TokenType.BPE)
not_special_token_list = []
yield ([token], TokenType.SPECIAL)
continue
not_special_token_list.append(token)

View File

@ -1,8 +0,0 @@
from Project_Model.Libs.BPE.Classes.TokeNanoCore import TokeNanoCore
class TokeNano:
def __init__(self):
pass

View File

@ -1,84 +0,0 @@
from pathlib import Path
from ..Classes import NanoSocratesSplitter
from ..Classes import NanoSocratesBPE
from ..Classes import NanoSocratesSpecial
from ..Utils import special_regex_maker
from ..Enums import TokenType
from ..Enums import SpecialToken
class TokeNanoCore:
def __init__(
self,
bpe_vocabulary: dict[tuple[int, int], int],
special_token_list: list[str],
# special_vocabulary: dict[str, int]
):
self.__bpe_encoder = NanoSocratesBPE(bpe_vocabulary)
SPECIAL_REGEX = special_regex_maker(special_token_list)
BPE_VOCABULARY_SIZE = self.__bpe_encoder.vocabulary_size
self.__splitter = NanoSocratesSplitter(SPECIAL_REGEX, BPE_VOCABULARY_SIZE)
self.__special_encoder = NanoSocratesSpecial(
BPE_VOCABULARY_SIZE, special_token_list
)
@property
def vocabulary_size(self):
BPE_VOC_SIZE = self.__bpe_encoder.vocabulary_size
SPECIAL_VOC_SIZE = self.__special_encoder.vocabulary_size
return BPE_VOC_SIZE + SPECIAL_VOC_SIZE + 1
def encode(self, corpus: str) -> list[int]:
output: list[int] = []
for piece, token_type in self.__splitter.split_text(corpus):
if token_type == TokenType.SPECIAL:
output.extend(self.__special_encoder.encode(piece))
# slow but clear
if token_type == TokenType.BPE:
output.extend(self.__bpe_encoder.encode(piece))
return output
def encode_incomplete_string(self, corpus: str) -> list[int]:
"""
Encode string which don't end with a special token
"""
corpus = corpus + SpecialToken.CORPUS_END.value
output: list[int] = []
for piece, token_type in self.__splitter.split_text(corpus):
if token_type == TokenType.SPECIAL:
output.extend(self.__special_encoder.encode(piece))
# slow but clear
if token_type == TokenType.BPE:
output.extend(self.__bpe_encoder.encode(piece))
return output[:-1]
def decode(self, corpus: list[int]) -> str:
output_str = ""
for token, token_type in self.__splitter.split_tokens(corpus):
# token is an integer if special, a list of integer otherwise
if token_type == TokenType.SPECIAL:
output_str += self.__special_encoder.decode(
token
) # it accept an integer
# slow but clear
if token_type == TokenType.BPE:
output_str += self.__bpe_encoder.decode(
token
) # it accept a list of integer
return output_str

View File

@ -1,20 +0,0 @@
from .NanoSocratesChunker import NanoSocratesChunker
from .NanoSocratesSplitter import NanoSocratesSplitter
from .NanoSocratesBPE import NanoSocratesBPE, NanoSocratesBatchMemoryBPE
from .NanoSocraTrainer import NanoSocraTrainer
from .NanoSocraTraineRam import NanoSocraTraineRam
from .NanoSocraTrainerPool import NanoSocraTrainerPool
from .NanoSocratesSpecial import NanoSocratesSpecial
from .TokeNanoCore import TokeNanoCore
from .TokeNano import TokeNano
__all__ = [
"NanoSocratesChunker",
"NanoSocratesSplitter",
"NanoSocratesBPE",
"NanoSocraTrainer",
"NanoSocraTraineRam",
"NanoSocraTrainerPool",
"TokeNanoCore",
"TokeNano"
]

View File

@ -1,27 +0,0 @@
from enum import Enum
class SpecialToken(Enum):
# (Enum, str) -> throws an error
START_TRIPLE_LIST = "<SOTL>"
START_TRIPLE = "<SOT>"
END_TRIPLE = "<EOT>"
SUBJECT = "<SUBJ>"
RELATIONSHIP = "<PRED>"
OBJECT = "<OBJ>"
ABSTRACT = "<ABS>"
## Tasks' Token
RDF_TO_TEXT = "<RDF2TXT>"
TEXT_TO_RDF = "<TEXT2RDF>"
CONTINUE_RDF = "<CONTINUERDF>"
MASK = "<MASK>"
# BPE Training:
# NanoSocrates
START = "<START>"
CORPUS_END = "<END>"
START_OF_SEQUENCE = "<SOS>"
END_OF_SEQUENCE = "<EOS>"
PAD = "<PAD>"

View File

@ -1,6 +0,0 @@
from enum import Enum, auto
class TokenType(Enum):
SPECIAL = auto()
BPE = auto()

View File

@ -1,6 +0,0 @@
from .TokenType import TokenType
from .SpecialToken import SpecialToken
__all__ = [
"SpecialToken"
]

View File

@ -1,4 +0,0 @@
class DelimiterNotFoundException(Exception):
def __init__(self, *args: object) -> None:
super().__init__(*args)

View File

@ -1,4 +0,0 @@
class DuplicateWordException(Exception):
def __init__(self, *args: object) -> None:
super().__init__(*args)

View File

@ -1,4 +0,0 @@
class OutOfDictionaryException(Exception):
def __init__(self, *args: object) -> None:
super().__init__(*args)

View File

@ -1,4 +0,0 @@
class SentenceTooLongException(Exception):
def __init__(self, *args: object) -> None:
super().__init__(*args)

View File

@ -1,11 +0,0 @@
from .DelimiterNotFoundException import DelimiterNotFoundException
from .OutOfDictionaryException import OutOfDictionaryException
from .DuplicateWordException import DuplicateWordException
from .SentenceTooLongException import SentenceTooLongException
__all__ = [
"DelimiterNotFoundException",
"OutOfDictionaryException",
"DuplicateWordException",
"SentenceTooLongException"
]

View File

@ -1,15 +0,0 @@
from .special_regex_maker import special_regex_maker
from .lag_checker_iterator import iterator_with_checks
from .vocabulary import save_nanos_vocabulary, load_nanos_vocabulary
from .json_utils import save_json, load_json
from .special_regex_maker import special_regex_maker
from .default_special_tokens import default_special_tokens
__all__ = [
"special_regex_maker",
"iterator_with_checks",
"save_nanos_vocabulary",
"load_nanos_vocabulary",
"save_json", "load_json",
"default_special_tokens"
]

View File

@ -1,4 +0,0 @@
from ..Enums import SpecialToken
def default_special_tokens() -> list[str]:
return [token.value for token in SpecialToken]

View File

@ -1,18 +0,0 @@
import json
from pathlib import Path
def save_json(dictionary: dict, path: Path):
json_string = json.dumps(dictionary)
FILE = open(path, "w")
FILE.write(json_string)
FILE.close()
def load_json(path: Path) -> dict:
FILE = open(path, "r")
json_string = FILE.read()
FILE.close()
return json.loads(json_string)

