21 Commits

Author SHA1 Message Date
GassiGiuseppe
856c693650 Added possibility to whitelist relationships 2025-10-12 12:26:26 +02:00
GassiGiuseppe
e9d30b3cea add divide method to create hold out dataset 2025-10-11 16:49:36 +02:00
GassiGiuseppe
ee12f53f12 Added EOS token 2025-10-07 22:47:59 +02:00
GassiGiuseppe
a04f4c7cb7 changes to shorten the dataset 2025-10-07 15:49:25 +02:00
GassiGiuseppe
a93e61b8c1 Update ETL 2025-10-07 00:54:00 +02:00
GassiGiuseppe
0373460105 Movie filters updated 2025-10-06 10:57:50 +02:00
GassiGiuseppe
7307916891 update sql_endpoint to work with the new pipeline 2025-10-05 14:58:03 +02:00
GassiGiuseppe
acb43fc899 new faster pipeline 2025-10-05 14:57:45 +02:00
GassiGiuseppe
255d801a80 updated the mask rdf_mask_task.
however since the model will build the mask itself, it is deprecated
2025-10-05 14:56:33 +02:00
GassiGiuseppe
2bd24ec278 Created legacy folder for old pipeline
this pipeline still works but is slower then the new,
some ot its method can be used later
2025-10-05 14:54:32 +02:00
GassiGiuseppe
69fba7c3e9 new utility to generate a csv debug file of the output of the pipeline 2025-10-04 21:33:09 +02:00
GassiGiuseppe
64e355e80c Added regex to delete new lines and * from ObjectURI 2025-09-30 15:00:07 +02:00
GassiGiuseppe
007f1e9554 minor updates 2025-09-29 18:53:33 +02:00
GassiGiuseppe
c319398ca0 little update to UML pipeline 2025-09-29 17:03:31 +02:00
GassiGiuseppe
255d8a072d First implementation of the cleaning pipeline UML 2025-09-29 16:59:52 +02:00
GassiGiuseppe
8167c9d435 Added Toy Dataset entry point into the Pipeline class
Before it was forced into the sql_endpoint,
now all the pipeline can be managed in the Pipeline class
2025-09-29 16:03:49 +02:00
GassiGiuseppe
bd72ad3571 Added file to execute the complete cleaning pipeline 2025-09-29 15:21:26 +02:00
GassiGiuseppe
6ddb7de9da Added sqlAlchemy to requirements 2025-09-29 15:19:19 +02:00
GassiGiuseppe
650b37c586 Added vscode setting to execute jupyternotebook from root dir 2025-09-26 11:24:34 +02:00
GassiGiuseppe
e521b0704e deleted TODO in path_splitter_tree, as it was already resolved 2025-09-25 19:19:11 +02:00
Christian Risi
0a698e9837 Added schema to extract from DB for BPE 2025-09-25 19:09:52 +02:00
23 changed files with 3212 additions and 1 deletions

24
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,24 @@
{
// Always treat the project root as the working dir for Jupyter
"jupyter.notebookFileRoot": "${workspaceFolder}",
// When you click "Run Python File in Terminal", DON'T cd into the file's folder
"python.terminal.executeInFileDir": false,
// Start new integrated terminals at the project root
"terminal.integrated.cwd": "${workspaceFolder}",
// Ensure Python can import from the project root no matter which file you run
// (so `src/` is on sys.path). Linux shown here; add osx/windows if needed.
"terminal.integrated.env.linux": {
"PYTHONPATH": "${workspaceFolder}"
},
// Make pytest run from the root without needing a pytest.ini
"python.testing.pytestEnabled": true,
"python.testing.cwd": "${workspaceFolder}",
"python.testing.pytestArgs": ["src/test"],
// Help Pylance resolve imports like `from src...` without red squiggles
"python.analysis.extraPaths": ["${workspaceFolder}"]
}

