74 Commits

Author SHA1 Message Date
GassiGiuseppe
1d23b9cc8b little snippet to trim big dictionaries 2025-10-07 16:05:32 +02:00
GassiGiuseppe
165290162c added tokenano to the init 2025-10-04 19:03:56 +02:00
GassiGiuseppe
502016f843 a new exasperated way to train the bpe, just a wild experimen that could be useful later 2025-10-04 19:03:07 +02:00
GassiGiuseppe
845c63dbef updated tokenano to be more easy to read 2025-10-04 19:01:21 +02:00
GassiGiuseppe
bbadd4c521 update cleaning pipeline with a new method to filter also by number of films,
also updated the signature of the pipeline
2025-10-04 19:00:05 +02:00
GassiGiuseppe
c2f9344c82 little test file 2025-10-04 18:58:20 +02:00
GassiGiuseppe
25f3a5d221 Logic to test BPE 2025-10-04 18:58:04 +02:00
Christian Risi
149deb407d added cache directories 2025-10-03 18:01:05 +02:00
Christian Risi
8a21cb1b73 added python analysis 2025-10-03 18:00:52 +02:00
Christian Risi
d2a3dfe90f Fixed bug 2025-10-03 17:59:46 +02:00
GassiGiuseppe
0f95aeb122 toy dictionary for bpe implemeted 2025-10-03 16:26:01 +02:00
Christian Risi
0ee6e48004 Fixed the same bug as before, but this time is correct 2025-10-03 16:09:53 +02:00
Christian Risi
55e0d2ac23 Fixed a encoding bug 2025-10-03 16:08:11 +02:00
Christian Risi
9c5f42153f fixed typos 2025-10-03 15:17:44 +02:00
Christian Risi
c74689d01d Fixed tests to reflect new version of tokenizer 2025-10-03 13:27:38 +02:00
Christian Risi
51f491d033 fixed typos 2025-10-03 13:27:17 +02:00
Christian Risi
c5c0c61f79 Fix of bugs and semantics 2025-10-03 13:26:58 +02:00
Christian Risi
6b9cb7cd35 Modified imports 2025-10-03 13:26:42 +02:00
Christian Risi
e8894504c6 Fixed a bug where a token (int) was yielded instead of a list of int 2025-10-03 11:44:44 +02:00
GassiGiuseppe
845d645348 added some stubs on special_regex_maker 2025-10-03 10:38:35 +02:00
GassiGiuseppe
09f7b39512 test files updated 2025-10-03 01:04:47 +02:00
GassiGiuseppe
070dc1b744 implemented token nano for the BPE encoding/decoding 2025-10-03 01:04:06 +02:00
GassiGiuseppe
8121c75a09 Updated NanoSocratesSplitter to split also token in decode phase 2025-10-03 01:00:36 +02:00
GassiGiuseppe
a5b8692a77 Updated NanoSocratesSpecial to work with TokeNano 2025-10-03 00:59:15 +02:00
GassiGiuseppe
7c935d2700 Update NanoSocratesBPE: corrected a minor bug about dictionary lenght,
added some comment to make the code more clear
2025-10-03 00:57:19 +02:00
Christian Risi
a1d143187d corrected test to reflect changes in BPE trainer 2025-10-02 20:11:43 +02:00
GassiGiuseppe
0eef2148a9 in NanoSocratesBPE: encode() method rewritten and tested 2025-10-02 12:12:44 +02:00
Christian Risi
856bd8909c Added treshold 2025-10-02 11:02:03 +02:00
Christian Risi
2e595a3a23 Changed training phase to take directly data instead of its encode 2025-10-02 09:56:44 +02:00
Christian Risi
2194cc7b4f Changed test to use pool trainer 2025-10-02 09:56:05 +02:00
Christian Risi
1eae8582b2 Fixed decoding phase 2025-10-02 09:33:58 +02:00
Christian Risi
eadba1fb82 Corrected test to reflect changes in NanoSocratesBPE 2025-10-02 09:33:47 +02:00
Christian Risi
aa765b4555 Added time checking 2025-10-02 08:48:45 +02:00
Christian Risi
17d82f0a4e Added support to resume workload 2025-10-02 08:48:28 +02:00
Christian Risi
0975c19e69 added nwew method to encode from list of tokens 2025-10-02 08:48:13 +02:00
Christian Risi
3fe4e45ceb Fixed a bug while joining frequencies 2025-10-02 01:50:37 +02:00
Christian Risi
d19426fa62 added multithreaded training to package 2025-10-02 01:31:05 +02:00
Christian Risi
63baf29805 Added multithreaded training 2025-10-02 01:30:24 +02:00
Christian Risi
b80b4e4112 Fixed returning type hints 2025-10-02 01:29:57 +02:00
Christian Risi
7cfaf601b4 Refactored to remove tokens that can't be compressed anymore 2025-10-01 19:42:22 +02:00
Christian Risi
fbbe6226bb Finished uploading stubs for TokeNano 2025-10-01 18:56:53 +02:00
Christian Risi
b3d444979f Added flag to resume work correctly 2025-10-01 12:22:09 +02:00
Christian Risi
66bcf6e55f Added a way to recover iteration work 2025-10-01 12:21:42 +02:00
Christian Risi
dbf1d99408 Added json utils to save and load json files 2025-10-01 12:20:59 +02:00
Christian Risi
97bac464f3 Fixed JSON incompatibility 2025-10-01 00:32:43 +02:00
Christian Risi
9a8e726d74 Added cdebug configuration 2025-10-01 00:22:22 +02:00
Christian Risi
7ab9b0358e Added script to run BPE 2025-09-30 23:59:09 +02:00
Christian Risi
30c2938d29 Fixed typing 2025-09-30 23:58:54 +02:00
Christian Risi
76f24d4eb0 Renamed file 2025-09-30 23:58:43 +02:00
Christian Risi
89a0a1f4bb Fixed bug for utf-8 conversion 2025-09-30 23:58:31 +02:00
Christian Risi
ccacea18d8 Created files to test BPE training 2025-09-30 13:33:54 +02:00
Christian Risi
b09bd4acba Created trainer to train BPE 2025-09-30 13:33:40 +02:00
Christian Risi
c9032cab09 Added fit method 2025-09-30 13:33:28 +02:00
Christian Risi
7020c9e683 Added utils to make regexps and iterators that check for last element 2025-09-30 13:33:12 +02:00
Christian Risi
2fe1ce9e9a Updated Inits 2025-09-30 13:32:37 +02:00
Christian Risi
18fc2ba9d8 Added Exceptions 2025-09-30 13:32:24 +02:00
Christian Risi
5acee1d1a5 Merge branch 'dev' into dev.bpe 2025-09-30 11:35:27 +02:00
2e36753da4 Merge pull request 'dev.etl' (#5) from dev.etl into dev
Reviewed-on: #5
2025-09-30 11:28:57 +02:00
Christian Risi
564b0d712e Modified UML diagram 2025-09-28 18:05:03 +02:00
Christian Risi
e433941405 Added BPE
TODO:
- complete the fit method
2025-09-28 18:04:44 +02:00
Christian Risi
b46df4f91a Added Special Encoder 2025-09-28 18:03:47 +02:00
Christian Risi
d179e01971 Added Splitter to divide tokens from text 2025-09-28 18:03:16 +02:00
Christian Risi
b071145f6e Added Chunker 2025-09-28 18:02:06 +02:00
Christian Risi
ed0255e99b Updated imports 2025-09-28 18:01:35 +02:00
Christian Risi
3e8b5c5579 Added test for chunker 2025-09-26 18:50:32 +02:00
Christian Risi
8db35732f9 Added Chunker to restrict our domains 2025-09-26 18:50:23 +02:00
Christian Risi
9552d61f8d Added Excetption for when we don't find a delimiter 2025-09-26 18:49:56 +02:00
Christian Risi
be8a87ce01 Modified the architecture for BPE 2025-09-26 18:49:29 +02:00
Christian Risi
5801a819e9 Added vars to make it easier to work here 2025-09-26 18:49:06 +02:00
Christian Risi
3f48b5c428 Added text files to test a chunker 2025-09-26 18:48:44 +02:00
Christian Risi
9972ab8a51 Added imports 2025-09-26 18:48:23 +02:00
Christian Risi
90012285b5 UML Diagram to explain bpe workflows 2025-09-25 20:18:21 +02:00
Christian Risi
1bbb4a0999 Added new paper 2025-09-25 20:17:48 +02:00
Christian Risi
ee0aa583d5 Added Docs for BPE research 2025-09-25 19:10:45 +02:00
54 changed files with 3075 additions and 34 deletions

1
.gitignore vendored
View File

@@ -254,4 +254,5 @@ $RECYCLE.BIN/
# ---> Custom
**/Tmp/**
**/cache/**
!**/.gitkeep

16
.vscode/launch.json vendored Normal file
View File

@@ -0,0 +1,16 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python Debugger: Current File with Arguments",
"type": "debugpy",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"args": "${command:pickArgs}"
}
]
}

55
.vscode/settings.json vendored
View File

@@ -1,24 +1,55 @@
{
// Always treat the project root as the working dir for Jupyter
"jupyter.notebookFileRoot": "${workspaceFolder}",
// When you click "Run Python File in Terminal", DON'T cd into the file's folder
"python.terminal.executeInFileDir": false,
// Start new integrated terminals at the project root
"terminal.integrated.cwd": "${workspaceFolder}",
// Ensure Python can import from the project root no matter which file you run
// (so `src/` is on sys.path). Linux shown here; add osx/windows if needed.
"terminal.integrated.env.linux": {
"PYTHONPATH": "${workspaceFolder}"
},
// Make pytest run from the root without needing a pytest.ini
"python.testing.pytestEnabled": true,
"python.testing.cwd": "${workspaceFolder}",
"python.testing.pytestArgs": ["src/test"],
"python.testing.pytestArgs": [
"src/test"
],
// Help Pylance resolve imports like `from src...` without red squiggles
"python.analysis.extraPaths": ["${workspaceFolder}"]
"python.analysis.extraPaths": [
"${workspaceFolder}"
],
// For linux
"terminal.integrated.env.linux": {
"PYTHONPATH": "${workspaceFolder}"
},
// For OSX
"terminal.integrated.env.osx": {
"PYTHONPATH": "${workspaceFolder}"
},
// For Windows
"terminal.integrated.env.windows": {
"PYTHONPATH": "${workspaceFolder}"
},
"python.analysis.typeCheckingMode": "standard"
}
// {
// // Always treat the project root as the working dir for Jupyter
// "jupyter.notebookFileRoot": "${workspaceFolder}",
//
// // When you click "Run Python File in Terminal", DON'T cd into the file's folder
// "python.terminal.executeInFileDir": false,
//
// // Start new integrated terminals at the project root
// "terminal.integrated.cwd": "${workspaceFolder}",
//
// // Ensure Python can import from the project root no matter which file you run
// // (so `src/` is on sys.path). Linux shown here; add osx/windows if needed.
// "terminal.integrated.env.windows": {
// "PYTHONPATH": "${workspaceFolder}"
// },
//
// // Make pytest run from the root without needing a pytest.ini
// "python.testing.pytestEnabled": true,
// "python.testing.cwd": "${workspaceFolder}",
// "python.testing.pytestArgs": ["src/test"],
//
// // Help Pylance resolve imports like `from src...` without red squiggles
// "python.analysis.extraPaths": ["${workspaceFolder}"]
// }

BIN
Assets/Model/toy_10/README.md LFS Normal file

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,4 @@
from abc import ABC
class Encoder(ABC):
pass