View File

@ -1,27 +0,0 @@
from collections import deque
from typing import Generator, TypeVar
T1 = TypeVar("T1")
T2 = TypeVar("T2")
T3 = TypeVar("T3")
def iterator_with_checks(
generator: Generator[T1, T2, T3],
) -> Generator[tuple[T1, bool], T2, T3]:
# Here we can ignore to catch stop iteration
# we will propagate it
last_element = next(generator)
while True:
RETURN_ELEMENT = last_element
try:
element = next(generator)
last_element = element
yield (RETURN_ELEMENT, False)
except StopIteration:
yield (RETURN_ELEMENT, True)
break

View File

@ -1,15 +0,0 @@
import re
def special_regex_maker(special_tokens: list[str]) -> re.Pattern:
"""compile a regex for the special token
Args:
special_tokens (list[str]): the list of special token
Returns:
re.Pattern:
"""
REGEX_STR = "|".join(special_tokens)
return re.compile(REGEX_STR)

View File

@ -1,49 +0,0 @@
import json
from pathlib import Path
from ..Errors import OutOfDictionaryException
def nanos_vocabulary2json_str(vocabulary: dict[tuple[int, int], int]) -> str:
JSON: dict[str, int] = {}
for key, item in vocabulary.items():
TUPLE_STR = f"{key}"
JSON[TUPLE_STR] = item
return json.dumps(JSON)
def nanos_json_str2vocabulary(json_string: str) -> dict[tuple[int, int], int]:
JSON: dict[str, int] = json.loads(json_string)
VOCABULARY: dict[tuple[int, int], int] = {}
for key, item in JSON.items():
REDUCED_KEY = len(key) - 1
KEY_STR = key[1:REDUCED_KEY]
VOC_KEY = tuple(map(int, KEY_STR.split(",")))
if len(VOC_KEY) != 2:
raise OutOfDictionaryException()
# Checked for weird things above
VOCABULARY[VOC_KEY] = item # type: ignore
return VOCABULARY
def save_nanos_vocabulary(vocabulary: dict[tuple[int, int], int], path: Path):
json_string = nanos_vocabulary2json_str(vocabulary)
FILE = open(path, "w")
FILE.write(json_string)
FILE.close()
def load_nanos_vocabulary(path: Path) -> dict[tuple[int, int], int]:
FILE = open(path, "r")
json_string = FILE.read()
FILE.close()
return nanos_json_str2vocabulary(json_string)

View File

@ -1,9 +0,0 @@
from .Classes import *
from .Enums import *
from .Errors import *
from .Utils import *
from . import Classes
from . import Enums
from . import Errors
from . import Utils

View File

@ -1,164 +0,0 @@
import random
import sys
from typing import Any, Generator
import pandas as pd
from pathlib import Path
from Project_Model.Libs.Batch.Enums.TaskType import TaskType
import Project_Model.Libs.BPE as BPE
# from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Project_Model.Libs.Transformer import SpannedMasker, truncate_rdf_list, normalize_sequence
from TokenCompletation import TokenCompletationTransformer
from Project_Model.Libs.BPE import SpecialToken
MAX_LENGHT = 128
class Batcher:
def __init__(self, dataset_path: Path, tokenizer: BPE.TokeNanoCore, masker: SpannedMasker, seed:int = 0) -> None:
# ABSTRACT, TRIPLE
# tasks:
# rdf2text: X: TRIPLE, Y: ABSTRACT
# text2rdf: X: ABSTRACT, X:TRIPLE
# masking ( call masker): X: incomplete_triple Y: complete_triple (as exam)
# completation: X: TRIPLE SUBSET, Y: related TRIPLE SUBSET
# it will truncate
# it will instantiate spanmaskter and truncator
self._dataset_path = dataset_path
self._tokenizer = tokenizer
self._masker = masker
self._seed = seed
# self._token_completation = TokenCompletationTransformer(sotl,eos)
self._completation_task_token_truncator = truncate_rdf_list
def batch(self, batch_size)-> Generator[tuple[list[list[int]], list[list[int]], list[list[int]],list[list[int]], TaskType],Any,Any]:
"""
Yields: X,Y,padding_X
"""
RNG = random.Random(self._seed)
self._masker.reseed(self._seed)
for batch in pd.read_csv(self._dataset_path, chunksize= batch_size):
tokenized_batch = pd.DataFrame()
# encode
tokenized_batch[["Abstract","RDFs"]] = (
batch[["Abstract","RDFs"]]
.map(lambda t: self._tokenizer.encode(t))
)
X,Y, padding_X, padding_Y = self.__rdf2txt_transformation(tokenized_batch)
yield X,Y, padding_X, padding_Y, TaskType.RDF2TXT
X,Y, padding_X, padding_Y, = self.__txt2rdf_transformation(tokenized_batch)
yield X,Y, padding_X, padding_Y, TaskType.TEXT2RDF
X,Y, padding_X, padding_Y, = self.__masking_trasformation(tokenized_batch)
yield X,Y, padding_X, padding_Y, TaskType.MASKING
X,Y, padding_X, padding_Y, = self.__token_completation_task(tokenized_batch, RNG.randint(0,sys.maxsize))
yield X,Y, padding_X, padding_Y, TaskType.COMPLETATION
# output = pd.concat([rdf2txt_batch,txt2rdf_batch,completation_batch],ignore_index=True)
# output = output.sample(frac=1).reset_index(drop=True)
# self.decode_debug(output)
# yield output
def __random_subset_rdfs(self, batch: pd.DataFrame, seed = 0):
# WIP
rng = random.Random(seed)
def to_list(x):
return x.split(SpecialToken.START_TRIPLE.value)[1:]
batch["RDFs"] = batch["RDFs"].map(
to_list
)
def decode_debug(self, batch: pd.DataFrame):
decoded = pd.DataFrame()
decoded[["X","Y"]] = (
batch[["X","Y"]]
.map(lambda t: self._tokenizer.decode(t))
)
print(decoded)
def __normalization(self, X:list[list[int]], Y: list[list[int]])-> tuple[list[list[int]], list[list[int]], list[list[int]], list[list[int]]]:
pad_token = self._tokenizer.encode(SpecialToken.PAD.value)[0]
end_token = self._tokenizer.encode(SpecialToken.END_OF_SEQUENCE.value)[0]
out_X = []
padding_X = []
out_Y = []
padding_Y = []
for x in X:
out_x, padding_x = normalize_sequence(x,MAX_LENGHT,pad_token,end_token,True)
out_X.append(out_x)
padding_X.append(padding_x)
for y in Y:
out_y, padding_y = normalize_sequence(y,MAX_LENGHT,pad_token,end_token,True)
out_Y.append(out_y)
padding_Y.append(padding_y)
return out_X,out_Y,padding_X,padding_Y
def __rdf2txt_transformation(self, batch: pd.DataFrame):
task_token = self._tokenizer.encode(SpecialToken.RDF_TO_TEXT.value)
out = batch.rename(columns={"RDFs":"X","Abstract":"Y"})[["X","Y"]]
out["X"] = [task_token + x for x in out["X"]]
return self.__normalization(out["X"].to_list(),out["Y"].to_list())
def __txt2rdf_transformation(self, batch: pd.DataFrame):
task_token = self._tokenizer.encode(SpecialToken.TEXT_TO_RDF.value)
out = batch.rename(columns={"Abstract":"X","RDFs":"Y"})[["X","Y"]]
out["X"] = [task_token + x for x in out["X"]]
return self.__normalization(out["X"].to_list(),out["Y"].to_list())
def __masking_trasformation(self, batch: pd.DataFrame):
X = []
Y = []
for rdf in batch["RDFs"]:
x,y = self._masker.mask_sequence(rdf)
X.append(x)
Y.append(y)
return self.__normalization(X,Y)
def __token_completation_task(self, batch: pd.DataFrame, minibatch_seed: int):
continue_triple_token = self._tokenizer.encode(SpecialToken.CONTINUE_RDF.value)[0]
eot = self._tokenizer.encode(SpecialToken.END_TRIPLE.value)[0]
X = []
Y = []
for rdf in batch["RDFs"]:
x,y = self._completation_task_token_truncator(rdf, 0.5, continue_triple_token, eot, minibatch_seed)
X.append(x)
Y.append(y)
return self.__normalization(X,Y)
if __name__ == "__main__":
DATASET_PATH = Path("Assets/Dataset/Tmp/rdf_text.csv")
VOCABULARY_path = "Assets/Dataset/Tmp/trimmed.json"
from pathlib import Path
VOCABULARY = BPE.load_nanos_vocabulary(Path(VOCABULARY_path))
SPECIAL_LIST = BPE.default_special_tokens()
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_LIST)
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(SPECIAL_LIST)))
MASKER = SpannedMasker(TOKENANO.vocabulary_size,SPECIAL_TOKENS)
prova = "<ABS>Cactus Flower is a 1969 American screwball comedy film directed by Gene Saks, and starring Walter Matthau, Ingrid Bergman and Goldie Hawn, who won an Academy Award for her performance.The screenplay was adapted by I. A. L. Diamond from the 1965 Broadway play of the same title written by Abe Burrows, which, in turn, is based on the French play Fleur de cactus by Pierre Barillet and Jean-Pierre Gredy. Cactus Flower was the ninth highest-grossing film of 1969."
print(TOKENANO.encode(prova))
batcher = Batcher(DATASET_PATH,TOKENANO,MASKER)
for batch in batcher.batch(8):
print(batch)