View File

@@ -0,0 +1,21 @@
from Scripts.Libs.Utils.dataframe_interaction import get_raw_from_dataframe
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
import pandas as pd
class BPE_corpus():
def __init__(self, output_path :str):
self.output_handler = open(output_path, "w")
def close(self):
# add corpus end before closing
self.output_handler.write(SpecialToken.CORPUS_END.value)
self.output_handler.close()
def write_from_str(self, output: str):
if output == '':
return
self.output_handler.write(output)
def write_from_df(self, df: pd.DataFrame):
self.write_from_str(get_raw_from_dataframe(df))

View File

@@ -0,0 +1,21 @@
import pandas as pd
class Debug_csv():
def __init__(self, output_path:str):
self.output = open(output_path, "w")
# then the first row as header
header = ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
self.output.write(",".join(header) + "\n")
def close(self):
self.output.close()
def write(self, RDF: pd.DataFrame):
"""
Args:
RDF (pd.DataFrame): ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
"""
RDF.to_csv(self.output, index=False, header=False)

View File

@@ -0,0 +1,26 @@
import pandas as pd
class RDF_completation_task_dataset():
"""
Write the CSV for the fourth task, which is "Predicting subsequent triples based on a given context".
Each RDF is saved as str
CSV Composition: ["MovieID","RDF"]
"""
def __init__(self, output_path:str):
self.output = open(output_path, "w")
# then the first row as header
header = ["MovieID","RDF"]
self.output.write(",".join(header) + "\n")
def close(self):
self.output.close()
def write(self, RDF: pd.DataFrame):
"""
Args:
RDF (pd.DataFrame): ["MovieID","RDF"]
"""
RDF.to_csv(self.output, index=False, header=False)

View File

@@ -0,0 +1,58 @@
import pandas as pd
# do not worry about circular dependencies, this class will never call something else
from Scripts.DataCleaning.legacy.filter import PipelineApplier
class RDF_mask_task_dataset():
"""
Write the CSV for the third task, which is "Predicting a masked component within an RDF triple".
The CSV is like: for each RDF there will be 3 rows, where every time one of the componments is missing.
CSV Composition: ["MovieID","IncompleteRDF","Missing","RDF"]
"""
def __init__(self, output_path:str):
# this methods will only be used by this class, but they belong in a lower level
self._build_triple = PipelineApplier.build_triple
self._build_incomplete_triple = PipelineApplier.build_incomplete_triple
self.output = open(output_path, "w")
# then the first row as header
header = ["MovieID","IncompleteRDF","Missing","RDF"]
self.output.write(",".join(header) + "\n")
def close(self):
self.output.close()
def write(self, RDF: pd.DataFrame):
rdf_complete = self._build_triple(RDF)
rdf_without_subject = self._build_incomplete_triple(RDF.drop(columns=["SubjectURI"]))
rdf_without_relationship = self._build_incomplete_triple(RDF.drop(columns=["RelationshipURI"]))
rdf_without_object = self._build_incomplete_triple(RDF.drop(columns=["ObjectURI"]))
####
df_subject = pd.DataFrame({
"MovieID": RDF["MovieID"],
"IncompleteRDF": rdf_without_subject,
"Missing": RDF["SubjectURI"],
"RDF": rdf_complete,
})
df_relationship = pd.DataFrame({
"MovieID": RDF["MovieID"],
"IncompleteRDF": rdf_without_relationship,
"Missing": RDF["RelationshipURI"],
"RDF": rdf_complete,
})
df_object = pd.DataFrame({
"MovieID": RDF["MovieID"],
"IncompleteRDF": rdf_without_object,
"Missing": RDF["ObjectURI"],
"RDF": rdf_complete,
})
output_df = pd.concat([df_subject, df_relationship, df_object], ignore_index=True)
output_df.to_csv(self.output, index=False, header=False)

View File

@@ -0,0 +1,26 @@
import pandas as pd
class RDF_text_task_dataset():
"""
Write the CSV for the firsts two tasks, which are "Generating structured RDF triples from natural language text" and reverse.
In the CVS the RDFs will be saved toghether as a string.
CSV Composition: ["MovieID","RDFs","Abstract"]
"""
def __init__(self, output_path:str):
self.output = open(output_path, "w")
# then the first row as header
header = ["MovieID","RDFs","Abstract"]
self.output.write(",".join(header) + "\n")
def close(self):
self.output.close()
def write(self, RDF: pd.DataFrame):
"""
Args:
RDF (pd.DataFrame): ["MovieID","Triple","Abstract"]
"""
RDF.to_csv(self.output, index=False, header=False)