View File

@@ -0,0 +1,164 @@
from collections import deque
import datetime
from pathlib import Path
import re
from ..Classes import (
NanoSocratesBPE,
NanoSocratesChunker,
NanoSocratesSplitter,
NanoSocratesBatchMemoryBPE,
)
from ..Enums import TokenType
from ..Utils import (
special_regex_maker,
iterator_with_checks,
save_nanos_vocabulary,
load_nanos_vocabulary,
save_json,
load_json,
)
class NanoSocraTraineRam:
def __init__(
self,
max_vocabulary: int,
special_vocabulary: list[str],
merge_treshold: int = 0,
max_iterations: int = 0,
print_after_iterations: int = 1,
) -> None:
# Bytes
BYTE_RESERVED_TOKENS = 256
SPECIAL_RESERVED_TOKENS = len(special_vocabulary)
RESERVED_TOKENS = BYTE_RESERVED_TOKENS + SPECIAL_RESERVED_TOKENS
self.__max_vocabulary = max_vocabulary - RESERVED_TOKENS
self.__max_iterations = max_iterations
self.__merge_treshold = merge_treshold
self.__special_token_regex = special_regex_maker(special_vocabulary)
self.__print_after_iterations = print_after_iterations
def trainBPE(
self,
path: Path,
bpe: NanoSocratesBPE | None = None,
) -> NanoSocratesBPE:
if not path.is_file():
raise FileNotFoundError()
if bpe is None:
bpe = NanoSocratesBPE()
BPE = bpe
if BPE.vocabulary_size > self.__max_vocabulary:
return BPE
exit = False
current_iteration = 0
data = self.__gather_data_from_file(path)
while not exit:
current_iteration = self.__increment_counter(current_iteration)
LAST_VOC_SIZE = BPE.vocabulary_size
last_memory = None
_, data, last_memory = self.__round_train(BPE, data)
NEW_VOC_SIZE = BPE.vocabulary_size
if current_iteration % self.__print_after_iterations == 0:
DELIMITER = "==============="
DEBUG = "\n".join(
[
DELIMITER,
f"ITERATION: {current_iteration}",
DELIMITER,
f"\tVocabulary size: {BPE.vocabulary_size}\n",
f"\tFrequencies:\n{last_memory.frequencies}\n", # type: ignore (pretty sure it's not None)
f"\tvocabulary:\n{BPE.vocabulary}",
DELIMITER,
"",
]
)
print(DEBUG)
if LAST_VOC_SIZE == NEW_VOC_SIZE:
exit = True
continue
if current_iteration == self.__max_iterations:
exit = True
continue
if BPE.vocabulary_size == self.__max_vocabulary:
exit = True
continue
return BPE
def __round_train(self, bpe: NanoSocratesBPE, data: list[list[int]]):
DATA_LEN = len(data)
NEW_DATA = []
counter = 0
memory = NanoSocratesBatchMemoryBPE({}, 0)
while len(data) > 0:
counter += 1
last_batch = len(data) == 1
piece = data.pop()
bpe, memory, output = bpe.fit(piece, memory, last_batch)
if counter % int(1E6) == 0:
print(f"Fitted: {counter}/{DATA_LEN}")
if len(output) < 2:
continue
NEW_DATA.append(output)
return (bpe, NEW_DATA, memory)
def __gather_data_from_file(self, path: Path) -> list[list[int]]:
SPLITTER = NanoSocratesSplitter(self.__special_token_regex)
DATA: list[list[int]] = []
FILE = open(path, "r", encoding="utf-8")
file_string = FILE.read()
FILE.close()
for piece, type in SPLITTER.split_text(file_string):
if type != TokenType.BPE:
continue
int_list = self.__make_list_ids(piece)
DATA.append(int_list)
return DATA
def __increment_counter(self, counter: int):
# What if overflows???
try:
counter += 1
except:
print("Integer overflow")
counter = 1
return counter
def __make_list_ids(self, corpus: str):
return list(corpus.encode("utf-8"))

View File

@@ -0,0 +1,248 @@
from collections import deque
import datetime
from pathlib import Path
import re
from ..Classes import (
NanoSocratesBPE,
NanoSocratesChunker,
NanoSocratesSplitter,
NanoSocratesBatchMemoryBPE,
)
from ..Enums import TokenType
from ..Utils import (
special_regex_maker,
iterator_with_checks,
save_nanos_vocabulary,
load_nanos_vocabulary,
save_json,
load_json,
)
class NanoSocraTrainer:
def __init__(
self,
max_vocabulary: int,
special_vocabulary: list[str],
chunk_size: int,
merge_treshold: int = 0,
max_iterations: int = 0,
print_after_iterations: int = 1,
) -> None:
# Bytes
BYTE_RESERVED_TOKENS = 256
SPECIAL_RESERVED_TOKENS = len(special_vocabulary)
RESERVED_TOKENS = BYTE_RESERVED_TOKENS + SPECIAL_RESERVED_TOKENS
self.__max_vocabulary = max_vocabulary - RESERVED_TOKENS
self.__max_iterations = max_iterations
self.__chunk_size = chunk_size
self.__merge_treshold = merge_treshold
self.__special_token_regex = special_regex_maker(special_vocabulary)
self.__print_after_iterations = print_after_iterations
def trainBPE(
self,
path: Path,
cache_dir: Path,
bpe: NanoSocratesBPE | None = None,
resume_from_iter: int = 0,
) -> NanoSocratesBPE:
if not path.is_file():
raise FileNotFoundError()
if not cache_dir.is_dir():
raise NotADirectoryError()
if bpe is None:
bpe = NanoSocratesBPE()
BPE = bpe
if BPE.vocabulary_size > self.__max_vocabulary:
return BPE
exit = False
cached = False
current_iteration = 0
input_path = path
NEXT_ITERATION = resume_from_iter + 1 if resume_from_iter != 0 else 0
PATH_GEN = self.__switch_paths(path, cache_dir, NEXT_ITERATION)
MEMORY_PATH_GEN = self.__switch_memory(cache_dir, resume_from_iter)
if resume_from_iter != 0:
cached = True
current_iteration = resume_from_iter
input_path = next(PATH_GEN)
# UGLY: fixes a bug immediately, unfortunately
_, _ = next(MEMORY_PATH_GEN)
_, voc_cache_path = next(MEMORY_PATH_GEN)
vocabulary = load_nanos_vocabulary(voc_cache_path)
BPE = NanoSocratesBPE(vocabulary)
while not exit:
out_path = next(PATH_GEN)
internal_cache_path, vocabulary_cache = next(MEMORY_PATH_GEN)
current_iteration = self.__increment_counter(current_iteration)
LAST_VOC_SIZE = BPE.vocabulary_size
FILE = open(out_path, "w")
last_memory = None
for _, memory, output in self.__round_train(input_path, BPE, cached):
last_memory = memory
FILE.write(output)
FILE.close()
internal_cache = {
"finished_iter": current_iteration,
"read_from": f"{input_path}",
"wrote_to": f"{out_path}",
"at": datetime.datetime.now(datetime.timezone.utc).strftime(
"%Y-%m-%d %H:%M:%S.%f"
)[:-3],
}
VOCABULARY = BPE.vocabulary
save_json(internal_cache, internal_cache_path)
save_nanos_vocabulary(VOCABULARY, vocabulary_cache)
cached = True
input_path = out_path
NEW_VOC_SIZE = BPE.vocabulary_size
if current_iteration % self.__print_after_iterations == 0:
DELIMITER = "==============="
DEBUG = "\n".join(
[
DELIMITER,
f"ITERATION: {current_iteration}",
DELIMITER,
f"\tVocabulary size: {BPE.vocabulary_size}\n",
f"\tFrequencies:\n{last_memory.frequencies}\n", # type: ignore (pretty sure it's not None)
f"\tvocabulary:\n{BPE.vocabulary}",
DELIMITER,
"",
]
)
print(DEBUG)
if LAST_VOC_SIZE == NEW_VOC_SIZE:
exit = True
continue
if current_iteration == self.__max_iterations:
exit = True
continue
if BPE.vocabulary_size == self.__max_vocabulary:
exit = True
continue
return BPE
def __round_train(self, path: Path, bpe: NanoSocratesBPE, cached: bool):
CHUNKER = NanoSocratesChunker(self.__chunk_size, self.__special_token_regex)
SPLITTER = NanoSocratesSplitter(self.__special_token_regex)
BPE = bpe
memory = NanoSocratesBatchMemoryBPE({}, self.__merge_treshold)
CHUNKER_GENERATOR = iterator_with_checks(CHUNKER.chunk(path))
for chunk, last_chunk in CHUNKER_GENERATOR:
PIECE_GENERATOR = iterator_with_checks(SPLITTER.split_text(chunk))
for piece, last_piece in PIECE_GENERATOR:
LAST_BATCH = last_chunk and last_piece
PIECE, TOKEN_TYPE = piece
if TOKEN_TYPE != TokenType.BPE:
_, _, out = BPE.fit([], memory, LAST_BATCH)
yield (BPE, memory, PIECE)
continue
PIECE_DATA = self.__make_list_ids(PIECE, cached)
_, _, out = BPE.fit(PIECE_DATA, memory, LAST_BATCH)
OUT_STRING = f"{out}"
yield (BPE, memory, OUT_STRING)
def __increment_counter(self, counter: int):
# What if overflows???
try:
counter += 1
except:
print("Integer overflow")
counter = 1
return counter
def __make_list_ids(self, corpus: str, cached: bool):
if not cached:
return list(corpus.encode("utf-8"))
REDUCED_CORPUS_LEN = len(corpus) - 1
# Skip these cars "[" "]"
INTS = corpus[1:REDUCED_CORPUS_LEN]
INT_LIST = list(map(int, INTS.split(",")))
return INT_LIST
def __switch_paths(self, path: Path, cache_path: Path, initial_iteration: int):
CORPUS_TMP_1 = cache_path / "corpus-tmp1.txt"
CORPUS_TMP_2 = cache_path / "corpus-tmp2.txt"
switch = True
if initial_iteration % 2 == 1:
switch = False
del initial_iteration
while True:
if switch:
yield CORPUS_TMP_1
else:
yield CORPUS_TMP_2
switch = not switch
def __switch_memory(self, cache_path: Path, initial_iteration: int):
INTERNAL_TMP_1 = cache_path / "internal-tmp1.json"
INTERNAL_TMP_2 = cache_path / "internal-tmp2.json"
VOCAB_TMP_1 = cache_path / "voc-tmp1.json"
VOCAB_TMP_2 = cache_path / "voc-tmp2.json"
switch = False
if initial_iteration % 2 == 1:
switch = True
del initial_iteration
while True:
if switch:
yield (INTERNAL_TMP_1, VOCAB_TMP_1)
else:
yield (INTERNAL_TMP_2, VOCAB_TMP_2)
switch = not switch