View File

@ -1,33 +0,0 @@
class TokenCompletationTransformer:
def __init__(self,SOTL_token,EOS_token, input_percent:float = 0.5) -> None:
self.__SOTL_token = SOTL_token
self.__EOS_token = EOS_token
self.__input_percent = input_percent
pass
def get_completation_tuple(
self,
token_sequence: list[int],
)-> tuple[list[int], list[int]]:
# split the sequence by encoded(<SOTL>), dont take the first, firts pertenge in as X the other as Y
sotl_count =int( token_sequence.count(self.__SOTL_token) * self.__input_percent)
sotl_index = 0
percent_index = 0
while sotl_index < sotl_count:
token = token_sequence[percent_index]
if token == self.__SOTL_token:
sotl_index += 1
percent_index+=1
percent_index = percent_index -1
x_list = token_sequence[:percent_index]
x_list.append(self.__EOS_token)
y_list = token_sequence[percent_index:]
return (x_list,y_list)

View File

@ -1,8 +0,0 @@
from enum import Enum, auto
class TaskType(Enum):
RDF2TXT = auto()
TEXT2RDF = auto()
MASKING = auto()
COMPLETATION = auto()

View File

@ -1,23 +0,0 @@
import torch
from ..Utils import fixed_positional_encoding
# WIP FOR BATCHING
class NanoSocratesEmbedder(torch.nn.Module):
def __init__(self, vocabulary_size: int, embedding_size: int) -> None:
super().__init__()
self.__embedder = torch.nn.Embedding(vocabulary_size, embedding_size)
def forward(self, tokenized_sentence: torch.Tensor) -> torch.Tensor:
computed_embeddings: torch.Tensor = self.__embedder(tokenized_sentence)
_, SENTENCE_LENGHT, EMBEDDING_SIZE = computed_embeddings.shape # for batching
POSITIONAL_ENCODINGS = fixed_positional_encoding(
SENTENCE_LENGHT, EMBEDDING_SIZE
)
computed_embeddings = computed_embeddings + POSITIONAL_ENCODINGS # for batching
return computed_embeddings

View File

@ -1,5 +0,0 @@
from .NanoSocratesEmbedder import NanoSocratesEmbedder
__all__ = [
"NanoSocratesEmbedder"
]

View File

@ -1,5 +0,0 @@
from .fixed_positional_encoding import fixed_positional_encoding
__all__ = [
"fixed_positional_encoding"
]

View File

@ -1,28 +0,0 @@
import torch
def fixed_positional_encoding(
sentence_dimension: int,
embedding_dimension: int,
) -> torch.Tensor:
BIG_CONST = int(1e4)
INITIAL_ENCODING = torch.tensor([i for i in range(0, sentence_dimension)])
ENCODINGS: list[torch.Tensor] = []
for i in range(0, embedding_dimension):
EMBEDDING_POSITION = i
# Note: The original paper did not specify
# to compute: pos mod 2!!
DIVISOR = BIG_CONST ** ((2 * (EMBEDDING_POSITION // 2)) / embedding_dimension)
INTERMEDIATE_ENCODING = INITIAL_ENCODING / DIVISOR
if EMBEDDING_POSITION % 2 == 0:
ENCODINGS.append(torch.sin(INTERMEDIATE_ENCODING))
continue
ENCODINGS.append(torch.cos(INTERMEDIATE_ENCODING))
return torch.stack(ENCODINGS).transpose(0, 1)

View File

@ -1,7 +0,0 @@
from .Utils import *
from .Classes import *
from . import Utils
from . import Classes

View File

@ -1,5 +0,0 @@
from .get_default_device import get_default_device
__all__ = [
"get_default_device"
]

View File

@ -1,17 +0,0 @@
import torch
def get_default_device() -> torch.device:
# Cuda or ROCm
if torch.cuda.is_available():
return torch.device("cuda")
# Intel GPUs
if torch.xpu.is_available():
return torch.device("xpu")
# Apple GPUs
if torch.backends.mps.is_available():
return torch.device("mps")
return torch.device("cpu")

View File

@ -1,7 +0,0 @@
from .Utils import *
from .Utils import get_default_device
__all__ = [
"get_default_device"
]