View File

@@ -0,0 +1,29 @@
import pandas as pd
def split_csv_by_percent(csv_path, train=70, val=15, test=15, seed=42):
# 1) Read and shuffle rows with a fixed seed for reproducibility
df = pd.read_csv(csv_path).sample(frac=1, random_state=seed).reset_index(drop=True)
# 2) Turn the three inputs into proportions relative to their sum
total = train + val + test # eheh you got it there :p
n = len(df)
n_train = int(n * train / total) # floor to keep indices integral
n_val = int(n * val / total)
# 3) Give the remainder to test to ensure every row is assigned
# (this naturally absorbs any rounding loss)
train_df = df.iloc[:n_train].reset_index(drop=True)
val_df = df.iloc[n_train:n_train + n_val].reset_index(drop=True)
test_df = df.iloc[n_train + n_val:].reset_index(drop=True)
return train_df, val_df, test_df
# usage:
DATASET = "Assets/Dataset/Tmp/rdf_text.csv"
TRAIN = "Assets/Dataset/Tmp/hold_out/train.csv"
TEST = "Assets/Dataset/Tmp/hold_out/test.csv"
EVALUATION = "Assets/Dataset/Tmp/hold_out/evaluation.csv"
train_df, val_df, test_df = split_csv_by_percent(DATASET, train=80, val=10, test=10, seed=42)
train_df.to_csv(TRAIN)
val_df.to_csv(EVALUATION)
test_df.to_csv(TEST)