View File

@@ -0,0 +1,280 @@
from collections import deque
import datetime
import itertools
from multiprocessing import Pool
import os
from pathlib import Path
import re
import time
from ..Classes import (
NanoSocratesBPE,
NanoSocratesChunker,
NanoSocratesSplitter,
NanoSocratesBatchMemoryBPE,
)
from ..Enums import TokenType
from ..Utils import (
special_regex_maker,
iterator_with_checks,
save_nanos_vocabulary,
load_nanos_vocabulary,
save_json,
load_json,
)
def split(a, n):
k, m = divmod(len(a), n)
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
def split_fit(object: tuple[NanoSocratesBPE, list[list[int]]]):
bpe, data = object
NEW_DATA: list[list[int]] = []
memory = NanoSocratesBatchMemoryBPE({}, 0)
while len(data) > 0:
piece = data.pop()
bpe, memory, output = bpe.fit(piece, memory, False)
if len(output) < 2:
continue
# We are sure of its type
NEW_DATA.append(piece) # type: ignore
return (bpe, NEW_DATA, memory)
def split_encode(object: tuple[NanoSocratesBPE, list[list[int]]]):
bpe, data = object
NEW_DATA: list[list[int]] = []
for index, piece in zip(range(0, len(data)), data):
output = bpe.encode_intermediate(piece)
if len(output) < 2:
continue
# We are sure of its type
NEW_DATA.append(data[index]) # type: ignore
return NEW_DATA
class NanoSocraTrainerPool:
def __init__(
self,
max_vocabulary: int,
special_vocabulary: list[str],
merge_treshold: int = 0,
max_iterations: int = 0,
print_after_iterations: int = 1,
) -> None:
# Bytes
BYTE_RESERVED_TOKENS = 256
SPECIAL_RESERVED_TOKENS = len(special_vocabulary)
RESERVED_TOKENS = BYTE_RESERVED_TOKENS + SPECIAL_RESERVED_TOKENS
self.__max_vocabulary = max_vocabulary - RESERVED_TOKENS
self.__max_iterations = max_iterations
self.__merge_treshold = merge_treshold
self.__special_token_regex = special_regex_maker(special_vocabulary)
self.__print_after_iterations = print_after_iterations
# TODO: add a resume function
def trainBPE(
self,
path: Path,
cache_file: Path,
bpe: NanoSocratesBPE | None = None,
) -> NanoSocratesBPE:
if not path.is_file():
raise FileNotFoundError()
if not cache_file.is_file():
file = cache_file.open("w")
file.close()
if bpe is None:
bpe = NanoSocratesBPE()
BPE = bpe
if BPE.vocabulary_size > self.__max_vocabulary:
return BPE
exit = False
current_iteration = 0
data = self.__gather_data_from_file(path)
data = self.__encode_from_cache(BPE, data)
while not exit:
current_iteration = self.__increment_counter(current_iteration)
LAST_VOC_SIZE = BPE.vocabulary_size
last_memory = None
start = time.time_ns()
_, data, last_memory = self.__round_train(BPE, data)
end = time.time_ns()
NEW_VOC_SIZE = BPE.vocabulary_size
VOCABULARY = BPE.vocabulary
save_nanos_vocabulary(VOCABULARY, cache_file)
if current_iteration % self.__print_after_iterations == 0:
DELIMITER = "==============="
DEBUG = "\n".join(
[
DELIMITER,
f"ITERATION: {current_iteration}",
DELIMITER,
f"\tVocabulary size: {BPE.vocabulary_size - 256}\n",
f"\tTime elapsed: {(end - start)/1E9}s",
DELIMITER,
"",
]
)
print(DEBUG)
if LAST_VOC_SIZE == NEW_VOC_SIZE:
exit = True
continue
if current_iteration == self.__max_iterations:
exit = True
continue
if BPE.vocabulary_size == self.__max_vocabulary:
exit = True
continue
return BPE
def __round_train(self, bpe: NanoSocratesBPE, data: list[list[int]]):
NEW_DATA: list[list[int]] = []
MEMORY = NanoSocratesBatchMemoryBPE({}, self.__merge_treshold)
fit_funct = split_fit
CPU_COUNT = os.process_cpu_count()
if CPU_COUNT is None:
raise Exception()
VOCABULARY = bpe.vocabulary
data_chunks = split(data, CPU_COUNT)
JOBS = [(NanoSocratesBPE(VOCABULARY), chunk) for chunk in data_chunks]
JOB_RESULTS: list[
tuple[NanoSocratesBPE, list[list[int]], NanoSocratesBatchMemoryBPE]
]
with Pool() as pool:
JOB_RESULTS = pool.map(fit_funct, JOBS)
for i, res in zip(range(0, CPU_COUNT), JOB_RESULTS):
_, job_output, job_memory = res
NEW_DATA.extend(job_output)
for key, value in job_memory.frequencies.items():
frequency = MEMORY.frequencies.get(key)
if frequency is None:
frequency = 0
MEMORY.frequencies[key] = 0
frequency += value
MEMORY.frequencies[key] = frequency
del job_output
del job_memory
print(f"Joined {i + 1} out of {CPU_COUNT}")
# Get new token
bpe.fit([], MEMORY, True)
print(f"Sentences from {len(data)} to {len(NEW_DATA)}")
return (bpe, NEW_DATA, MEMORY)
def __gather_data_from_file(self, path: Path) -> list[list[int]]:
SPLITTER = NanoSocratesSplitter(self.__special_token_regex)
DATA: list[list[int]] = []
FILE = open(path, "r", encoding="utf-8")
file_string = FILE.read()
FILE.close()
for piece, type in SPLITTER.split_text(file_string):
if type != TokenType.BPE:
continue
int_list = self.__make_list_ids(piece)
DATA.append(int_list)
return DATA
def __encode_from_cache(self, bpe: NanoSocratesBPE, data: list[list[int]]):
NEW_DATA : list[list[int]]= []
CPU_COUNT = os.process_cpu_count()
if CPU_COUNT is None:
raise Exception()
VOCABULARY = bpe.vocabulary
data_chunks = split(data, CPU_COUNT)
JOBS = [(NanoSocratesBPE(VOCABULARY), chunk) for chunk in data_chunks]
JOB_RESULTS: list[list[list[int]]]
with Pool() as pool:
JOB_RESULTS = pool.map(split_encode, JOBS)
for i, res in zip(range(0, CPU_COUNT), JOB_RESULTS):
job_output = res
NEW_DATA.extend(job_output)
del job_output
print(f"Joined {i + 1} out of {CPU_COUNT}")
print(f"Sentences from {len(data)} to {len(NEW_DATA)}")
return NEW_DATA
def __increment_counter(self, counter: int):
# What if overflows???
try:
counter += 1
except:
print("Integer overflow")
counter = 1
return counter
def __make_list_ids(self, corpus: str):
return list(corpus.encode("utf-8"))

View File

@@ -0,0 +1,219 @@
from collections import deque
from .Encoder import Encoder
from ..Errors import OutOfDictionaryException, DuplicateWordException
# ABOUT THE DICTIONARY:
# the string is converted into utf-char bytes, that is: each char is rappresented with a set of bytes from 1 to 4.
# each bytes get casted into an integer; such that, if an integer has its value lower then 256,
# then it is rappresenting an utf-char-byte, otherwise it is a token-ID.
class NanoSocratesBatchMemoryBPE:
"""Memory to batch training. Keeps token couple frequencies, and merge_treshold"""
def __init__(
self, frequencies: dict[tuple[int, int], int], merge_treshold: int
) -> None:
self.frequencies = frequencies
self.merge_treshold = merge_treshold
class NanoSocratesBPE(Encoder):
def __init__(self, vocabulary: dict[tuple[int, int], int] | None = None) -> None:
super().__init__()
self.__vocabulary: dict[tuple[int, int], int] = {}
self.__reverse_vocabulary: dict[int, tuple[int, int]] = {}
if vocabulary is None:
return
for key, value in vocabulary.items():
if value < 256:
raise OutOfDictionaryException()
# values under 256 are used for unpaired char
# TODO: check if they are in order
self.__vocabulary[key] = value
self.__reverse_vocabulary[value] = key
@property
def vocabulary_size(self):
return len(self.__vocabulary) + 256
@property
def vocabulary(self):
return self.__vocabulary
@property
def __next_id(self) -> int:
"""
Gets the next it
Returns:
int:
"""
return self.vocabulary_size
# TODO: implement fit
def fit(
self,
chunk_data: list[int],
memory: NanoSocratesBatchMemoryBPE,
last_batch: bool,
):
ENCODED_CHUNK = self.encode_intermediate(chunk_data)
DATA_LEN_BEFORE_LAST = len(ENCODED_CHUNK) - 1
# update frequency of each couple of element
for i in range(0, DATA_LEN_BEFORE_LAST):
CANDIDATE_COUPLE = (ENCODED_CHUNK[i], ENCODED_CHUNK[i + 1])
frequency = memory.frequencies.get(CANDIDATE_COUPLE)
# Initialize frequency
if frequency is None:
frequency = 0
memory.frequencies[CANDIDATE_COUPLE] = 0
frequency += 1
memory.frequencies[CANDIDATE_COUPLE] = frequency
if not last_batch:
return (self, memory, ENCODED_CHUNK)
if len(memory.frequencies) < 1:
return (self, memory, ENCODED_CHUNK)
FREQUENCIES = memory.frequencies
MAX_COUPLE = max(FREQUENCIES.items(), key=lambda item: item[1])[0]
FREQUENCY = FREQUENCIES[MAX_COUPLE]
if FREQUENCY < memory.merge_treshold:
return (self, memory, ENCODED_CHUNK)
self.__learn_word(MAX_COUPLE)
return (self, memory, ENCODED_CHUNK)
def encode(self, piece: str) -> list[int]:
"""Encode a String into token IDs, it firt convert it into utf-8, then pass the list of integer to encode_intermediate()
Args:
piece (str):
Returns:
list[int]:
"""
converted_piece = list(piece.encode("utf-8"))
return self.encode_intermediate(converted_piece)
def encode_intermediate(self, piece: list[int]) -> list[int]:
"""Encode a piece (as list of integer) till its maximum
Args:
piece (list[int]): piece to encode
Returns:
list[int]: piece encoded
"""
current_piece = piece
new_piece = self.__round_encode(current_piece)
# until current_piece is bigger then new_piece, keep encoding
while len(current_piece) != len(new_piece):
current_piece = new_piece
new_piece = self.__round_encode(current_piece)
return current_piece
def __round_encode(self, piece: list[int]):
"""A single round of encode that traverse all the object. Multiple round are needed for a full encode: \n
1) "ABAB" -> "XX"
2) "XX" -> "Y"
Args:
piece (list[int]): the object to encode as a list of integer
Returns:
(list[int]): the one time encoded object
"""
if len(piece) == 1:
return piece
PIECE_LENGTH = len(piece) - 1
NEW_PIECE: list[int] = []
index = 0
while index < PIECE_LENGTH:
CANDIDATE_WORD = (
piece[index],
piece[index + 1],
) # take a tuple of consecutive element [int]
CANDIDATE_TOKEN = self.__vocabulary.get(CANDIDATE_WORD)
# if no token to substitute the tuple, append the first element
if CANDIDATE_TOKEN is None:
NEW_PIECE.append(piece[index])
index += 1
# if the latter element of the tuple is the last element of the piece, append it
if index == PIECE_LENGTH:
NEW_PIECE.append(piece[index])
continue
# in this case there was a candidate token to substitute the couple of element
NEW_PIECE.append(CANDIDATE_TOKEN)
index += 2
if index == PIECE_LENGTH:
NEW_PIECE.append(piece[index])
return NEW_PIECE
# TODO: Remake decode to take a list of token IDs
def decode(self, token_ids: list[int]) -> str:
# deque: double ended queue
token_stack: deque[int] = deque(token_ids)
UTF_8_STRING_ARR: bytearray = bytearray()
while len(token_stack) > 0:
TOKEN_ID = token_stack.popleft()
if TOKEN_ID < 256:
UTF_8_STRING_ARR.append(TOKEN_ID)
continue
left_token, right_token = self.__token_decode(TOKEN_ID)
token_stack.appendleft(right_token)
token_stack.appendleft(left_token)
return UTF_8_STRING_ARR.decode("utf-8")
def __token_decode(self, token_id: int) -> tuple[int, int]:
CANDIDATE_DECODED = self.__reverse_vocabulary.get(token_id)
if CANDIDATE_DECODED is None:
raise OutOfDictionaryException()
return CANDIDATE_DECODED
def __learn_word(self, words: tuple[int, int]):
"""learn a new couple of object in the vocabulary
Args:
words (tuple[int, int]): the Pair of element to substitute with a new tokenID
Raises:
DuplicateWordException: it launch if there is a duplicate of the new tokenID in the dictionary
"""
ID = self.__next_id
DUPLICATE = self.__vocabulary.get(words)
if DUPLICATE is not None:
raise DuplicateWordException()
self.__vocabulary[words] = ID
self.__reverse_vocabulary[ID] = words

View File

@@ -0,0 +1,70 @@
from pathlib import Path
import re
from ..Errors import DelimiterNotFoundException
class NanoSocratesChunker:
def __init__(self, max_size: int, special_token_regex: re.Pattern) -> None:
self.__max_size: int = max_size
self.__special_token_regex: re.Pattern = special_token_regex
self.__residual: str = ""
# max theorethical size of chars
# between special tokens:
# - min: size - len(longest_token)
# - MAX: size - len(shortest_token)
def chunk(self, file_path: Path):
# read_file
FILE = open(file_path, "r", encoding="utf-8")
exit = False
while not exit:
REMAINING_SIZE = self.__max_size - len(self.__residual)
READ_SIZE = min(self.__max_size, REMAINING_SIZE)
FILE_CHUNK = FILE.read(READ_SIZE)
if len(FILE_CHUNK) == 0:
exit = True
continue
CHUNK = self.__append_residuals(FILE_CHUNK)
boundaries = self.__identify_boudaries(CHUNK)
if boundaries is None:
# boundaries not found in 2 chunks,
if len(CHUNK) > self.__max_size - 1:
raise DelimiterNotFoundException()
if exit:
yield CHUNK
self.__set_residual(0, CHUNK)
continue
start, end = boundaries
self.__set_residual(end, CHUNK)
yield CHUNK[start:end]
def __identify_boudaries(self, corpus: str) -> tuple[int, int] | None:
end = 0
for match in self.__special_token_regex.finditer(corpus):
# print(match)
end = match.end()
if end == 0:
return None
return (0, end)
def __append_residuals(self, corpus: str) -> str:
RESIDUAL = self.__residual
self.__residual = ""
return RESIDUAL + corpus
def __set_residual(self, index: int, corpus: str):
self.__residual = corpus[index:]

View File

@@ -0,0 +1,64 @@
from .Encoder import Encoder
from ..Errors import OutOfDictionaryException
class NanoSocratesSpecial(Encoder):
def __init__(
self, bpe_vocabulary_size: int, special_tokens: list[str] = []
) -> None:
super().__init__()
self.__bpe_offset = bpe_vocabulary_size
self.__vocabulary: dict[str, int] = {}
self.__reverse_vocabulary: dict[int, str] = {}
if len(special_tokens) == 0:
return
for index, TOKEN in zip(range(0, len(special_tokens)), special_tokens):
CANDIDATE_ID = self.__bpe_offset + index + 1
self.__vocabulary[TOKEN] = CANDIDATE_ID
self.__reverse_vocabulary[CANDIDATE_ID] = TOKEN
@property
def __next_id(self):
BPE_OFFSET = self.__bpe_offset
VOC_LENGTH = len(self.__vocabulary)
return BPE_OFFSET + VOC_LENGTH + 1
@property
def vocabulary(self) -> dict[str, int]:
return self.__vocabulary
@property
def reverse_vocabulary(self) -> dict[int, str]:
return self.__reverse_vocabulary
def add_special_word_to_vocabulary(self, word: str):
CANDIDATE_INDEX = self.__next_id
self.__vocabulary[word] = CANDIDATE_INDEX
self.__reverse_vocabulary[CANDIDATE_INDEX] = word
def encode(self, word: str) -> list[int]:
ID = self.__vocabulary.get(word)
if ID is None:
raise OutOfDictionaryException()
return [ID]
def decode(self, token_id: list[int]) -> str:
if len(token_id) != 1:
raise OutOfDictionaryException()
ID = token_id[0]
WORD = self.__reverse_vocabulary.get(ID)
if WORD is None:
raise OutOfDictionaryException()
return WORD