View File

@ -1,43 +0,0 @@
import torch
class LogitsCollector:
def __init__(self, pad_token: int, end_token: int, tokenizer) -> None:
self.__pad_token = pad_token # used to skip PAD
self.__end_token = end_token # used to stop at END
self.__tokenizer = tokenizer # exposes .decode(list[int]) -> str
self.__steps: list[torch.Tensor] = [] # list of per-step logits [B,V]
def reset(self) -> None:
self.__steps.clear() # clear history
def add(self, logits_step: torch.Tensor) -> None:
if logits_step.dim() == 3: # handle [B,1,V]
logits_step = logits_step[:, -1, :] # -> [B,V]
self.__steps.append(logits_step.detach()) # store raw logits (detached)
def tokens(self) -> list[list[int]]:
if not self.__steps:
return []
stack = torch.stack(self.__steps, dim=0) # [T,B,V]
probs = torch.softmax(stack, dim=-1) # softmax over vocab -> [T,B,V]
ids = probs.argmax(dim=-1).transpose(0, 1) # greedy ids -> [B,T]
out: list[list[int]] = []
for row in ids.tolist():
seq: list[int] = []
for tok in row:
# if tok == self.__end_token: # stop on END
# break
if tok == self.__pad_token: # skip PAD
continue
seq.append(tok)
out.append(seq)
return out
def print_decoded(self) -> None:
for i, seq in enumerate(self.tokens()):
try:
# text = text + self.__end_token
text = self.__tokenizer.decode(seq) # decode tokens to string
except Exception:
text = str(seq) # fallback to ids
print(f"[{i}] {text}") # simple print

View File

@ -1,19 +0,0 @@
import torch
class DeToken(torch.nn.Module):
def __init__(self, embedding_size: int, vocabulary_size: int) -> None:
super().__init__()
self.__linear = torch.nn.Linear(embedding_size, vocabulary_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# 1) Go from latent space to vocabularu space
x = self.__linear(x)
# 2) Go to logits
# x = torch.softmax(x, 2)
return x

View File

@ -1,103 +0,0 @@
import torch
import torch.nn as nn
from .FeedForwardNetwork import FeedForwardNetwork
from .TorchMultiHeadAttention import TorchMultiHeadAttention as MultiHeadAttention
from ..Utils.attention_mask import get_causal_attention_mask
# B, L(T), E_D
class Decoder(nn.Module):
def __init__(
self,
embedding_dimension: int,
feed_forward_hidden_layer_dimension: int,
number_of_attention_heads: int,
) -> None:
super().__init__()
self.__masked_attention = MultiHeadAttention(
embedding_dimension, number_of_attention_heads, dropout=0.1
)
self.__layer_norm_1 = nn.LayerNorm(embedding_dimension)
self.__cross_attention = MultiHeadAttention(
embedding_dimension, number_of_attention_heads, dropout=0.1
)
self.__layer_norm_2 = nn.LayerNorm(embedding_dimension)
self.__dropout = nn.Dropout(0.1)
self.__feed_forward_network = FeedForwardNetwork(
embedding_dimension, feed_forward_hidden_layer_dimension
)
self.__layer_norm_3 = nn.LayerNorm(embedding_dimension)
def forward(
self,
args: tuple[
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor
]
): # -> list[torch.Tensor]: # k_x = v_x . While x_q = x
# WARNING: args is needed to have sequential
x, k_x, v_x, src_padding_mask, tgt_padding_mask = args
# build of attention mask
attention_mask = get_causal_attention_mask(x.size(1))
# 1) Masked Attention
MASKED_ATTENTION = self.__masked_attention(
x, x, x, key_padding_mask=tgt_padding_mask, attention_mask=attention_mask
)
# 2) Dropout
# DROPPED_MASKED_ATTENTION = self.__dropout(MASKED_ATTENTION)
# del MASKED_ATTENTION
# 3) Residual Connection
x = x + MASKED_ATTENTION
del MASKED_ATTENTION
# 4) Layer Normalization
x = self.__layer_norm_1(x)
# 5) Encoderdecoder (cross) attention
CROSS_ATTENTION = self.__cross_attention(
x, k_x, v_x, key_padding_mask=src_padding_mask
)
# 6) Dropout
# DROPPED_CROSS_ATTENTION = self.__dropout(CROSS_ATTENTION)
# del CROSS_ATTENTION
# 7) Residual Connection
x = x + CROSS_ATTENTION
del CROSS_ATTENTION
# 8) Layer Normalization
x = self.__layer_norm_2(x)
# 9) Position-wise feed-forward
FEED_FORWARD = self.__feed_forward_network(x)
# 10) Dropout
# DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
# del FEED_FORWARD
# 11) Residual Connection
x = x + FEED_FORWARD
del FEED_FORWARD
# 12) Layer Normalization
x = self.__layer_norm_3(x)
return (x, k_x, v_x, src_padding_mask, tgt_padding_mask)
# use eval to disable dropout ecc

View File

@ -1,73 +0,0 @@
import torch
import torch.nn as nn
from Project_Model.Libs.Transformer.Classes.FeedForwardNetwork import FeedForwardNetwork
from Project_Model.Libs.Transformer.Classes.TorchMultiHeadAttention import (
TorchMultiHeadAttention as MultiHeadAttention,
)
class Encoder(
nn.Module
): # in this way we expose the primitive of nn.Module for training purpose
def __init__(
self,
embedding_dimension: int,
feed_forward_hidden_layer_dimension: int,
number_of_attention_heads: int,
) -> None:
super().__init__()
self.__attention = MultiHeadAttention(
embedding_dimension, number_of_attention_heads, dropout=0.1
)
self.__layer_norm_1 = nn.LayerNorm(
embedding_dimension
) # norm of first "Add and Normalize"
self.__feed_forward = FeedForwardNetwork(
embedding_dimension, feed_forward_hidden_layer_dimension
)
self.__layer_norm_2 = nn.LayerNorm(
embedding_dimension
) # norm of second "Add and Normalize"
self.__dropout = nn.Dropout(0.1) # ...
def forward(self, args: tuple[torch.Tensor, torch.Tensor]):
# WARNING: args is needed to have sequential
x, padding_mask = args
# -> ATTENTION -> dropout -> add and normalize -> FF -> dropout -> add and normalize ->
# Attention with Residual Connection [ input + self-attention]
# 1) Multi Head Attention
ATTENTION = self.__attention(x, x, x, key_padding_mask=padding_mask)
# 2) Dropout
# DROPPED_ATTENTION = self.__dropout(ATTENTION)
# del ATTENTION
# 3) Residual Connection
x = x + ATTENTION
del ATTENTION
# 4) Layer Normalization
x = self.__layer_norm_1(x)
# 5) Feed Forward
FEED_FORWARD = self.__feed_forward(x)
# 6) Dropout
# DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
# del FEED_FORWARD
# 7) Residual Connection
x = x + FEED_FORWARD
del FEED_FORWARD
# 8) Layer Normalization
x = self.__layer_norm_2(x)
return (x, padding_mask)
# use eval to disable dropout ecc