View File

@@ -0,0 +1,381 @@
# This file deletes in the pipeline the unwanted relationship by different rules
# -----------------------------------------------------------------------------
# SQL-FIRST VERSION
# -----------------------------------------------------------------------------
# In the original (pandas) version this module:
# - stored frequency filters in DataFrames,
# - filtered/cleaned DataFrames in-memory,
# - added special tokens via string ops,
# - rebuilt one row per movie using groupby/aggregation.
#
# In this rewrite:
# - Every transformation RETURNS a SQLAlchemy `Select` object instead of a DataFrame.
# - Your pipeline can pass this `Select` (a "dataview") from one stage to the next,
# composing more SQL lazily. Nothing is executed until you call `session.execute(...)`.
# - Frequency filters are represented as SUBSELECTS, applied with `WHERE IN (subquery)`.
#
# Notes:
# - We keep the same CLASS and METHOD NAMES to preserve call sites.
# - Method comments/docstrings from your original file are carried over and updated
# to reflect Select-based behavior and return types.
# - We drop pandas/numpy/sqlite3 imports because filtering is pushed into SQL.
# - `GROUP_CONCAT` is used for the rebuild phase (SQLite-compatible). For other DBs,
# swap with an equivalent string-agg function.
# -----------------------------------------------------------------------------
from __future__ import annotations
from typing import Optional
from sqlalchemy import select, func, literal
from sqlalchemy.sql import Select
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
class PipelineApplier():
"""
SQL-first pipeline applier.
In the pandas version, frequency filters were stored as DataFrames (self.MOVIE_FILTER / self.REL_FILTER)
and every method worked with/returned pandas.DataFrame. In this SQLAlchemy rewrite:
- self.MOVIE_FILTER and self.REL_FILTER become *subselects* (Select objects) that yield a single
column each (MovieID or RelationshipURI). These subselects can be applied via `WHERE IN (subquery)`.
- Every method that previously returned a DataFrame now returns a *Select* that represents the same
logical transformation, but pushed into the database engine.
- Comments and docstrings are updated to reflect SQL semantics while preserving your original intent.
"""
def __init__(self):
# In the pandas version these were DataFrames storing allowed keys.
# Here they are Select objects (single-column subselects) or None.
# Expected column names:
# - self.MOVIE_FILTER: "MovieID"
# - self.REL_FILTER: "RelationshipURI"
self.MOVIE_FILTER: Optional[Select] = None
self.REL_FILTER: Optional[Select] = None
# -------------------------------------------------------------------------
# Relationship deletion
# -------------------------------------------------------------------------
def delete_relationship_by_str(self, RDF: Select, uri: str) -> Select:
"""
Return a Select where rows having the given relationship URI are removed.
Original signature (pandas):
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame
Updated behavior:
- RDF is a Select with columns: MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
- We apply a WHERE clause: RelationshipURI != <uri>
- Returns a Select you can continue composing.
Args:
RDF (Select): a selectable representing the RDF joined view
uri (str): RelationshipURI to exclude
Returns:
Select: filtered selectable (no execution yet)
"""
sc = RDF.selected_columns
return RDF.where(sc.RelationshipURI != literal(uri))
# -------------------------------------------------------------------------
# Frequency filter: MOVIE
# -------------------------------------------------------------------------
def generate_frequency_movie_filter(self, MOVIE_COUNT: Select, min_treshold: int, max_treshold: int):
"""
You MUST call this before filtering by movie frequency [filter_by_frequency_movie_id()],
since this method creates such filter.
Original behavior:
- Input MOVIE_COUNT as DataFrame ["MovieID","Count"]
- Keep rows where Count in [min_treshold, max_treshold)
- Store the filtered keys in self.MOVIE_FILTER
Updated behavior (SQL):
- MOVIE_COUNT is a Select that yields ["MovieID","Count"].
- We build and store a *subselect* of allowed MovieID (single column) to be used by WHERE IN.
- No query is executed here; we only create a new Select.
Args:
MOVIE_COUNT (Select): yields columns MovieID, Count
min_treshold (int):
max_treshold (int):
"""
sc = MOVIE_COUNT.selected_columns
filtered = MOVIE_COUNT.where(sc.Count >= min_treshold).where(sc.Count < max_treshold)