View File

@@ -0,0 +1,98 @@
import re
from collections import deque
from typing import Generator
from ..Enums import TokenType
class NanoSocratesSplitter:
def __init__(
self, special_token_regex: re.Pattern, max_bpe_token_id: int = 255
) -> None:
# attention the regex got already compiled
self.__special_token_regex = special_token_regex
self.__max_bpe_token_id: int = max_bpe_token_id # used for decoding
def split_text(self, corpus: str) -> Generator[tuple[str, TokenType]]:
"""Split a text using a regex given
Args:
corpus (str): all the corpus string to split
Yields:
Generator[tuple[str, TokenType]]: each time returns a piece of the splitted text: string and its TokenType. \n
TokenType describe if the string is for the BPE or a special Token [BPE, SPECIAL]
"""
bpe_start = 0
bpe_end = len(corpus) # this can be deleted!
for special_token_start, special_token_end in self.__find_boundaries(corpus):
# FIND BPE
bpe_end = special_token_start
BPE_TOKEN_TEXT = corpus[bpe_start:bpe_end]
if BPE_TOKEN_TEXT != "":
for WORD in self.__split_words(BPE_TOKEN_TEXT):
yield (WORD, TokenType.BPE)
# FIND SPECIAL TOKEN
SPECIAL_TOKEN_TEXT = corpus[special_token_start:special_token_end]
if SPECIAL_TOKEN_TEXT != "":
yield (SPECIAL_TOKEN_TEXT, TokenType.SPECIAL)
# now save the new bpe start point
# it will used in the next interaction
bpe_start = special_token_end
def __find_boundaries(self, corpus: str) -> Generator[tuple[int, int]]:
"""
Find each time the start and end (not included) of the special token
Args:
corpus (str): the string where the special token will be searched
Yields:
Generator[tuple[int, int]]: Note the end is not included
"""
for match in self.__special_token_regex.finditer(corpus):
start = match.start()
end = match.end()
yield (start, end)
# make the last boundary be the end of corpus
# eof = len(corpus)
# yield(eof,eof)
def __split_words(self, bpe_piece: str) -> Generator[str]:
END_OF_STRING = len(bpe_piece)
bound_start = 0
bound_end = END_OF_STRING + 1
for i in range(0, END_OF_STRING):
CANDIDATE_CHAR = bpe_piece[i]
if CANDIDATE_CHAR != " ":
continue
bound_end = i
yield bpe_piece[bound_start:bound_end]
bound_start = bound_end
bound_end = END_OF_STRING + 1
yield bpe_piece[bound_start:bound_end]
def split_tokens(self, corpus: list[int]) -> Generator[tuple[list[int], TokenType]]:
not_special_token_list: list[int] = []
for token in corpus:
if token > self.__max_bpe_token_id:
if len(not_special_token_list) > 0:
yield (not_special_token_list, TokenType.BPE)
not_special_token_list = []
yield ([token], TokenType.SPECIAL)
continue
not_special_token_list.append(token)

View File

@@ -0,0 +1,8 @@
from Project_Model.Libs.BPE.Classes.TokeNanoCore import TokeNanoCore
class TokeNano:
def __init__(self):
pass

View File

@@ -0,0 +1,62 @@
from pathlib import Path
from ..Classes import NanoSocratesSplitter
from ..Classes import NanoSocratesBPE
from ..Classes import NanoSocratesSpecial
from ..Utils import special_regex_maker
from ..Enums import TokenType
class TokeNanoCore:
def __init__(
self,
bpe_vocabulary: dict[tuple[int, int], int],
special_token_list: list[str],
# special_vocabulary: dict[str, int]
):
self.__bpe_encoder = NanoSocratesBPE(bpe_vocabulary)
SPECIAL_REGEX = special_regex_maker(special_token_list)
BPE_VOCABULARY_SIZE = self.__bpe_encoder.vocabulary_size
self.__splitter = NanoSocratesSplitter(SPECIAL_REGEX, BPE_VOCABULARY_SIZE)
self.__special_encoder = NanoSocratesSpecial(
BPE_VOCABULARY_SIZE, special_token_list
)
def encode(self, corpus: str) -> list[int]:
output: list[int] = []
for piece, token_type in self.__splitter.split_text(corpus):
if token_type == TokenType.SPECIAL:
ENCODED_PIECE = self.__special_encoder.encode(piece)
output.extend(ENCODED_PIECE)
continue
# slow but clear
if token_type == TokenType.BPE:
ENCODED_PIECE = self.__bpe_encoder.encode(piece)
output.extend(ENCODED_PIECE)
continue
return output
def decode(self, corpus: list[int]) -> str:
output_str = ""
for token, token_type in self.__splitter.split_tokens(corpus):
# token is an integer if special, a list of integer otherwise
if token_type == TokenType.SPECIAL:
output_str += self.__special_encoder.decode(
token
)
continue
# slow but clear
if token_type == TokenType.BPE:
output_str += self.__bpe_encoder.decode(
token
)
continue
return output_str

View File

@@ -0,0 +1,18 @@
from .NanoSocratesChunker import NanoSocratesChunker
from .NanoSocratesSplitter import NanoSocratesSplitter
from .NanoSocratesBPE import NanoSocratesBPE, NanoSocratesBatchMemoryBPE
from .NanoSocraTrainer import NanoSocraTrainer
from .NanoSocraTraineRam import NanoSocraTraineRam
from .NanoSocraTrainerPool import NanoSocraTrainerPool
from .NanoSocratesSpecial import NanoSocratesSpecial
from .TokeNanoCore import TokeNanoCore
__all__ = [
"NanoSocratesChunker",
"NanoSocratesSplitter",
"NanoSocratesBPE",
"NanoSocraTrainer",
"NanoSocraTraineRam",
"NanoSocraTrainerPool",
"TokeNanoCore"
]

View File

@@ -0,0 +1,21 @@
from enum import Enum
class SpecialToken(Enum):
# (Enum, str) -> throws an error
START_TRIPLE_LIST = "<SOTL>"
START_TRIPLE = "<SOT>"
END_TRIPLE = "<EOT>"
SUBJECT = "<SUBJ>"
RELATIONSHIP = "<PRED>"
OBJECT = "<OBJ>"
ABSTRACT = "<ABS>"
CORPUS_END = "<END>"
## Tasks' Token
RDF_TO_TEXT = "<RDF2TXT>"
TEXT_TO_RDF = "<TEXT2RDF>"
CONTINUE_RDF = "<CONTINUERDF>"
MASK = "<MASK>"
# BPE Training:

View File

@@ -0,0 +1,6 @@
from enum import Enum, auto
class TokenType(Enum):
SPECIAL = auto()
BPE = auto()

View File

@@ -0,0 +1 @@
from .TokenType import TokenType

View File

@@ -0,0 +1,4 @@
class DelimiterNotFoundException(Exception):
def __init__(self, *args: object) -> None:
super().__init__(*args)

View File

@@ -0,0 +1,4 @@
class DuplicateWordException(Exception):
def __init__(self, *args: object) -> None:
super().__init__(*args)

View File

@@ -0,0 +1,4 @@
class OutOfDictionaryException(Exception):
def __init__(self, *args: object) -> None:
super().__init__(*args)

View File

@@ -0,0 +1,4 @@
class SentenceTooLongException(Exception):
def __init__(self, *args: object) -> None:
super().__init__(*args)

View File

@@ -0,0 +1,11 @@
from .DelimiterNotFoundException import DelimiterNotFoundException
from .OutOfDictionaryException import OutOfDictionaryException
from .DuplicateWordException import DuplicateWordException
from .SentenceTooLongException import SentenceTooLongException
__all__ = [
"DelimiterNotFoundException",
"OutOfDictionaryException",
"DuplicateWordException",
"SentenceTooLongException"
]

View File

@@ -0,0 +1,13 @@
from .special_regex_maker import special_regex_maker
from .lag_checker_iterator import iterator_with_checks
from .vocabulary import save_nanos_vocabulary, load_nanos_vocabulary
from .json_utils import save_json, load_json
from .special_regex_maker import special_regex_maker
__all__ = [
"special_regex_maker",
"iterator_with_checks",
"save_nanos_vocabulary",
"load_nanos_vocabulary",
"save_json", "load_json"
]

View File

@@ -0,0 +1,18 @@
import json
from pathlib import Path
def save_json(dictionary: dict, path: Path):
json_string = json.dumps(dictionary)
FILE = open(path, "w")
FILE.write(json_string)
FILE.close()
def load_json(path: Path) -> dict:
FILE = open(path, "r")
json_string = FILE.read()
FILE.close()
return json.loads(json_string)

View File

@@ -0,0 +1,27 @@
from collections import deque
from typing import Generator, TypeVar
T1 = TypeVar("T1")
T2 = TypeVar("T2")
T3 = TypeVar("T3")
def iterator_with_checks(
generator: Generator[T1, T2, T3],
) -> Generator[tuple[T1, bool], T2, T3]:
# Here we can ignore to catch stop iteration
# we will propagate it
last_element = next(generator)
while True:
RETURN_ELEMENT = last_element
try:
element = next(generator)
last_element = element
yield (RETURN_ELEMENT, False)
except StopIteration:
yield (RETURN_ELEMENT, True)
break

View File

@@ -0,0 +1,15 @@
import re
def special_regex_maker(special_tokens: list[str]) -> re.Pattern:
"""compile a regex for the special token
Args:
special_tokens (list[str]): the list of special token
Returns:
re.Pattern:
"""
REGEX_STR = "|".join(special_tokens)
return re.compile(REGEX_STR)

View File

@@ -0,0 +1,49 @@
import json
from pathlib import Path
from ..Errors import OutOfDictionaryException
def nanos_vocabulary2json_str(vocabulary: dict[tuple[int, int], int]) -> str:
JSON: dict[str, int] = {}
for key, item in vocabulary.items():
TUPLE_STR = f"{key}"
JSON[TUPLE_STR] = item
return json.dumps(JSON)
def nanos_json_str2vocabulary(json_string: str) -> dict[tuple[int, int], int]:
JSON: dict[str, int] = json.loads(json_string)
VOCABULARY: dict[tuple[int, int], int] = {}
for key, item in JSON.items():
REDUCED_KEY = len(key) - 1
KEY_STR = key[1:REDUCED_KEY]
VOC_KEY = tuple(map(int, KEY_STR.split(",")))
if len(VOC_KEY) != 2:
raise OutOfDictionaryException()
# Checked for weird things above
VOCABULARY[VOC_KEY] = item # type: ignore
return VOCABULARY
def save_nanos_vocabulary(vocabulary: dict[tuple[int, int], int], path: Path):
json_string = nanos_vocabulary2json_str(vocabulary)
FILE = open(path, "w")
FILE.write(json_string)
FILE.close()
def load_nanos_vocabulary(path: Path) -> dict[tuple[int, int], int]:
FILE = open(path, "r")
json_string = FILE.read()
FILE.close()
return nanos_json_str2vocabulary(json_string)

View File

@@ -0,0 +1,9 @@
from .Classes import *
from .Enums import *
from .Errors import *
from .Utils import *
from . import Classes
from . import Enums
from . import Errors
from . import Utils

View File

@@ -0,0 +1 @@
from . import BPE

View File

@@ -0,0 +1,74 @@
from Project_Model.Libs.BPE.Enums import TokenType
import Project_Model.Libs.BPE as BPE
import re
class TestBPE:
def test_bpe_encoding_simple(self):
TEXT = "abababab"
# ab = 256
# 256, 256 = 257
# 257, 257 = 258
VOCABULARY = {(ord("a"), ord("b")): 256, (256, 256): 257, (257, 257): 258}
EXPECTED = [258]
BPE_ENCODER = BPE.NanoSocratesBPE(VOCABULARY)
ENCODED = BPE_ENCODER.encode(TEXT)
assert len(ENCODED) == len(EXPECTED)
for encoded, expected in zip(ENCODED, EXPECTED):
assert encoded == expected
def test_bpe_decoding_simple(self):
INPUT = [258]
# ab = 256
# 256, 256 = 257
# 257, 257 = 258
VOCABULARY = {(ord("a"), ord("b")): 256, (256, 256): 257, (257, 257): 258}
EXPECTED = "abababab"
BPE_ENCODER = BPE.NanoSocratesBPE(VOCABULARY)
DECODED = BPE_ENCODER.decode(INPUT)
assert len(DECODED) == len(EXPECTED)
for encoded, expected in zip(DECODED, EXPECTED):
assert encoded == expected
def test_bpe_decoding_edge_1(self):
INPUT = [258, ord("c")]
# ab = 256
# 256, 256 = 257
# 257, 257 = 258
VOCABULARY = {(ord("a"), ord("b")): 256, (256, 256): 257, (257, 257): 258}
EXPECTED = "ababababc"
BPE_ENCODER = BPE.NanoSocratesBPE(VOCABULARY)
DECODED = BPE_ENCODER.decode(INPUT)
assert len(DECODED) == len(EXPECTED)
for encoded, expected in zip(DECODED, EXPECTED):
assert encoded == expected
# Useful to debug weird cases
if __name__ == "__main__":
# TestBPE().test_bpe_decoding_simple()
TestBPE().test_bpe_encoding_simple()