View File

@ -1,43 +0,0 @@
# it is position wise!
# https://stackoverflow.com/questions/74979359/how-is-position-wise-feed-forward-neural-network-implemented-for-transformers
# Why do we need a fixed size
# https://ai.stackexchange.com/questions/37624/why-do-transformers-have-a-fixed-input-length
import torch.nn as nn
class FeedForwardNetwork(nn.Module):
def __init__(self, embedding_size: int, feed_forward_hidden_layer_dimension: int):
super().__init__()
self.__fully_connected_1 = nn.Linear(
embedding_size, feed_forward_hidden_layer_dimension
) # expand in higher dimension
self.__relu = nn.ReLU()
self.__dropout = nn.Dropout(
0.1
) # during training we drop something, with eval it got deactivated
self.__fully_connected_2 = nn.Linear(
feed_forward_hidden_layer_dimension, embedding_size
) # return into the model dimension
def forward(self, x):
# -> NN1 -> RELU -> (Droput during training) -> NN2 ->
# 1) Linear Layer
x = self.__fully_connected_1(x)
# 2) ReLU
x = self.__relu(x)
# 3) Dropout
x = self.__dropout(x)
# 4) Linear Layer
x = self.__fully_connected_2(x)
return x

View File

@ -1,111 +0,0 @@
from ..Utils.task_type import TaskType
from .Decoder import Decoder
from .Encoder import Encoder
from ....Libs.Embedder import NanoSocratesEmbedder
import torch
class NanoSocratesCore(torch.nn.Module):
def __init__(
self,
sentence_length: int,
vocab_size: int,
embedding_size: int = 256,
feed_forward_multiplier: int = 4,
num_encoder_layers: int = 2,
num_decoder_layers: int = 2,
num_attention_heads: int = 4,
) -> None:
feed_forward_dim = embedding_size * feed_forward_multiplier
self.__sentence_length = sentence_length
self.__encoder_sequence = torch.nn.Sequential(
*[
Encoder(embedding_size, feed_forward_dim, num_attention_heads)
for _ in range(num_encoder_layers)
]
)
# * unpack the list so that each encoder has its own weights
self.__decoder_sequence = torch.nn.Sequential(
*[
Decoder(embedding_size, feed_forward_dim, num_attention_heads)
for _ in range(num_decoder_layers)
]
)
self.__linear = torch.nn.Linear(embedding_size, vocab_size)
self.__input_embeder = NanoSocratesEmbedder(vocab_size, embedding_size)
self.__output_embedder = NanoSocratesEmbedder(vocab_size, embedding_size)
def forward(
self,
encoder_input: list[list[int]],
decoder_input: list[list[int]],
encoder_padding_mask: list[list[int]],
):
if len(encoder_padding_mask) != len(encoder_input):
raise Exception("Mismatch in received_dimensions")
# TODO: check for tensor in input to embedder
# 1) Embed User-Input for encoders
ENCODER_INPUT = self.__input_embeder(encoder_input)
# 2) Encode User-Input
ENCODER_OUTPUT, _ = self.__encoder_sequence(ENCODER_INPUT, encoder_padding_mask)
del ENCODER_INPUT
exit_loop = False
decoder_token_list = decoder_input[:]
decoder_phase = 0
LOGITS_HISTORY: list[torch.Tensor] = []
# 3) Autoregressive Output
while not exit_loop:
# 3.0) Increment Counter
decoder_phase += 1
# 3.1) Embed Decoder Input
decoder_input = self.__output_embedder(decoder_token_list)
# 3.2) Decode Decoder Input
DECODER_OUTPUT, _, _, _ = self.__decoder_sequence(
decoder_input, ENCODER_OUTPUT, ENCODER_OUTPUT
)
# 3.3) Go back to Token space
# TODO: change name
LOGITS = self.__linear(DECODER_OUTPUT)
del DECODER_OUTPUT
# 3.4) Transform in probabilities
# TODO: change name
TOKEN_PROBABILITIES = torch.softmax(LOGITS, dim=-1)
del LOGITS
LOGITS_HISTORY.append(TOKEN_PROBABILITIES)
# 3.5) Take most probable tokens
TOKEN_IDS = torch.argmax(TOKEN_PROBABILITIES, -1)
# TODO: check for dimensions and for efficiency
DECODER_TOKEN_TENSOR = torch.tensor(decoder_token_list)
DECODER_TOKEN_TENSOR[:, decoder_phase] = TOKEN_IDS
decoder_token_list = DECODER_TOKEN_TENSOR.tolist()
del TOKEN_IDS
del DECODER_TOKEN_TENSOR
# 3.6) Check if we generated all tokens
if decoder_phase == self.__sentence_length - 1:
exit_loop = True
return LOGITS_HISTORY