# Keep only the key column so it can be used in an IN (subquery)
self.MOVIE_FILTER = select(filtered.selected_columns.MovieID)
# -------------------------------------------------------------------------
# Frequency filter: RELATIONSHIP
# -------------------------------------------------------------------------
def generate_frequency_relationship_filter(self, REL_COUNT: Select, min_treshold: int, max_treshold: int):
"""
Original behavior:
- Input REL_COUNT as DataFrame ["RelationshipURI","Count"]
- Keep rows where Count in [min_treshold, max_treshold)
- Store the filtered keys in self.REL_FILTER
Updated behavior (SQL):
- REL_COUNT is a Select that yields ["RelationshipURI","Count"].
- We build and store a *subselect* of allowed RelationshipURI (single column) to be used by WHERE IN.
- No query is executed here; we only create a new Select.
Args:
REL_COUNT (Select): yields columns RelationshipURI, Count
min_treshold (int):
max_treshold (int):
"""
sc = REL_COUNT.selected_columns
filtered = REL_COUNT.where(sc.Count >= min_treshold).where(sc.Count < max_treshold)
self.REL_FILTER = select(filtered.selected_columns.RelationshipURI)
# -------------------------------------------------------------------------
# Apply frequency filters
# -------------------------------------------------------------------------
def filter_by_frequency_movie_id(self, RDF: Select) -> Select:
"""
Original behavior (pandas):
RDF = RDF[RDF["MovieID"].isin(self.MOVIE_FILTER["MovieID"])]
Updated behavior (SQL):
- If self.MOVIE_FILTER is present, apply: WHERE MovieID IN ( <subselect> )
- Otherwise, return RDF unchanged.
Args:
RDF (Select): current dataset
Returns:
Select: filtered dataset (or unchanged if no filter exists)
"""
if self.MOVIE_FILTER is None:
return RDF
sc = RDF.selected_columns
return RDF.where(sc.MovieID.in_(self.MOVIE_FILTER))
def filter_by_frequency_relationship(self, RDF: Select) -> Select:
"""
Original behavior (pandas):
RDF = RDF[RDF["RelationshipURI"].isin(self.REL_FILTER["RelationshipURI"])]
Updated behavior (SQL):
- If self.REL_FILTER is present, apply: WHERE RelationshipURI IN ( <subselect> )
- Otherwise, return RDF unchanged.
Args:
RDF (Select): current dataset
Returns:
Select: filtered dataset (or unchanged if no filter exists)
"""
if self.REL_FILTER is None:
return RDF
sc = RDF.selected_columns
return RDF.where(sc.RelationshipURI.in_(self.REL_FILTER))
# -------------------------------------------------------------------------
# Token prefixing (SubjectURI/RelationshipURI/ObjectURI)
# -------------------------------------------------------------------------
def rdf_add_special_token(self, RDF: Select) -> Select:
"""
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI,
OBJ to ObjectURI, REL to RelationshipURI. Check
Scripts/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
It only adds the special token of the three elements of the RDF; no other special token.
Original behavior (pandas):
- String concatenation with columns in a DataFrame.
- Returned a new DataFrame.
Updated behavior (SQL):
- Build projected columns using SQL string concatenation.
- Return a new Select with the same output column names:
["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"].
Args:
RDF (Select): current dataset
Returns:
Select: projected dataset with tokenized SubjectURI/RelationshipURI/ObjectURI
"""
sc = RDF.selected_columns
subj_tok = literal(SpecialToken.SUBJECT.value) + sc.SubjectURI
rel_tok = literal(SpecialToken.RELATIONSHIP.value) + sc.RelationshipURI
obj_tok = literal(SpecialToken.OBJECT.value) + sc.ObjectURI
return RDF.with_only_columns(
sc.MovieID.label("MovieID"),
subj_tok.label("SubjectURI"),
rel_tok.label("RelationshipURI"),
obj_tok.label("ObjectURI"),
sc.Abstract.label("Abstract"),
)
# -------------------------------------------------------------------------
# NA/empty drop on key columns (SubjectURI, RelationshipURI, ObjectURI)
# -------------------------------------------------------------------------
def drop_na_from_dataset(self, RDF: Select) -> Select:
"""
Dataset has SubjectURI, RelationshipURI, ObjectURI. We want to drop rows
where any of these is empty or NULL.
Original behavior (pandas):
- Replace '' with NaN and dropna on the three columns.
Updated behavior (SQL):
- Apply WHERE clauses checking for NOT NULL and not empty string.
Args:
RDF (Select): current dataset
Returns:
Select: dataset filtered to non-empty SubjectURI/RelationshipURI/ObjectURI
"""
sc = RDF.selected_columns
return RDF.where(
(sc.SubjectURI.is_not(None)) & (sc.SubjectURI != "") &