View File

@@ -0,0 +1,77 @@
from pathlib import Path
from Project_Model.Libs.BPE.Enums import TokenType
import Project_Model.Libs.BPE as BPE
import re
CACHE_DIR_PATH = Path("Project_Model/Tests/trainer_files/cache/pool-cache.json")
class TestTrainBPE:
def test_bpe_train_encoding_simple(self):
TRAINER = BPE.NanoSocraTrainerPool(
int(32E3),
["<SOT>", "<EOT>"]
)
TEXT = "abababab"
TEXT_PATH = Path("Project_Model/Tests/trainer_files/train_simple.txt")
EXPECTED = [258]
# ab = 256
# 256, 256 = 257
# 257, 257 = 258
BPE_ENCODER = TRAINER.trainBPE(
TEXT_PATH,
CACHE_DIR_PATH
)
ENCODED = BPE_ENCODER.encode(TEXT)
assert len(ENCODED) == len(EXPECTED)
for encoded, expected in zip(ENCODED, EXPECTED):
assert encoded == expected
def test_bpe_train_encoding_and_decoding(self):
SPECIAL_LIST = ["<ABS>", "<SOTL>"]
TRAINER = BPE.NanoSocraTrainerPool(
int(32E3),
SPECIAL_LIST
)
TEXT_PATH = Path("Project_Model/Tests/trainer_files/train_encode_decode.txt")
FILE = open(TEXT_PATH)
TEXT = FILE.read()
FILE.close()
EXPECTED = TEXT
# ab = 256
# 256, 256 = 257
# 257, 257 = 258
BPE_ENCODER = TRAINER.trainBPE(
TEXT_PATH,
CACHE_DIR_PATH
)
VOCABULARY = BPE_ENCODER.vocabulary
TOKENANO = BPE.TokeNanoCore(VOCABULARY,SPECIAL_LIST)
ENCODED = TOKENANO.encode(TEXT)
DECODED = TOKENANO.decode(ENCODED)
assert len(DECODED) == len(EXPECTED)
for decoded, expected in zip(DECODED, EXPECTED):
assert decoded == expected
# Useful to debug weird cases
if __name__ == "__main__":
# TestTrainBPE().test_bpe_train_encoding_simple()
TestTrainBPE().test_bpe_train_encoding_and_decoding()

View File

@@ -0,0 +1,4 @@
<SOT>Lorem <SEP>ipsu<SEP>m d<SEP>olor s<SEP>it ame<SEP>t,
<SEP>conse<SEP>cte<SEP>tur adip<SEP>iscin<SEP>g elit.
<SEP>Aenean a<SEP>t dui he<SEP>ndrer<SEP>it an<SEP>te soll<SEP>icitud
<SEP>in sce<SEP>lerisque<EOT>

View File

@@ -0,0 +1,2 @@
<SOT>Lorem ipsum <SEP>dolor sit amet<SEP>, consectetur <SEP>adipiscing elit.
<SEP>Aenean at dui <SEP>hendrerit ante <SEP>sollicitudin <SEP>scelerisque<EOT>

View File

@@ -0,0 +1,3 @@
<SOT>Lorem ipsum <SEP>dolor sit amet<SEP>, consectetur <SEP>adipiscing elit.
<SEP>Aenean at dui <SEP>hendrerit an te <SEP>sollicitudin <SEP>scelerisque
<SEP>dsdsasssdfdsdsfkjddsnfkjdsnfkjdnsjkfndf<EOT>

View File

@@ -0,0 +1,89 @@
from pathlib import Path
import re
import pytest
import Project_Model.Libs.BPE as BPE
PATTERN = "<(TOKEN|SOT|SEP|EOT)>"
SYMBOL_REGEX = re.compile(PATTERN)
class TestChunker:
def test_correct_simple(self):
FILE_PATH = Path("Project_Model/Tests/chunker_files/simple.txt")
LEAST_EXPECTED_CHUNKS = 3
ORIG_TEXT = FILE_PATH.read_text(encoding="utf-8")
CHUNKER = BPE.NanoSocratesChunker(40, SYMBOL_REGEX)
CHUNKS = []
for chunk in CHUNKER.chunk(FILE_PATH):
print(chunk)
CHUNKS.append(
chunk
)
NANO_TEXT = "".join(CHUNKS)
assert len(CHUNKS) > (LEAST_EXPECTED_CHUNKS - 1)
assert NANO_TEXT == ORIG_TEXT
def test_correct_edge_1(self):
FILE_PATH = Path("Project_Model/Tests/chunker_files/edge-1.txt")
LEAST_EXPECTED_CHUNKS = 3
ORIG_TEXT = FILE_PATH.read_text(encoding="utf-8")
CHUNKER = BPE.NanoSocratesChunker(15, SYMBOL_REGEX)
CHUNKS = []
for chunk in CHUNKER.chunk(FILE_PATH):
print(chunk)
CHUNKS.append(
chunk
)
NANO_TEXT = "".join(CHUNKS)
assert len(CHUNKS) > (LEAST_EXPECTED_CHUNKS - 1)
assert NANO_TEXT == ORIG_TEXT
def test_throwing(self):
FILE_PATH = Path("Project_Model/Tests/chunker_files/simple.txt")
CHUNKER = BPE.NanoSocratesChunker(5, SYMBOL_REGEX)
with pytest.raises(BPE.DelimiterNotFoundException):
for chunk in CHUNKER.chunk(FILE_PATH):
print(chunk)
if __name__ == "__main__":
FILE_PATH = Path("Project_Model/Tests/chunker_files/stress.txt")
LEAST_EXPECTED_CHUNKS = 3
ORIG_TEXT = FILE_PATH.read_text(encoding="utf-8")
CHUNKER = BPE.NanoSocratesChunker(40, SYMBOL_REGEX)
CHUNKS = []
try:
for chunk in CHUNKER.chunk(FILE_PATH):
print(f"CHUNK START:\n{chunk} - {len(chunk)}\nCHUNK END\n")
CHUNKS.append(
chunk
)
except:
exit(0)
NANO_TEXT = "".join(CHUNKS)
assert len(CHUNKS) > (LEAST_EXPECTED_CHUNKS - 1)
assert NANO_TEXT == ORIG_TEXT

View File

@@ -0,0 +1,182 @@
from Project_Model.Libs.BPE.Enums import TokenType
import Project_Model.Libs.BPE as BPE
import re
PATTERN = "<(TOKEN|SOT|SEP|EOT)>"
SYMBOL_REGEX = re.compile(PATTERN)
class TestSplitter:
def test_split(self):
TEXT = "<SOT>Lorem <SEP>"
SPLITTER = BPE.NanoSocratesSplitter(SYMBOL_REGEX)
EXPECTED_CHUNKS = [
("<SOT>", TokenType.SPECIAL),
("Lorem", TokenType.BPE),
(" ", TokenType.BPE),
("<SEP>", TokenType.SPECIAL),
]
CHUNKS = list(SPLITTER.split_text(TEXT))
assert len(CHUNKS) == len(EXPECTED_CHUNKS)
for chunk, expected_chunk in zip(EXPECTED_CHUNKS, CHUNKS):
print(f"TEST:\n\tCHUNK:\t\t{chunk}\n\tEXPECTED:\t\t{expected_chunk}")
RECEIVED_TOKEN_STRING, RECEIVED_TOKEN_TYPE = chunk
EXPECTED_TOKEN_STRING, EXPECTED_TOKEN_TYPE = expected_chunk
assert RECEIVED_TOKEN_STRING == EXPECTED_TOKEN_STRING
assert RECEIVED_TOKEN_TYPE == EXPECTED_TOKEN_TYPE
def test_split_trailing_text(self):
TEXT = "ipsu<SEP>m d<SEP>olor"
SPLITTER = BPE.NanoSocratesSplitter(SYMBOL_REGEX)
EXPECTED_CHUNKS = [
("ipsu", TokenType.BPE),
("<SEP>", TokenType.SPECIAL),
("m", TokenType.BPE),
(" d", TokenType.BPE),
("<SEP>", TokenType.SPECIAL),
# ("olor", TokenType.BPE)
]
CHUNKS = list(SPLITTER.split_text(TEXT))
assert len(CHUNKS) == len(EXPECTED_CHUNKS)
for chunk, expected_chunk in zip(EXPECTED_CHUNKS, CHUNKS):
print(f"TEST:\n\tCHUNK:\t\t{chunk}\n\tEXPECTED:\t\t{expected_chunk}")
RECEIVED_TOKEN_STRING, RECEIVED_TOKEN_TYPE = chunk
EXPECTED_TOKEN_STRING, EXPECTED_TOKEN_TYPE = expected_chunk
assert RECEIVED_TOKEN_STRING == EXPECTED_TOKEN_STRING
assert RECEIVED_TOKEN_TYPE == EXPECTED_TOKEN_TYPE
def test_split_multi_token(self):
TEXT = "ipsu<SEP>m d<SEP><SEP><SEP>dsg<SEP>olor"
SPLITTER = BPE.NanoSocratesSplitter(SYMBOL_REGEX)
EXPECTED_CHUNKS = [
("ipsu", TokenType.BPE),
("<SEP>", TokenType.SPECIAL),
("m", TokenType.BPE),
(" d", TokenType.BPE),
("<SEP>", TokenType.SPECIAL),
("<SEP>", TokenType.SPECIAL),
("<SEP>", TokenType.SPECIAL),
("dsg", TokenType.BPE),
("<SEP>", TokenType.SPECIAL),
]
CHUNKS = list(SPLITTER.split_text(TEXT))
assert len(CHUNKS) == len(EXPECTED_CHUNKS)
for chunk, expected_chunk in zip(EXPECTED_CHUNKS, CHUNKS):
print(f"TEST:\n\tCHUNK:\t\t{chunk}\n\tEXPECTED:\t\t{expected_chunk}")
RECEIVED_TOKEN_STRING, RECEIVED_TOKEN_TYPE = chunk
EXPECTED_TOKEN_STRING, EXPECTED_TOKEN_TYPE = expected_chunk
assert RECEIVED_TOKEN_STRING == EXPECTED_TOKEN_STRING
assert RECEIVED_TOKEN_TYPE == EXPECTED_TOKEN_TYPE
def test_split_malformed_1(self):
TEXT = "<SEP>lerisque"
SPLITTER = BPE.NanoSocratesSplitter(SYMBOL_REGEX)
EXPECTED_CHUNKS = [
("<SEP>", TokenType.SPECIAL),
]
CHUNKS = list(SPLITTER.split_text(TEXT))
assert len(CHUNKS) == len(EXPECTED_CHUNKS)
for chunk, expected_chunk in zip(EXPECTED_CHUNKS, CHUNKS):
print(f"TEST:\n\tCHUNK:\t\t{chunk}\n\tEXPECTED:\t\t{expected_chunk}")
RECEIVED_TOKEN_STRING, RECEIVED_TOKEN_TYPE = chunk
EXPECTED_TOKEN_STRING, EXPECTED_TOKEN_TYPE = expected_chunk
assert RECEIVED_TOKEN_STRING == EXPECTED_TOKEN_STRING
assert RECEIVED_TOKEN_TYPE == EXPECTED_TOKEN_TYPE
def test_split_malformed_2(self):
TEXT = "lerisque"
SPLITTER = BPE.NanoSocratesSplitter(SYMBOL_REGEX)
EXPECTED_CHUNKS = []
CHUNKS = list(SPLITTER.split_text(TEXT))
assert len(CHUNKS) == len(EXPECTED_CHUNKS)
for chunk, expected_chunk in zip(EXPECTED_CHUNKS, CHUNKS):
print(f"TEST:\n\tCHUNK:\t\t{chunk}\n\tEXPECTED:\t\t{expected_chunk}")
RECEIVED_TOKEN_STRING, RECEIVED_TOKEN_TYPE = chunk
EXPECTED_TOKEN_STRING, EXPECTED_TOKEN_TYPE = expected_chunk
assert RECEIVED_TOKEN_STRING == EXPECTED_TOKEN_STRING
assert RECEIVED_TOKEN_TYPE == EXPECTED_TOKEN_TYPE
def test_split_token_decode_simple(self):
# to test the token split into special and bpe
SPLITTER = BPE.NanoSocratesSplitter(SYMBOL_REGEX, max_bpe_token_id=1473)
token_list = [100, 101, 1477]
CHUNKS = list(SPLITTER.split_tokens(token_list))
EXPECTED_CHUNKS = [
([100, 101], TokenType.BPE),
([1477], TokenType.SPECIAL),
]
assert len(CHUNKS) == len(EXPECTED_CHUNKS)
for chunk, expected_chunk in zip(EXPECTED_CHUNKS, CHUNKS):
print(f"TEST:\n\tCHUNK:\t\t{chunk}\n\tEXPECTED:\t\t{expected_chunk}")
RECEIVED_TOKEN_STRING, RECEIVED_TOKEN_TYPE = chunk
EXPECTED_TOKEN_STRING, EXPECTED_TOKEN_TYPE = expected_chunk
assert RECEIVED_TOKEN_STRING == EXPECTED_TOKEN_STRING
assert RECEIVED_TOKEN_TYPE == EXPECTED_TOKEN_TYPE
def test_split_token_decode_simple_malformed(self):
# to test the token split into special and bpe
SPLITTER = BPE.NanoSocratesSplitter(SYMBOL_REGEX, max_bpe_token_id=1473)
token_list = [100, 101, 1477, 100]
CHUNKS = list(SPLITTER.split_tokens(token_list))
EXPECTED_CHUNKS = [
([100, 101], TokenType.BPE),
([1477], TokenType.SPECIAL),
]
assert len(CHUNKS) == len(EXPECTED_CHUNKS)
for chunk, expected_chunk in zip(EXPECTED_CHUNKS, CHUNKS):
print(f"TEST:\n\tCHUNK:\t\t{chunk}\n\tEXPECTED:\t\t{expected_chunk}")
RECEIVED_TOKEN_STRING, RECEIVED_TOKEN_TYPE = chunk
EXPECTED_TOKEN_STRING, EXPECTED_TOKEN_TYPE = expected_chunk
assert RECEIVED_TOKEN_STRING == EXPECTED_TOKEN_STRING
assert RECEIVED_TOKEN_TYPE == EXPECTED_TOKEN_TYPE
# Useful to debug weird cases
if __name__ == "__main__":
TestSplitter().test_split_trailing_text()