View File

@ -1,218 +0,0 @@
import math
import random
import sys
class SpannedMasker:
def __init__(
self,
max_vocabulary: int,
forbidden_tokens: set[int],
change_token_probability: float = 0.15,
average_span: int = 1,
seed: int = random.randint(0, sys.maxsize),
) -> None:
if change_token_probability < 0 or change_token_probability > 1:
raise ValueError("received a value that is not between 0 or 1")
self.__change_token_probability = change_token_probability
self.__average_span = average_span
self.__rng = random.Random(seed)
self.__max_vocabulary = max_vocabulary
self.__forbidden_tokens = forbidden_tokens
def reseed(self, seed:int):
self.__rng = random.Random(seed)
def mask_sequence(
self,
token_sequence: list[int],
) -> tuple[list[int], list[int]]:
MASK = self.__create_mask(token_sequence, self.__forbidden_tokens)
MASKED = self.__create_masked_input(token_sequence, MASK, self.__max_vocabulary)
TARGET = self.__create_target(token_sequence, MASK, self.__max_vocabulary)
return (MASKED, TARGET)
def __number_of_spans(self, legal_token_number: int):
EXPECTED_NUM_OF_CORRUPTED_TOKENS = self.__number_of_corrupted_tokens(legal_token_number)
return math.ceil(EXPECTED_NUM_OF_CORRUPTED_TOKENS / self.__average_span)
def __number_of_corrupted_tokens(self, legal_token_number: int):
EXPECTED_NUM_OF_CORRUPTED_TOKENS = math.ceil(
legal_token_number * self.__change_token_probability
)
return EXPECTED_NUM_OF_CORRUPTED_TOKENS
def __create_mask(self, sequence: list[int], forbidden_tokens: set[int]) -> list[bool]:
SEQ_LEN = len(sequence)
LEGAL_TOKENS = self.__count_legal_tokens(sequence, forbidden_tokens)
NUM_OF_CORRUPTIONS = self.__number_of_corrupted_tokens(LEGAL_TOKENS)
NUM_OF_SPANS = self.__number_of_spans(LEGAL_TOKENS)
MASK = [False] * SEQ_LEN
mask_index = 0
number_of_spans = 0
exit_loop = False
while not exit_loop:
TOKEN = sequence[mask_index]
MASKED = MASK[mask_index]
SHOULD_MASK = self.__random_mask()
skip = False
if self.__is_illegal_token(TOKEN, forbidden_tokens):
skip = True
if MASKED:
skip = True
if not SHOULD_MASK:
skip = True
if skip:
mask_index = (mask_index + 1) % SEQ_LEN
continue
CANDIDATE_SPAN = self.__random_span(
self.__average_span
)
REMAINING_MASK = SEQ_LEN - (mask_index + 1)
SPAN_LENGTH = min(CANDIDATE_SPAN, REMAINING_MASK)
for _ in range(0, SPAN_LENGTH):
INNER_TOKEN = sequence[mask_index]
if self.__is_illegal_token(INNER_TOKEN, forbidden_tokens):
continue
MASK[mask_index] = True
mask_index += 1
number_of_spans += 1
mask_index += 1
if number_of_spans == NUM_OF_SPANS:
exit_loop = True
continue
if mask_index >= SEQ_LEN - 1:
exit_loop = True
continue
return MASK
def __create_masked_input(self, sequence: list[int], mask: list[bool], max_voc: int) -> list[int]:
OUT: list[int] = []
mask_token_id = max_voc + 1
index = 0
while index < len(sequence):
TOKEN = sequence[index]
MASKED = mask[index]
if not MASKED:
OUT.append(
TOKEN
)
index += 1
continue
MASK_TOKEN = mask_token_id
OUT.append(
MASK_TOKEN
)
while mask[index]:
index += 1
mask_token_id += 1
return OUT
def __create_target(self, sequence: list[int], mask: list[bool], max_voc: int) -> list[int]:
OUT: list[int] = []
mask_token_id = max_voc + 1
index = 0
while index < len(sequence):
TOKEN = sequence[index]
MASKED = mask[index]
if MASKED:
OUT.append(
TOKEN
)
index += 1
continue
MASK_TOKEN = mask_token_id
OUT.append(
MASK_TOKEN
)
while index < len(mask) and not mask[index]:
index += 1
mask_token_id += 1
return OUT
def __is_illegal_token(self, token: int, illegal_voc: set[int]) -> bool:
if token in illegal_voc:
return True
return False
def __count_legal_tokens(self, sequence: list[int], illegal_voc: set[int]) -> int:
legal_count = 0
for token in sequence:
if self.__is_illegal_token(token, illegal_voc):
continue
legal_count += 1
return legal_count
def __random_mask(self) -> bool:
if self.__random_probability() > self.__change_token_probability:
return False
return True
def __random_probability(self) -> float:
return self.__rng.random()
def __random_token(self, max_vocabulary: int) -> int:
return self.__rng.randint(0, max_vocabulary)
def __random_int_range(self, min: int, max: int) -> int:
return self.__rng.randint(min, max)
def __random_span(self, average: int) -> int:
candidate_span = self.__rng.gauss(mu=average)
candidate_span = max(1, candidate_span)
candidate_span = round(candidate_span)
return candidate_span

View File

@ -1,77 +0,0 @@
import random
import sys
class TokenMasker:
def __init__(
self,
change_token_probability: float = 0.15,
mask_token_probability: float = 0.8,
random_token_prob: float = 0.1,
seed: int = random.randint(0, sys.maxsize),
) -> None:
if change_token_probability < 0 or change_token_probability > 1:
raise ValueError("received a value that is not between 0 or 1")
if mask_token_probability < 0 or mask_token_probability > 1:
raise ValueError("received a value that is not between 0 or 1")
if random_token_prob < 0 or random_token_prob > 1:
raise ValueError("received a value that is not between 0 or 1")
if mask_token_probability + random_token_prob > 1:
raise ValueError("The sum of probabilities is over 1")
self.__change_token_probability = change_token_probability
self.__mask_token_probability = mask_token_probability
self.__random_token_prob = random_token_prob
self.__rng = random.Random(seed)
def mask_sequence(
self, token_sequence: list[int], max_vocabulary: int, mask_id: int
) -> list[int]:
if mask_id <= max_vocabulary:
raise ValueError("mask_id is a value of vocabulary")
MASKED_SEQUENCE: list[int] = []
for token in token_sequence:
if token > max_vocabulary:
MASKED_SEQUENCE.append(token)
continue
MASKED_TOKEN = self.__mask(token, max_vocabulary, mask_id)
MASKED_SEQUENCE.append(MASKED_TOKEN)
return MASKED_SEQUENCE
def __mask(self, token: int, max_vocabulary: int, mask_id: int) -> int:
if self.__random_probability() > self.__change_token_probability:
return token
MASK_TOKEN_TRESH = self.__mask_token_probability
RANDOM_TOKEN_TRESH = MASK_TOKEN_TRESH + self.__random_token_prob
CHANCE_PROBABILITY = self.__random_probability()
# It's over both probabilities, return same token
if CHANCE_PROBABILITY > RANDOM_TOKEN_TRESH:
return token
# It's over masking treshold, but lower than random
# return random token
if CHANCE_PROBABILITY > MASK_TOKEN_TRESH:
return self.__random_token(max_vocabulary)
# It's below masking treshold, mask token
return mask_id
def __random_probability(self) -> float:
return self.__rng.random()
def __random_token(self, max_vocabulary: int) -> int:
return self.__rng.randint(0, max_vocabulary)

View File

@ -1,47 +0,0 @@
import torch
import torch.nn as nn
from typing import Optional
class TorchMultiHeadAttention(nn.Module):
def __init__(
self,
embedding_dimension: int,
number_of_attention_heads: int,
dropout: float = 0.0
):
super().__init__()
self.attention = torch.nn.MultiheadAttention(
embedding_dimension,
num_heads=number_of_attention_heads,
dropout=dropout,
batch_first=True,
)
def forward(
self,
x_q: torch.Tensor,
x_k: torch.Tensor,
x_v: torch.Tensor,
key_padding_mask=None,
attention_mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
# x * Wq -> Q
# x * Wk -> K
# x * Wv -> V
# REMEMBER: tochAttention uses Batch internally to build the 3 dimension attention mask given the 2 dimension
y, _ = self.attention(
x_q, x_k, x_v, attn_mask=attention_mask, key_padding_mask=key_padding_mask,
need_weights=False
)
return y
# batch_first=False (default storico)
# Formato: (L, N, E)
# L = lunghezza della sequenza (time/posizioni)
# N = batch size
# E = dimensione d_model (embed)
# batch_first=True
# Formato: (N, L, E) (più naturale per molti modelli)