(sc.RelationshipURI.is_not(None)) & (sc.RelationshipURI != "") &
(sc.ObjectURI.is_not(None)) & (sc.ObjectURI != "")
)
# -------------------------------------------------------------------------
# Rebuild by movie (one row per movie)
# -------------------------------------------------------------------------
def rebuild_by_movie(self, RDF: Select) -> Select:
"""
To execute this method you have to have iterated by movie_id conceptually,
because as design we want at the end one row for each movie.
Original behavior (pandas):
- Build per-row "Triple" as SubjectURI + RelationshipURI + ObjectURI,
wrapped with START_TRIPLE/END_TRIPLE.
- Group by ["MovieID", "Abstract"] and join ("".join) all Triple strings into one.
- Prefix the whole list with START_TRIPLE_LIST and Abstract with ABSTRACT.
- Return DataFrame [["MovieID","Triple","Abstract"]].
Updated behavior (SQL):
- Build per-row Triple using SQL string concatenation and constants.
- Use GROUP_CONCAT (empty separator) to aggregate per-movie.
- Prefix with START_TRIPLE_LIST and ABSTRACT in SQL.
- Return a Select with columns: ["MovieID","Triple","Abstract"].
Args:
RDF (Select): current dataset with columns
MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
Returns:
Select: aggregated dataset with one row per movie
"""
sc = RDF.selected_columns
# Per-row triple with START/END_TRIPLE tokens
row_triple = (
literal(SpecialToken.START_TRIPLE.value) +
(sc.SubjectURI + sc.RelationshipURI + sc.ObjectURI) +
literal(SpecialToken.END_TRIPLE.value)
).label("Triple")
# Prefixed abstract
abstract_tok = (literal(SpecialToken.ABSTRACT.value) + sc.Abstract).label("Abstract")
# Subquery of per-row triples / abstracts
row_view = RDF.with_only_columns(
sc.MovieID.label("MovieID"),
row_triple,
abstract_tok,
).subquery()
# Concatenate all triples for each movie (SQLite syntax; adjust for other DBs)
triple_concat = (
literal(SpecialToken.START_TRIPLE_LIST.value) +
func.group_concat(row_view.c.Triple, literal(""))
).label("Triple")
return (
select(
row_view.c.MovieID.label("MovieID"),
triple_concat,
row_view.c.Abstract.label("Abstract"),
)
.group_by(row_view.c.MovieID, row_view.c.Abstract)
)
# -------------------------------------------------------------------------
# Build triple(s) projection
# -------------------------------------------------------------------------
@staticmethod
def build_triple(RDF: Select) -> Select:
"""
Obtains joined RDF triple in one element, together with START and END special tokens.
Original behavior (pandas):
- Returned a Series/DataFrame column "Triple" built from three string columns.
Updated behavior (SQL):
- Returns a Select with a single column "Triple" built in SQL.
Args:
RDF (Select): at least columns ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
Select: a projection containing one column named "Triple"
"""
sc = RDF.selected_columns
triple = (
literal(SpecialToken.START_TRIPLE.value) +
(sc.SubjectURI + sc.RelationshipURI + sc.ObjectURI) +
literal(SpecialToken.END_TRIPLE.value)
).label("Triple")
return RDF.with_only_columns(triple)
@staticmethod
def build_incomplete_triple(RDF: Select) -> Select:
"""
Method helper used for the third task: "Predicting a masked component within an RDF triple".
Obtains joined RDF triple in one element, together with START and END special tokens.
The MISSING element will be replaced by the special token <MASK>.
Original behavior (pandas):
- Created a Series "Triple" using fallback values for missing columns.
Updated behavior (SQL):
- Uses COALESCE to replace NULLs with <MASK> directly in SQL.
- Returns a Select with a single column "Triple".
Args:
RDF (Select): 2 of the following columns present ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
Select: projection with column "Triple"
"""
sc = RDF.selected_columns
mask = literal(SpecialToken.MASK.value)
triple = (
literal(SpecialToken.START_TRIPLE.value) +
(func.coalesce(sc.SubjectURI, mask) +
func.coalesce(sc.RelationshipURI, mask) +
func.coalesce(sc.ObjectURI, mask)) +
literal(SpecialToken.END_TRIPLE.value)
).label("Triple")
return RDF.with_only_columns(triple)
@staticmethod
def build_for_mask_task(RDF_incomplete: Select, MISSING) -> None:
"""
Currently not used.
Original intention:
Given two DataFrames (one incomplete RDF and another with just the missing component),
apply special tokens accordingly.
Updated note:
This stub remains for API parity. If needed in the future, it can be implemented
as a Select-building helper that merges/COALESCEs columns from different selects.
"""
return None