View File

@@ -0,0 +1,21 @@
from Project_Model.Libs.BPE.Classes.TokeNanoCore import TokeNanoCore
class TestTokeNano:
def test_decode_encode_simple(self):
TEXT = "<SOT>abababab<EOT>"
# ab = 256
# 256, 256 = 257
# 257, 257 = 258
VOCABULARY = {(ord("a"), ord("b")): 256, (256, 256): 257, (257, 257): 258}
# EXPECTED = [258]
TOKE_NANO = TokeNanoCore(VOCABULARY, ["<SOT>", "<EOT>"])
ENCODED = TOKE_NANO.encode(TEXT)
DECODED = TOKE_NANO.decode(ENCODED)
assert TEXT == DECODED

View File

View File

@@ -0,0 +1 @@
<ABS>The Dark Knight is a 2008 superhero film directed by Christopher Nolan,<SOTL>

View File

@@ -0,0 +1 @@
<SOT>abababab<EOT>

View File

@@ -0,0 +1,695 @@
{
"type": "excalidraw",
"version": 2,
"source": "https://marketplace.visualstudio.com/items?itemName=pomdtr.excalidraw-editor",
"elements": [
{
"id": "EcT-dGsjmfW571ov8Gg4F",
"type": "text",
"x": 425.5,
"y": 132,
"width": 506,
"height": 425,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [
"4rCC2-N1thmII8_dwNhe1"
],
"frameId": null,
"index": "a3V",
"roundness": null,
"seed": 523521109,
"version": 883,
"versionNonce": 1590682729,
"isDeleted": false,
"boundElements": [
{
"id": "OA_NKjb3n3NLtUo_tKmPS",
"type": "arrow"
}
],
"updated": 1758881654155,
"link": null,
"locked": false,
"text": "class NanoSocratesBPE(Encoder):\n - vocabulary: Vocabulary\n\n + fit(\n data: [[int]], \n memory: NanoSocratesBPE_BatchMemory,\n last_sentence_chunk: bool, \n last_batch: bool\n ) -> (Self, NanoSocratesBPE_BatchMemory)\n\n + encode(word: [byte]) -> [int]\n\n + decode(token: [int]) -> [byte]\n\n + get_vocabulary_size() -> int\n \n",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class NanoSocratesBPE(Encoder):\n - vocabulary: Vocabulary\n\n + fit(\n data: [[int]], \n memory: NanoSocratesBPE_BatchMemory,\n last_sentence_chunk: bool, \n last_batch: bool\n ) -> (Self, NanoSocratesBPE_BatchMemory)\n\n + encode(word: [byte]) -> [int]\n\n + decode(token: [int]) -> [byte]\n\n + get_vocabulary_size() -> int\n \n",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "74i4oK-JpcM4CgAqhz_x_",
"type": "rectangle",
"x": 382.5,
"y": 104.5,
"width": 592.5,
"height": 421,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [
"4rCC2-N1thmII8_dwNhe1"
],
"frameId": null,
"index": "a4",
"roundness": {
"type": 3
},
"seed": 50827893,
"version": 319,
"versionNonce": 704459557,
"isDeleted": false,
"boundElements": [],
"updated": 1758878226277,
"link": null,
"locked": false
},
{
"id": "s8I1JoKulE3Vnti9a374p",
"type": "text",
"x": 1113.5,
"y": 127,
"width": 517,
"height": 325,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [
"M6w9efVFwOZHkJGgwkyEw"
],
"frameId": null,
"index": "a5",
"roundness": null,
"seed": 2091174261,
"version": 480,
"versionNonce": 1964948039,
"isDeleted": false,
"boundElements": [],
"updated": 1758881941367,
"link": null,
"locked": false,
"text": "class Vocabulary:\n\n - vocabulary: dict<(int, int), int>\n - reverse_vocabulary: dict<int, (int, int)>\n\n + size -> int\n\n + add_word(int) -> int\n + encode(int) -> int\n + decode(int) -> int\n \n\n",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class Vocabulary:\n\n - vocabulary: dict<(int, int), int>\n - reverse_vocabulary: dict<int, (int, int)>\n\n + size -> int\n\n + add_word(int) -> int\n + encode(int) -> int\n + decode(int) -> int\n \n\n",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "BY_Why7XDNftdMzPcwjVZ",
"type": "rectangle",
"x": 1086.5,
"y": 105.5,
"width": 593.0000000000001,
"height": 325.5,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [
"M6w9efVFwOZHkJGgwkyEw"
],
"frameId": null,
"index": "a6",
"roundness": {
"type": 3
},
"seed": 153939611,
"version": 234,
"versionNonce": 2068149129,
"isDeleted": false,
"boundElements": [
{
"id": "WcDks9DR8UqeZEaxAcRf9",
"type": "arrow"
}
],
"updated": 1758881945661,
"link": null,
"locked": false
},
{
"id": "JCPDhuTKRx4MN950Q3jL-",
"type": "text",
"x": 1116.411067193676,
"y": 477.3809288774704,
"width": 416.74578857421875,
"height": 99.70355731225297,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [
"DbtlKVF_9SjH2-9iMq9zy"
],
"frameId": null,
"index": "a7",
"roundness": null,
"seed": 1326854235,
"version": 479,
"versionNonce": 595084597,
"isDeleted": false,
"boundElements": [],
"updated": 1758902358518,
"link": null,
"locked": false,
"text": "class NanoSocrateBPE_BatchMemory:\n\n + frequency: dict<(int, int), int>\n + merge_treshold: int",
"fontSize": 19.940711462450594,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class NanoSocrateBPE_BatchMemory:\n\n + frequency: dict<(int, int), int>\n + merge_treshold: int",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "l-O0rMS3SruV22_MPX9Jz",
"type": "rectangle",
"x": 1086.5,
"y": 451.4580039762846,
"width": 593,
"height": 208.0419960474308,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [
"DbtlKVF_9SjH2-9iMq9zy"
],
"frameId": null,
"index": "a8",
"roundness": {
"type": 3
},
"seed": 1490898171,
"version": 305,
"versionNonce": 587306139,
"isDeleted": false,
"boundElements": [
{
"id": "OA_NKjb3n3NLtUo_tKmPS",
"type": "arrow"
}
],
"updated": 1758902358518,
"link": null,
"locked": false
},
{
"id": "WcDks9DR8UqeZEaxAcRf9",
"type": "arrow",
"x": 773.5,
"y": 167,
"width": 297.17936724485867,
"height": 30,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aB",
"roundness": {
"type": 2
},
"seed": 1681364149,
"version": 303,
"versionNonce": 1262492265,
"isDeleted": false,
"boundElements": [],
"updated": 1758881945661,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
144.5,
-1.5
],
[
177.5,
-30
],
[
297.17936724485867,
-29.020420978562214
]
],
"lastCommittedPoint": null,
"startBinding": null,
"endBinding": {
"elementId": "BY_Why7XDNftdMzPcwjVZ",
"focus": 0.77319587628866,
"gap": 18.25
},
"startArrowhead": null,
"endArrowhead": "triangle",
"elbowed": false
},
{
"id": "OA_NKjb3n3NLtUo_tKmPS",
"type": "arrow",
"x": 946.0000000000002,
"y": 274.95951048200493,
"width": 130.016707976343,
"height": 209.36808480159067,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aD",
"roundness": {
"type": 2
},
"seed": 1871768059,
"version": 1039,
"versionNonce": 213535035,
"isDeleted": false,
"boundElements": [],
"updated": 1758902358519,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
54.99999999999977,
12.54048951799507
],
[
69.49999999999977,
188.54048951799507
],
[
130.016707976343,
209.36808480159067
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "EcT-dGsjmfW571ov8Gg4F",
"focus": -0.48312180762055096,
"gap": 14.500000000000114
},
"endBinding": {
"elementId": "l-O0rMS3SruV22_MPX9Jz",
"focus": -0.16742658425737647,
"gap": 11.194126334166185
},
"startArrowhead": null,
"endArrowhead": "triangle",
"elbowed": false
},
{
"id": "snZ__VDsIlri6NTp8M2Gf",
"type": "text",
"x": -245.25,
"y": 103,
"width": 330,
"height": 125,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aE",
"roundness": null,
"seed": 1758461093,
"version": 265,
"versionNonce": 1069481861,
"isDeleted": false,
"boundElements": [],
"updated": 1758879566916,
"link": null,
"locked": false,
"text": "class NanoSocratesBPETrainer:\n\n - max_iterations: int\n - max_vocabulary_size: int\n - merge_treshold: int",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class NanoSocratesBPETrainer:\n\n - max_iterations: int\n - max_vocabulary_size: int\n - merge_treshold: int",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "PnbmqwEWYkP8oXElKFyTp",
"type": "text",
"x": -237.75,
"y": 544,
"width": 561,
"height": 125,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aH",
"roundness": null,
"seed": 501304683,
"version": 241,
"versionNonce": 1306401003,
"isDeleted": false,
"boundElements": [],
"updated": 1758878748210,
"link": null,
"locked": false,
"text": "class NanoSocratesSplitter:\n + splitter_regex: regex\n\n + split_text(corpus: str) -> [(str, TokenType)]\n",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class NanoSocratesSplitter:\n + splitter_regex: regex\n\n + split_text(corpus: str) -> [(str, TokenType)]\n",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "xR_11IzgXX5O-m6WoRfCL",
"type": "text",
"x": -233.25,
"y": 366.5,
"width": 165,
"height": 75,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aI",
"roundness": null,
"seed": 2025585125,
"version": 395,
"versionNonce": 1799178985,
"isDeleted": false,
"boundElements": [],
"updated": 1758883940168,
"link": null,
"locked": false,
"text": "enum TokenType:\n + SPECIAL\n + BPE",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "enum TokenType:\n + SPECIAL\n + BPE",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "lgKSd9qCb94-5e8rd9I3r",
"type": "text",
"x": -219.75,
"y": 764.5,
"width": 462,
"height": 275,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aJ",
"roundness": null,
"seed": 1963214021,
"version": 464,
"versionNonce": 1104453739,
"isDeleted": false,
"boundElements": [],
"updated": 1759053302739,
"link": null,
"locked": false,
"text": "class TokeNanoCore:\n\n - splitter: NanoSocratesSplitter\n - bpe_encoder: NanoSocratesBPE\n - special_encoder: NanoSocratesSpecial\n\n + encode(corpus: str) -> [int]\n\n - encode_special(piece: str) -> int\n\n - encode_bpe(piece: str) -> [int]",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class TokeNanoCore:\n\n - splitter: NanoSocratesSplitter\n - bpe_encoder: NanoSocratesBPE\n - special_encoder: NanoSocratesSpecial\n\n + encode(corpus: str) -> [int]\n\n - encode_special(piece: str) -> int\n\n - encode_bpe(piece: str) -> [int]",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "DwFJoUpVT2YAEe9qPYAXa",
"type": "text",
"x": 496.75,
"y": 666,
"width": 440,
"height": 100,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aL",
"roundness": null,
"seed": 1317596203,
"version": 152,
"versionNonce": 1840679687,
"isDeleted": false,
"boundElements": [],
"updated": 1758880107704,
"link": null,
"locked": false,
"text": "class NanoSocratesSpecial(Encoder):\n\n + vocabulary: dict<str, int>\n + reverse_vocabulary: dict<int, str>",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class NanoSocratesSpecial(Encoder):\n\n + vocabulary: dict<str, int>\n + reverse_vocabulary: dict<int, str>",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "78gC46xatoO1_cRtaN8EC",
"type": "text",
"x": 396.375,
"y": -107.75,
"width": 396,
"height": 100,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aM",
"roundness": null,
"seed": 1187595241,
"version": 130,
"versionNonce": 1273030504,
"isDeleted": false,
"boundElements": [],
"updated": 1759070012771,
"link": null,
"locked": false,
"text": "class Encoder(ABC):\n\n + encode(corpus: str) -> [int]\n + decode(encoded: [int]) -> str ",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class Encoder(ABC):\n\n + encode(corpus: str) -> [int]\n + decode(encoded: [int]) -> str ",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "3j50Ds74uU7oXoJ9kMOYJ",
"type": "text",
"x": 457.375,
"y": 903.75,
"width": 949.7594604492188,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aN",
"roundness": null,
"seed": 1994335529,
"version": 198,
"versionNonce": 1492696519,
"isDeleted": false,
"boundElements": [],
"updated": 1758882694747,
"link": null,
"locked": false,
"text": "@@mamma@@è bell^^issima e @@^^le voglio molto b^^ene @--@ replit ^^ è molto ^^bello e^^ lo amo",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "@@mamma@@è bell^^issima e @@^^le voglio molto b^^ene @--@ replit ^^ è molto ^^bello e^^ lo amo",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "yg-TvQvz4MwJZ0y8K7Ix0",
"type": "text",
"x": 435.375,
"y": 1026.25,
"width": 352,
"height": 250,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aP",
"roundness": null,
"seed": 1877486407,
"version": 344,
"versionNonce": 25830153,
"isDeleted": false,
"boundElements": [],
"updated": 1758883468886,
"link": null,
"locked": false,
"text": "class NanoSocratesChunker:\n\n - max_bytes: int\n - max_special_length: int\n - special_token_regex: regex\n\n - residuals: str\n\n # This must be an iterator\n + read(path: Path) -> str",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class NanoSocratesChunker:\n\n - max_bytes: int\n - max_special_length: int\n - special_token_regex: regex\n\n - residuals: str\n\n # This must be an iterator\n + read(path: Path) -> str",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "2UXjWdE_jMcsCE2oQgTXn",
"type": "text",
"x": -334.75,
"y": 1112.5,
"width": 165,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aQ",
"roundness": null,
"seed": 700532363,
"version": 76,
"versionNonce": 1671597672,
"isDeleted": false,
"boundElements": [],
"updated": 1759070020002,
"link": null,
"locked": false,
"text": "class TokeNano:",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class TokeNano:",
"autoResize": true,
"lineHeight": 1.25
}
],
"appState": {
"gridSize": 20,
"gridStep": 5,
"gridModeEnabled": false,
"viewBackgroundColor": "#ffffff"
},
"files": {}
}