View File

@ -1,47 +0,0 @@
from typing import override
import torch
# custom LR from attention is all you need
class WarmupLR(torch.optim.lr_scheduler.LRScheduler):
def __init__(
self,
optimizer: torch.optim.Optimizer,
warmup_steps: int,
embedding_size: int,
warming_multiplier: float = -1.5,
decaying_multiplier: float = -0.5,
multiplicative_factor: float = 1.0,
last_epoch: int = -1,
) -> None:
self.__warmup_steps = warmup_steps
self.__embedding_size = embedding_size
self.__warming_multiplier = warming_multiplier
self.__decaying_multiplier = decaying_multiplier
self.__multiplicative_factor = multiplicative_factor
super().__init__(optimizer, last_epoch)
def __scale_at(self, step: int) -> float:
step = max(step, 1)
return (
self.__multiplicative_factor
* (self.__embedding_size**self.__decaying_multiplier)
* min(
step**self.__decaying_multiplier,
step * (self.__warmup_steps**self.__warming_multiplier),
)
)
@override
def get_lr(self) -> list[float]:
torch.optim.lr_scheduler._warn_get_lr_called_within_step(self)
step = max(self.last_epoch, 1)
scale = self.__scale_at(step)
return [base_lr * scale for base_lr in self.base_lrs]
def _get_closed_form_lr(self):
step = max(self.last_epoch, 1)
scale = self.__scale_at(step)
return [base_lr * scale for base_lr in self.base_lrs]

View File

@ -1,18 +0,0 @@
from .Decoder import Decoder
from .Encoder import Encoder
from .FeedForwardNetwork import FeedForwardNetwork
# from .MultiHeadAttention import MultiheadAttention
from .TorchMultiHeadAttention import TorchMultiHeadAttention
from .SpannedMasker import SpannedMasker
from .DeToken import DeToken
from .WarmupLR import WarmupLR
__all__ = [
"Decoder",
"Encoder",
"FeedForwardNetwork",
"TorchMultiHeadAttention",
"SpannedMasker",
"DeToken",
"WarmupLR"
]

View File

@ -1,55 +0,0 @@
import torch
import Project_Model.Libs.Embedder as Embedder
from ..Classes import Encoder, Decoder, DeToken
class TrainingModel(torch.nn.Module):
def __init__(
self,
vocabulary_size: int,
latent_space: int = 256,
feed_forward_multiplier: int = 4,
attention_heads: int = 4,
layer_number: int = 2,
) -> None:
super().__init__()
feed_forward_latent_space = latent_space * feed_forward_multiplier
self.__encoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
self.__decoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
TMP_ENCODERS = [
Encoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
TMP_DECODERS = [
Decoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
self.__encoder = torch.nn.Sequential(*TMP_ENCODERS)
self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
self.__detokener = DeToken(latent_space, vocabulary_size)
def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
encoder_embedder_input, src_padding, decoder_embedder_input, tgt_padding = args
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
decoder_output, _, _, _, _ = self.__decoder(
(decoder_tensor, encoder_output, encoder_output, src_padding, tgt_padding)
)
logits: torch.Tensor = self.__detokener(decoder_output)
return logits

View File

@ -1,5 +0,0 @@
from .TrainingModel import TrainingModel
__all__ = [
"TrainingModel"
]

View File

@ -1,19 +0,0 @@
from .attention_mask import get_causal_attention_mask,get_causal_attention_mask_batched
from .task_type import TaskType
from .post_tokenization import truncate_sequence, pad_sequence, normalize_sequence, create_padding_mask
from .inference_masking import inference_masking
from .truncate_rdf_list import truncate_rdf_list
from .decode_out import tensor2token
__all__ = [
"TaskType",
"get_causal_attention_mask",
"get_causal_attention_mask_batched",
"truncate_sequence",
"pad_sequence",
"create_padding_mask",
"normalize_sequence",
"inference_masking",
"truncate_rdf_list",
"tensor2token"
]

View File

@ -1,11 +0,0 @@
import torch
def get_causal_attention_mask(seq_len: int) -> torch.Tensor:
return torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool), diagonal=1)
# there is no need for this since MultiHeadAttention of torch does this internally
def get_causal_attention_mask_batched(seq_len: int, batch_size: int ) -> torch.Tensor:
base_mask = get_causal_attention_mask(seq_len)
return base_mask.unsqueeze(0).expand(batch_size, -1, -1) # add another dimension at the beginning, big as batch_size
# the result is that z,x,y where x,y are repeated along z

View File

@ -1,27 +0,0 @@
from typing import Generator
import torch
def tensor2token(tensor: torch.Tensor, end_token: int) -> Generator[list[int]]:
if len(tensor.shape) < 1 or len(tensor.shape) > 2:
raise ValueError("Shape is not correct")
if len(tensor.shape) == 1:
token_list: list[int] = tensor.tolist()
token_list.append(end_token)
yield token_list
return
batch_len: int
batch_len, _ = tensor.shape
for i in range(batch_len):
smaller_tensor = tensor[i, :]
token_list: list[int] = smaller_tensor.tolist()
token_list.append(end_token)
yield token_list

View File

@ -1,13 +0,0 @@
def inference_masking(sequence: list[int], mask_token: int, max_vocabulary: int) -> list[int]:
current_mask_token = max_vocabulary + 1
for i in range(0, len(sequence)):
if sequence[i] != mask_token:
continue
sequence[i] = current_mask_token
current_mask_token += 1
return sequence

View File

@ -1,60 +0,0 @@
def truncate_sequence(
sequence: list[int], truncate_at: int, end_token: int, add_ending: bool
) -> list[int]:
if len(sequence) < truncate_at - 1:
if add_ending:
sequence.append(end_token)
return sequence
if len(sequence) < truncate_at:
if add_ending:
sequence[-1] = end_token
return sequence
TRUNCATED_SEQUENCE = sequence[:truncate_at]
if add_ending:
TRUNCATED_SEQUENCE[-1] = end_token
return TRUNCATED_SEQUENCE
def pad_sequence(sequence: list[int], pad_until: int, pad_token: int) -> list[int]:
if not (len(sequence) < pad_until):
return sequence
NUM_OF_PADDINGS = pad_until - len(sequence)
PADDINGS = [pad_token] * NUM_OF_PADDINGS
PADDED_SEQUENCE = sequence[:]
PADDED_SEQUENCE.extend(PADDINGS)
return PADDED_SEQUENCE
def create_padding_mask(sequence: list[int], pad_token: int) -> list[bool]:
PADDING_MASK = [False] * len(sequence)
for i in range(0, len(sequence)):
if sequence[i] != pad_token:
continue
PADDING_MASK[i] = True
return PADDING_MASK
def normalize_sequence(
sequence: list[int],
max_length: int,
pad_token: int,
end_token: int,
add_ending: bool = True
) -> tuple[list[int], list[bool]]:
new_sequence = truncate_sequence(sequence, max_length, end_token, add_ending)
new_sequence = pad_sequence(new_sequence, max_length, pad_token)
PADDING_MASK = create_padding_mask(new_sequence, pad_token)
return (new_sequence, PADDING_MASK)

View File

@ -1,6 +0,0 @@
from enum import Enum, auto
class TaskType(Enum):
RDF2TEXT = auto()
MASK = auto()
COMPLETATION = auto()