View File

@@ -0,0 +1,148 @@
# This file deletes in the pipeline the unwanted relationship by different rules
import pandas as pd
import sqlite3 # kept for compatibility
import numpy as np
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class PipelineApplier:
def __init__(self):
# Fast internal caches for O(1) membership checks
self._MOVIE_FILTER_SET = set()
self._REL_FILTER_SET = set()
# ------------------------------
# Filters
# ------------------------------
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame:
# Vectorized boolean mask
return RDF.loc[RDF["RelationshipURI"] != uri]
def generate_frequency_movie_filter(self, MOVIE_COUNT: pd.DataFrame, min_threshold: int, max_threshold: int):
"""
You MUST call this before filter the dataset by movie frequency [filter_by_frequency_movie_id()],
since this method creates such filter.
Args:
MOVIE_COUNT (pd.DataFrame): ["MovieID","Count"]
"""
sel = (MOVIE_COUNT["Count"] >= min_threshold) & (MOVIE_COUNT["Count"] < max_threshold)
self._MOVIE_FILTER_SET = set(MOVIE_COUNT.loc[sel, "MovieID"].tolist())
def generate_frequency_relationship_filter(self, REL_COUNT: pd.DataFrame, min_threshold: int, max_threshold: int):
sel = (REL_COUNT["Count"] >= min_threshold) & (REL_COUNT["Count"] < max_threshold)
self._REL_FILTER_SET = set(REL_COUNT.loc[sel, "RelationshipURI"].tolist())
def filter_by_frequency_movie_id(self, RDF: pd.DataFrame) -> pd.DataFrame:
# Set-backed isin is the fastest path
return RDF.loc[RDF["MovieID"].isin(self._MOVIE_FILTER_SET)]
def filter_by_frequency_relationship(self, RDF: pd.DataFrame) -> pd.DataFrame:
return RDF.loc[RDF["RelationshipURI"].isin(self._REL_FILTER_SET)]
# ------------------------------
# Cleaning & preprocessing
# ------------------------------
def rdf_add_special_token(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""
Adds RDF special token to SubjectURI / RelationshipURI / ObjectURI.
Returns a new DataFrame (no inplace modification of the caller's object).
"""
subj = np.char.add(SpecialToken.SUBJECT.value, RDF["SubjectURI"].to_numpy(dtype=object))
rel = np.char.add(SpecialToken.RELATIONSHIP.value, RDF["RelationshipURI"].to_numpy(dtype=object))
obj = np.char.add(SpecialToken.OBJECT.value, RDF["ObjectURI"].to_numpy(dtype=object))
return RDF.assign(SubjectURI=subj, RelationshipURI=rel, ObjectURI=obj)
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""
Replace '' with NaN only on key columns, then drop rows missing any of them.
"""
cols = ["SubjectURI", "RelationshipURI", "ObjectURI"]
rdf = RDF.copy()
for c in cols:
m = rdf[c] == ""
if m.any():
rdf.loc[m, c] = np.nan
return rdf.dropna(subset=cols)
# ------------------------------
# Building triples
# ------------------------------
@staticmethod
def build_triple(RDF: pd.DataFrame):
"""
Obtains joined RDF triple in one element, together with START and END special token.
Returns:
pd.Series: RDF["Triple"] (just this column). Side-effect: sets RDF["Triple"].
"""
start = SpecialToken.START_TRIPLE.value
end = SpecialToken.END_TRIPLE.value
subj = RDF["SubjectURI"].to_numpy(dtype=object)
rel = RDF["RelationshipURI"].to_numpy(dtype=object)
obj = RDF["ObjectURI"].to_numpy(dtype=object)
arr = np.char.add(np.char.add(np.char.add(start, subj),
np.char.add(rel, obj)),
end)
RDF["Triple"] = pd.Series(arr, index=RDF.index, dtype=object, name="Triple")
return RDF["Triple"]
@staticmethod
def build_incomplete_triple(RDF: pd.DataFrame):
"""
Helper used for the third task: "Predicting a masked component within an RDF triple".
Accepts any subset of ["SubjectURI","RelationshipURI","ObjectURI"] (typically 2 of 3).
Missing components are replaced by <MASK>.
Returns:
pd.Series: RDF["Triple"] (just this column). Side-effect: sets RDF["Triple"].
"""
start = SpecialToken.START_TRIPLE.value
end = SpecialToken.END_TRIPLE.value
maskv = SpecialToken.MASK.value
n = len(RDF.index)
subj = RDF["SubjectURI"].to_numpy(dtype=object) if "SubjectURI" in RDF else np.full(n, maskv, dtype=object)
rel = RDF["RelationshipURI"].to_numpy(dtype=object) if "RelationshipURI" in RDF else np.full(n, maskv, dtype=object)
obj = RDF["ObjectURI"].to_numpy(dtype=object) if "ObjectURI" in RDF else np.full(n, maskv, dtype=object)
arr = np.char.add(np.char.add(np.char.add(start, subj),
np.char.add(rel, obj)),
end)
RDF["Triple"] = pd.Series(arr, index=RDF.index, dtype=object, name="Triple")
return RDF["Triple"]
def rebuild_by_movie(self, RDF: pd.DataFrame):
"""
Collapse triples + abstract into a single row per movie.
Returns: ["MovieID","Triple","Abstract"]
"""
# Build triples once (vectorized); method also sets RDF["Triple"]
triples = self.build_triple(RDF)
# Minimal frame for grouping (avoid carrying extra columns)
tmp = pd.DataFrame({
"MovieID": RDF["MovieID"].to_numpy(),
"Abstract": RDF["Abstract"].to_numpy(),
"Triple": triples.to_numpy(),
})
# Factorize high-cardinality keys to fast integer codes, group on codes,
# then map back to labels; sum concatenates strings for object dtype.
mid_codes, mid_uniques = pd.factorize(tmp["MovieID"], sort=False)
abs_codes, abs_uniques = pd.factorize(tmp["Abstract"], sort=False)
tmp["_mid"] = mid_codes
tmp["_abs"] = abs_codes
grouped = tmp.groupby(["_mid", "_abs"], sort=False, as_index=False)["Triple"].sum()
grouped["MovieID"] = grouped["_mid"].map(lambda i: mid_uniques[i])
grouped["Abstract"] = grouped["_abs"].map(lambda i: abs_uniques[i])
# Final tokens
grouped["Triple"] = SpecialToken.START_TRIPLE_LIST.value + grouped["Triple"]
grouped["Abstract"] = SpecialToken.ABSTRACT.value + grouped["Abstract"]
return grouped[["MovieID", "Triple", "Abstract"]]