View File

@@ -17,6 +17,25 @@ Now install dependencies on pip:
pip install -r requirements.txt
Add the following on .vscode/settings.json
```json
{
// For linux
"terminal.integrated.env.linux": {
"PYTHONPATH": "${workspaceFolder}"
},
// For OSX
"terminal.integrated.env.osx": {
"PYTHONPATH": "${workspaceFolder}"
},
// For Windows
"terminal.integrated.env.windows": {
"PYTHONPATH": "${workspaceFolder}"
}
}
```
## TroubleShooting
Sometimes when uploading really large batch of data, git can stop the uploads thanks to the timeout.

View File

@@ -73,6 +73,10 @@ class PipelineApplier():
return RDF
def reduce_movie_list(self, starting_offset:int , ending_offset:int):
end = min(len(self.MOVIE_FILTER), ending_offset)
self.MOVIE_FILTER = self.MOVIE_FILTER.iloc[starting_offset:end].copy()
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
# dataset has SubjectURI RelationshipURI ObjectURI
# want to drop the '' in them

View File

@@ -10,13 +10,19 @@ from Scripts.DataCleaning.data_output_models.rdf_completation_task import RDF_co
import pandas as pd
class Pipeline():
def __init__(self):
def __init__(self,
mask_task_dataset_path:str = "./Assets/Dataset/Tmp/rdf_mask.csv",
bpe_corpus_path:str = "./Assets/Dataset/Tmp/corpus.txt",
text_to_rdf_task_dataset_path:str = "./Assets/Dataset/Tmp/rdf_text.csv",
completation_rdf_task_dataset_path:str = "./Assets/Dataset/Tmp/rdf_completation.csv",
):
self.sql_endpoint = SqlEndpoint()
# classes to manage taskes' datasets
self.task_rdf_mask = RDF_mask_task_dataset("./Assets/Dataset/Tmp/rdf_mask.csv")
self.task_bpe_corpus = BPE_corpus("./Assets/Dataset/Tmp/corpus.txt")
self.task_rdf_text = RDF_text_task_dataset("./Assets/Dataset/Tmp/rdf_text.csv")
self.task_rdf_completation = RDF_completation_task_dataset("./Assets/Dataset/Tmp/rdf_completation.csv")
self.task_rdf_mask = RDF_mask_task_dataset(mask_task_dataset_path)
self.task_bpe_corpus = BPE_corpus(bpe_corpus_path)
self.task_rdf_text = RDF_text_task_dataset(text_to_rdf_task_dataset_path)
self.task_rdf_completation = RDF_completation_task_dataset(completation_rdf_task_dataset_path)
# prepare the filter
# the filter applier needs to know the frequence of Movies and Relationship among all the Dataset
@@ -113,6 +119,9 @@ class Pipeline():
movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
self.sql_endpoint.movie_ids = movie_list
def reduce_movie_list(self, starting_offset:int , ending_offset:int):
self.filter_applier.reduce_movie_list(starting_offset,ending_offset)
# there are a lot of settings to manage
@@ -121,11 +130,11 @@ class Pipeline():
# in the use_toy_dataset , to change the toy dataset
# in _get_cleaned_movie_rows: to change how the pipeline behave
pipeline = Pipeline()
#pipeline = Pipeline()
# pipeline.use_toy_dataset()
# pipeline.execute_task_bpe_corpus()
# pipeline.execute_task_rdf_mask()
# pipeline.execute_tasks_rdf_text()
# pipeline.execute_task_rdf_completation()
pipeline.execute_all_task()
# pipeline.execute_all_task()

View File

@@ -0,0 +1,21 @@
import Project_Model.Libs.BPE as BPE
from pathlib import Path
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
VOCABULARY_path = "Assets/Model/toy_10/toy_dictionary.json"
VOCABULARY = BPE.load_nanos_vocabulary(Path(VOCABULARY_path))
SPECIAL_TOKEN_LIST = [token.value for token in SpecialToken]
# INPUT = "<SOTL><SOT><SUBJ>dbp-dbr:How_It_Should_Have_Ended<PRED>dbp-dbp:title<OBJ>dbp-dbr:The_Dark_Knight<EOT>"
# INPUT = "<SOTL><SOT><SUBJ>dbp-dbr:How_It_Should_Have_Ended<PRED>"
# INPUT = "<ABS>The Dark Knight is a 2008 superhero film directed by Christopher Nolan, from a screenplay co-written with his brother Jonathan. Based on the DC Comics superhero Batman, it is the sequel to Batman Begins (2005), and the second installment in The Dark Knight trilogy. The plot follows the vigilante Batman, police lieutenant James Gordon, and district attorney Harvey Dent, who form an alliance to dismantle organized crime in Gotham City. Their efforts are derailed by the Joker, an anarchistic mastermind who seeks to test how far Batman will go to save the city from chaos. The ensemble cast includes Christian Bale, Michael Caine, Heath Ledger, Gary Oldman, Aaron Eckhart, Maggie Gyllenhaal, and Morgan Freeman.Warner Bros. Pictures prioritized a sequel following the successful reinvention of the Batman film series with Batman Begins. Christopher and Batman Begins co-writer David S. Goyer developed the story elements, making Dent the central protagonist caught up in the battle between Batman and the Joker. In writing the screenplay, the Nolans were influenced by 1980s Batman comics and crime drama films, and sought to continue Batman Begins' heightened sense of realism. From April to November 2007, filming took place with a $185 million budget in Chicago and Hong Kong, and on sets in England. The Dark Knight was the first major motion picture to be filmed with high-resolution IMAX cameras. Christopher avoided using computer-generated imagery unless necessary, insisting on practical stunts such as flipping an 18-wheel truck and blowing up a factory.The Dark Knight was marketed with an innovative interactive viral campaign that initially focused on countering criticism of Ledger's casting by those who believed he was a poor choice to portray the Joker. Ledger died from an accidental prescription drug overdose in January 2008, leading to widespread interest from the press and public regarding his performance. When it was released in July, The Dark Knight received acclaim for its mature tone and themes, visual style, and performances—particularly that of Ledger, who received many posthumous awards including Academy, BAFTA, and Golden Globe awards for Best Supporting Actor, making The Dark Knight the first comic-book film to receive major industry awards. It broke several box-office records and became the highest-grossing 2008 film, the fourth-highest-grossing film to that time, and the highest-grossing superhero film of the time.Since its release, The Dark Knight has been assessed as one of the greatest superhero films ever, one of the best movies of the 2000s, and one of the best films ever made. It is considered the \"blueprint\" for many modern superhero films, particularly for its rejection of a typical comic-book movie style in favor of a crime film that features comic-book characters. Many filmmakers sought to repeat its success by emulating its gritty, realistic tone to varying degrees of success. The Dark Knight has been analyzed for its themes of terrorism and the limitations of morality and ethics. The United States Library of Congress selected it for preservation in the National Film Registry in 2020. A sequel, The Dark Knight Rises, concluded The Dark Knight trilogy in 2012.<SOTL>"
INPUT = "<ABS>The Dark Knight is a 2008 superhero film directed by Christopher Nolan,<SOTL>"
# INPUT = "<ABS> Nolan,<SOTL>"
# 32: " "
TOKENANO = BPE.Classes.TokeNanoCore(VOCABULARY, SPECIAL_TOKEN_LIST)
print(f"input: {INPUT} \ninput lenght: {len(INPUT)}")
encoded = TOKENANO.encode(INPUT)
print(f"encode: {encoded} \nencode lenght: {len(encoded)}")
decoded = TOKENANO.decode(encoded)
print(f"decode: {decoded} \ndecode lenght: {len(decoded)}")

View File

@@ -1,6 +1,7 @@
from enum import Enum
class SpecialToken(str, Enum):
class SpecialToken(Enum):
# (Enum, str) -> throws an error
START_TRIPLE_LIST = "<SOTL>"
START_TRIPLE = "<SOT>"
@@ -17,5 +18,4 @@ class SpecialToken(str, Enum):
CONTINUE_RDF = "<CONTINUERDF>"
MASK = "<MASK>"
#BPE Training:
# BPE Training:

View File

@@ -0,0 +1,101 @@
import argparse
import json
from pathlib import Path
import sys
# TODO: make relative imports
import Project_Model.Libs.BPE as BPE
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
DEFAULT_CHUNK_SIZE = int(18e4)
DEFAULT_DEBUG_AFTER_ITER = 1
DEFAULT_MAX_VOCABULARY = int(32E3)
DEFAULT_MERGE_TRESHOLD = 1
DEFAULT_MAX_ITERATIONS = 0
TOKEN_LIST = [token.value for token in SpecialToken]
class ProgramArgs:
def __init__(
self,
input_file: str,
cache_dir: str,
output_file: str,
resume_at: int,
max_vocabulary: int,
max_iterations: int,
merge_treshold: int,
chunk_size: int,
debug_after: int,
) -> None:
self.input_file = input_file
self.cache_dir = cache_dir
self.output_file = output_file
self.resume_at = resume_at
self.max_vocabulary = max_vocabulary
self.max_iterations = max_iterations
self.merge_treshold = merge_treshold
self.chunk_size = chunk_size
self.debug_after = debug_after
def get_args(args: list[str]) -> ProgramArgs:
PARSER = argparse.ArgumentParser()
PARSER.add_argument("--input-file", "--input", "-i", required=True, type=str)
PARSER.add_argument("--cache-dir", "--cache", "-c", required=True, type=str)
PARSER.add_argument("--output-file", "--output", "-o", required=True, type=str)
PARSER.add_argument("--resume-at", "--resume", "-r", default=0, type=int)
PARSER.add_argument("--max-vocabulary", "--max-voc", default=DEFAULT_MAX_VOCABULARY, type=int)
PARSER.add_argument("--max-iterations", "--max-iter", default=DEFAULT_MAX_ITERATIONS, type=int)
PARSER.add_argument("--merge-treshold", "--tresh", default=DEFAULT_MERGE_TRESHOLD, type=int)
PARSER.add_argument("--chunk-size", default=DEFAULT_CHUNK_SIZE, type=int)
PARSER.add_argument("--debug-after", default=DEFAULT_DEBUG_AFTER_ITER, type=int)
parsed_args, _ = PARSER.parse_known_args(args)
return ProgramArgs(
parsed_args.input_file,
parsed_args.cache_dir,
parsed_args.output_file,
parsed_args.resume_at,
parsed_args.max_vocabulary,
parsed_args.max_iterations,
parsed_args.merge_treshold,
parsed_args.chunk_size,
parsed_args.debug_after,
) # type ignore
def train(args: ProgramArgs):
TRAINER = BPE.NanoSocraTrainer(
args.max_vocabulary,
TOKEN_LIST,
args.chunk_size,
args.merge_treshold,
args.max_iterations,
args.debug_after
)
DATASET_PATH = Path(args.input_file)
CACHE_DIR = Path(args.cache_dir)
VOCABULARY_PATH = Path(args.output_file)
print(f"Training BPE")
BPE_ENCODER = TRAINER.trainBPE(
DATASET_PATH,
CACHE_DIR,
resume_from_iter=args.resume_at
)
VOCABULARY = BPE_ENCODER.vocabulary
print(f"Saving Vocabulary in {VOCABULARY_PATH}")
BPE.save_nanos_vocabulary(VOCABULARY, VOCABULARY_PATH)
if __name__ == "__main__":
ARGS = get_args(sys.argv)
train(ARGS)

View File

@@ -0,0 +1,96 @@
import argparse
import json
from pathlib import Path
import sys
# TODO: make relative imports
import Project_Model.Libs.BPE as BPE
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
DEFAULT_DEBUG_AFTER_ITER = 1
DEFAULT_MAX_VOCABULARY = int(32E3)
DEFAULT_MERGE_TRESHOLD = 1
DEFAULT_MAX_ITERATIONS = 0
TOKEN_LIST = [token.value for token in SpecialToken]
class ProgramArgs:
def __init__(
self,
input_file: str,
output_file: str,
cache_file: str,
max_vocabulary: int,
max_iterations: int,
merge_treshold: int,
debug_after: int,
) -> None:
self.input_file = input_file
self.output_file = output_file
self.cache_file = cache_file
self.max_vocabulary = max_vocabulary
self.max_iterations = max_iterations
self.merge_treshold = merge_treshold
self.debug_after = debug_after
def get_args(args: list[str]) -> ProgramArgs:
PARSER = argparse.ArgumentParser()
PARSER.add_argument("--input-file", "--input", "-i", required=True, type=str)
PARSER.add_argument("--output-file", "--output", "-o", required=True, type=str)
PARSER.add_argument("--cache-file", "--cache", "-c", required=True, type=str)
PARSER.add_argument("--max-vocabulary", "--max-voc", default=DEFAULT_MAX_VOCABULARY, type=int)
PARSER.add_argument("--max-iterations", "--max-iter", default=DEFAULT_MAX_ITERATIONS, type=int)
PARSER.add_argument("--merge-treshold", "--tresh", default=DEFAULT_MERGE_TRESHOLD, type=int)
PARSER.add_argument("--debug-after", default=DEFAULT_DEBUG_AFTER_ITER, type=int)
parsed_args, _ = PARSER.parse_known_args(args)
return ProgramArgs(
parsed_args.input_file,
parsed_args.output_file,
parsed_args.cache_file,
parsed_args.max_vocabulary,
parsed_args.max_iterations,
parsed_args.merge_treshold,
parsed_args.debug_after,
) # type ignore
def train(args: ProgramArgs):
TRAINER = BPE.NanoSocraTrainerPool(
args.max_vocabulary,
TOKEN_LIST,
args.merge_treshold,
args.max_iterations,
args.debug_after
)
DATASET_PATH = Path(args.input_file)
VOCABULARY_PATH = Path(args.output_file)
CACHE_PATH = Path(args.cache_file)
start_bpe = BPE.NanoSocratesBPE()
if CACHE_PATH.is_file():
voc = BPE.load_nanos_vocabulary(CACHE_PATH)
start_bpe = BPE.NanoSocratesBPE(voc)
print(f"Training BPE")
BPE_ENCODER = TRAINER.trainBPE(
DATASET_PATH,
CACHE_PATH,
start_bpe
)
VOCABULARY = BPE_ENCODER.vocabulary
print(f"Saving Vocabulary in {VOCABULARY_PATH}")
BPE.save_nanos_vocabulary(VOCABULARY, VOCABULARY_PATH)
if __name__ == "__main__":
ARGS = get_args(sys.argv)
train(ARGS)

View File

@@ -0,0 +1,84 @@
import argparse
import json
from pathlib import Path
import sys
# TODO: make relative imports
import Project_Model.Libs.BPE as BPE
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
DEFAULT_DEBUG_AFTER_ITER = 1
DEFAULT_MAX_VOCABULARY = int(32E3)
DEFAULT_MERGE_TRESHOLD = 1
DEFAULT_MAX_ITERATIONS = 0
TOKEN_LIST = [token.value for token in SpecialToken]
class ProgramArgs:
def __init__(
self,
input_file: str,
output_file: str,
max_vocabulary: int,
max_iterations: int,
merge_treshold: int,
debug_after: int,
) -> None:
self.input_file = input_file
self.output_file = output_file
self.max_vocabulary = max_vocabulary
self.max_iterations = max_iterations
self.merge_treshold = merge_treshold
self.debug_after = debug_after
def get_args(args: list[str]) -> ProgramArgs:
PARSER = argparse.ArgumentParser()
PARSER.add_argument("--input-file", "--input", "-i", required=True, type=str)
PARSER.add_argument("--output-file", "--output", "-o", required=True, type=str)
PARSER.add_argument("--max-vocabulary", "--max-voc", default=DEFAULT_MAX_VOCABULARY, type=int)
PARSER.add_argument("--max-iterations", "--max-iter", default=DEFAULT_MAX_ITERATIONS, type=int)
PARSER.add_argument("--merge-treshold", "--tresh", default=DEFAULT_MERGE_TRESHOLD, type=int)
PARSER.add_argument("--debug-after", default=DEFAULT_DEBUG_AFTER_ITER, type=int)
parsed_args, _ = PARSER.parse_known_args(args)
return ProgramArgs(
parsed_args.input_file,
parsed_args.output_file,
parsed_args.max_vocabulary,
parsed_args.max_iterations,
parsed_args.merge_treshold,
parsed_args.debug_after,
) # type ignore
def train(args: ProgramArgs):
TRAINER = BPE.NanoSocraTraineRam(
args.max_vocabulary,
TOKEN_LIST,
args.merge_treshold,
args.max_iterations,
args.debug_after
)
DATASET_PATH = Path(args.input_file)
VOCABULARY_PATH = Path(args.output_file)
print(f"Training BPE")
BPE_ENCODER = TRAINER.trainBPE(
DATASET_PATH
)
VOCABULARY = BPE_ENCODER.vocabulary
print(f"Saving Vocabulary in {VOCABULARY_PATH}")
BPE.save_nanos_vocabulary(VOCABULARY, VOCABULARY_PATH)
if __name__ == "__main__":
ARGS = get_args(sys.argv)
train(ARGS)

View File

@@ -0,0 +1,12 @@
# to cut the mad trained dict into a short one
from Project_Model.Libs.BPE.Utils.vocabulary import load_nanos_vocabulary, save_nanos_vocabulary
from pathlib import Path
DICTIONARY_PATH = "Assets/Dataset/Tmp/mad_cache.json"
OUTPUT_PATH = "Assets/Dataset/Tmp/trimmed.json"
big_dict = load_nanos_vocabulary(Path(DICTIONARY_PATH))
big_dict = dict(list(big_dict.items())[:31744])
save_nanos_vocabulary(big_dict,Path(OUTPUT_PATH))

View File

@@ -0,0 +1,48 @@
# generate each time a corpus big then the last, without the old data
# then using the same vocabulary let the bpe train
from Scripts.DataCleaning.pipeline import Pipeline
from Scripts.Training.bpe_trainer_pool import train,get_args
from pathlib import Path
import os, shutil
CORPUS_PATH = "Assets/Dataset/Tmp/toy_corpus.txt"
VOCABULARY_PATH = "Assets/Dataset/Tmp/mad_vocabulary.json"
CACHE_PATH = "Assets/Dataset/Tmp/mad_cache.json"
def mad_corpus_generator(corpus_size :int, corpus_offset: int):
print("New Corpus")
pipe = Pipeline(bpe_corpus_path=CORPUS_PATH)
print("Pipeline Created")
corpus_ending_offset = corpus_size + corpus_offset
pipe.reduce_movie_list(corpus_offset,corpus_ending_offset)
print("Starting building corpus")
pipe.execute_task_bpe_corpus()
print("Corpus created")
def mad_bpe_trainer():
argv = [
"--input-file", CORPUS_PATH,
"--output-file", VOCABULARY_PATH,
"--cache-file", CACHE_PATH,
]
args = get_args(argv)
train(args)
def mad_hatter():
# 10,100,500,1000,1500,2000,3000,4000,5000,10000
film_list = [10,100,500,1000,1500,2000,3000,4000,5000,10000]
starting_offset = 0
for corpus_size in film_list:
# mad_corpus_generator(corpus_size, starting_offset)
# starting_offset = starting_offset + corpus_size
mad_bpe_trainer()
# put dict into cache
shutil.copyfile(Path(VOCABULARY_PATH), Path(CACHE_PATH))
mad_hatter()

22
docs/BPE.md Normal file
View File

@@ -0,0 +1,22 @@
# BPE
## Reasearch Material
- [BPE Wikipedia](https://en.wikipedia.org/wiki/Byte-pair_encoding)
- [BPE Hugging Face](https://huggingface.co/learn/llm-course/chapter6/5)
- [BPE GeeksForGeeks](https://www.geeksforgeeks.org/nlp/byte-pair-encoding-bpe-in-nlp/)
- [BPE Medium Chetna Khanna](https://medium.com/data-science/byte-pair-encoding-subword-based-tokenization-algorithm-77828a70bee0)
- [Stack Overflow "Explain bpe (Byte Pair Encoding) with examples?"](https://stackoverflow.com/questions/50583254/explain-bpe-byte-pair-encoding-with-examples)
- [Implementing a byte pair encoding(BPE) Tokenizer from scratch](https://sebastianraschka.com/blog/2025/bpe-from-scratch.html)
- [Thoretical Analysis of Byte-Pair Encoding](https://arxiv.org/pdf/2411.08671)
- [A Formal Perspective on Byte-Pair Encoding](https://aclanthology.org/2023.findings-acl.38v2.pdf)
- [Byte Pair Encoding is Suboptimal for Language Model Pretraining](https://arxiv.org/pdf/2004.03720)
- [Byte pair encoding: a text compression scheme that accelerates pattern matching](https://www.researchgate.net/profile/Takeshi-Shinohara/publication/2310624_Byte_Pair_Encoding_A_Text_Compression_Scheme_That_Accelerates_Pattern_Matching/links/02e7e522f8ea00c318000000/Byte-Pair-Encoding-A-Text-Compression-Scheme-That-Accelerates-Pattern-Matching.pdf)
- [A Formal Perspective on Byte-Pair Encoding](https://arxiv.org/pdf/2306.16837)
- [Controlling byte pair encoding for neural machine translation](https://ieeexplore.ieee.org/abstract/document/8300571)
- [Scaffold-BPE: Enhancing Byte Pair Encoding for Large Language Models with Simple and Effective Scaffold Token Removal](https://ojs.aaai.org/index.php/AAAI/article/view/34633)
- [Parity-Aware Byte-Pair Encoding: Improving Cross-lingual Fairness in Tokenization](https://arxiv.org/pdf/2508.04796)
- [Code Completion using Neural A‚ention and Byte Pair Encoding](https://arxiv.org/pdf/2004.06343)
- [Getting the most out of your tokenizer for pre-training and domain adaptation](https://arxiv.org/html/2402.01035v2)