View File

@ -1,65 +0,0 @@
from collections import deque
import random
import sys
def truncate_rdf_list(
sequence: list[int],
truncation_probability: float,
continue_triple_token: int,
end_of_triple_token: int,
seed: int = random.randint(0, sys.maxsize),
) -> tuple[list[int], list[int]]:
if truncation_probability < 0 or truncation_probability > 1:
raise ValueError("A probability must be between 0 and 1")
RNG = random.Random(seed)
END_OF_TRIPLES: deque[int] = deque()
for i in range(0, len(sequence)):
TOKEN = sequence[i]
if TOKEN != end_of_triple_token:
continue
END_OF_TRIPLES.append(i + 1)
TRIPLES_TOKENS: list[int] = []
TARGET_TRIPLES: list[int] = []
start_of_triple = 0
exit_loop = False
while not exit_loop:
EOT = END_OF_TRIPLES.popleft()
TRIPLE = sequence[start_of_triple:EOT]
TRIPLES_TOKENS.extend(TRIPLE)
start_of_triple = EOT
if RNG.random() < truncation_probability:
exit_loop = True
if len(END_OF_TRIPLES) == 1:
exit_loop = True
TRIPLES_TOKENS.append(
continue_triple_token
)
while len(END_OF_TRIPLES) > 0:
EOT = END_OF_TRIPLES.popleft()
TRIPLE = sequence[start_of_triple:EOT]
TARGET_TRIPLES.extend(TRIPLE)
start_of_triple = EOT
return (TRIPLES_TOKENS, TARGET_TRIPLES)

View File

@ -1,7 +0,0 @@
from .Classes import *
from .Utils import *
from .Models import *
from . import Classes
from . import Utils
from . import Models

View File

@ -1,4 +0,0 @@
from . import BPE
from . import Embedder
from . import Transformer
from . import TorchShims

View File

@ -1,74 +0,0 @@
from Project_Model.Libs.BPE.Enums import TokenType
import Project_Model.Libs.BPE as BPE
import re
class TestBPE:
def test_bpe_encoding_simple(self):
TEXT = "abababab"
# ab = 256
# 256, 256 = 257
# 257, 257 = 258
VOCABULARY = {(ord("a"), ord("b")): 256, (256, 256): 257, (257, 257): 258}
EXPECTED = [258]
BPE_ENCODER = BPE.NanoSocratesBPE(VOCABULARY)
ENCODED = BPE_ENCODER.encode(TEXT)
assert len(ENCODED) == len(EXPECTED)
for encoded, expected in zip(ENCODED, EXPECTED):
assert encoded == expected
def test_bpe_decoding_simple(self):
INPUT = [258]
# ab = 256
# 256, 256 = 257
# 257, 257 = 258
VOCABULARY = {(ord("a"), ord("b")): 256, (256, 256): 257, (257, 257): 258}
EXPECTED = "abababab"
BPE_ENCODER = BPE.NanoSocratesBPE(VOCABULARY)
DECODED = BPE_ENCODER.decode(INPUT)
assert len(DECODED) == len(EXPECTED)
for encoded, expected in zip(DECODED, EXPECTED):
assert encoded == expected
def test_bpe_decoding_edge_1(self):
INPUT = [258, ord("c")]
# ab = 256
# 256, 256 = 257
# 257, 257 = 258
VOCABULARY = {(ord("a"), ord("b")): 256, (256, 256): 257, (257, 257): 258}
EXPECTED = "ababababc"
BPE_ENCODER = BPE.NanoSocratesBPE(VOCABULARY)
DECODED = BPE_ENCODER.decode(INPUT)
assert len(DECODED) == len(EXPECTED)
for encoded, expected in zip(DECODED, EXPECTED):
assert encoded == expected
# Useful to debug weird cases
if __name__ == "__main__":
# TestBPE().test_bpe_decoding_simple()
TestBPE().test_bpe_encoding_simple()

View File

@ -1,77 +0,0 @@
from pathlib import Path
from Project_Model.Libs.BPE.Enums import TokenType
import Project_Model.Libs.BPE as BPE
import re
CACHE_DIR_PATH = Path("Project_Model/Tests/trainer_files/cache/pool-cache.json")
class TestTrainBPE:
def test_bpe_train_encoding_simple(self):
TRAINER = BPE.NanoSocraTrainerPool(
int(32E3),
["<SOT>", "<EOT>"]
)
TEXT = "abababab"
TEXT_PATH = Path("Project_Model/Tests/trainer_files/train_simple.txt")
EXPECTED = [258]
# ab = 256
# 256, 256 = 257
# 257, 257 = 258
BPE_ENCODER = TRAINER.trainBPE(
TEXT_PATH,
CACHE_DIR_PATH
)
ENCODED = BPE_ENCODER.encode(TEXT)
assert len(ENCODED) == len(EXPECTED)
for encoded, expected in zip(ENCODED, EXPECTED):
assert encoded == expected
def test_bpe_train_encoding_and_decoding(self):
SPECIAL_LIST = ["<ABS>", "<SOTL>"]
TRAINER = BPE.NanoSocraTrainerPool(
int(32E3),
SPECIAL_LIST
)
TEXT_PATH = Path("Project_Model/Tests/trainer_files/train_encode_decode.txt")
FILE = open(TEXT_PATH)
TEXT = FILE.read()
FILE.close()
EXPECTED = TEXT
# ab = 256
# 256, 256 = 257
# 257, 257 = 258
BPE_ENCODER = TRAINER.trainBPE(
TEXT_PATH,
CACHE_DIR_PATH
)
VOCABULARY = BPE_ENCODER.vocabulary
TOKENANO = BPE.TokeNanoCore(VOCABULARY,SPECIAL_LIST)
ENCODED = TOKENANO.encode(TEXT)
DECODED = TOKENANO.decode(ENCODED)
assert len(DECODED) == len(EXPECTED)
for decoded, expected in zip(DECODED, EXPECTED):
assert decoded == expected
# Useful to debug weird cases
if __name__ == "__main__":
# TestTrainBPE().test_bpe_train_encoding_simple()
TestTrainBPE().test_bpe_train_encoding_and_decoding()

View File

@ -1,4 +0,0 @@
<SOT>Lorem <SEP>ipsu<SEP>m d<SEP>olor s<SEP>it ame<SEP>t,
<SEP>conse<SEP>cte<SEP>tur adip<SEP>iscin<SEP>g elit.
<SEP>Aenean a<SEP>t dui he<SEP>ndrer<SEP>it an<SEP>te soll<SEP>icitud
<SEP>in sce<SEP>lerisque<EOT>

View File

@ -1,2 +0,0 @@
<SOT>Lorem ipsum <SEP>dolor sit amet<SEP>, consectetur <SEP>adipiscing elit.
<SEP>Aenean at dui <SEP>hendrerit ante <SEP>sollicitudin <SEP>scelerisque<EOT>

View File

@ -1,3 +0,0 @@
<SOT>Lorem ipsum <SEP>dolor sit amet<SEP>, consectetur <SEP>adipiscing elit.
<SEP>Aenean at dui <SEP>hendrerit an te <SEP>sollicitudin <SEP>scelerisque
<SEP>dsdsasssdfdsdsfkjddsnfkjdsnfkjdnsjkfndf<EOT>

Some files were not shown because too many files have changed in this diff Show More