View File

@@ -0,0 +1,191 @@
# This file deletes in the pipeline the unwanted relationship by different rules
import pandas as pd
import sqlite3
import numpy as np
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class PipelineApplier():
def __init__(self):
self.MOVIE_FILTER = pd.DataFrame()
self.REL_FILTER = pd.DataFrame()
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame:
return RDF[RDF["RelationshipURI"]!= uri]
def generate_list_relationship_filter(self, filter_list: list[str]) -> None:
"""Store RelationshipURI filters as a set """
self.relationship_filter_list: set[str] = set(filter_list)
def delete_relationship_by_list_filter(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""Remove rows whose RelationshipURI is in the stored filter. Generate it first callig the generate_list_relationship_filter"""
return RDF[~RDF["RelationshipURI"].isin(self.relationship_filter_list)]
# def filter_movie_by_rel_uri_frequence()
def generate_frequency_movie_filter(self, MOVIE_COUNT: pd.DataFrame ,min_treshold: int, max_treshold: int):
"""
You MUST call this before filter the dataset by movie frequence [filter_by_frequence_movie_id()],
since this method creates such filter
Args:
MOVIE_COUNT (pd.DataFrame): ["MovieID","Count"]
min_treshold (int):
max_treshold (int):
"""
MOVIE_COUNT = MOVIE_COUNT[MOVIE_COUNT["Count"] >= min_treshold]
MOVIE_COUNT = MOVIE_COUNT[MOVIE_COUNT["Count"] < max_treshold]
self.MOVIE_FILTER = MOVIE_COUNT #["MovieID"]
def generate_frequency_relationship_filter(self, REL_COUNT: pd.DataFrame ,min_treshold: int, max_treshold: int):
REL_COUNT = REL_COUNT[REL_COUNT["Count"] >= min_treshold]
REL_COUNT = REL_COUNT[REL_COUNT["Count"] < max_treshold]
self.REL_FILTER = REL_COUNT #["RelationshipURI"]
def filter_by_frequency_movie_id(self, RDF: pd.DataFrame) -> pd.DataFrame:
RDF = RDF[RDF["MovieID"].isin(self.MOVIE_FILTER["MovieID"])]
return RDF
def filter_by_frequency_relationship(self, RDF: pd.DataFrame) -> pd.DataFrame:
RDF = RDF[RDF["RelationshipURI"].isin(self.REL_FILTER["RelationshipURI"])]
return RDF
def rdf_add_special_token(self, RDF: pd.DataFrame):
"""
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI, OBJ to ObjectURI, REL to RelationshipURI.
Check Scrits/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
It only adds the special token of the three element of the RDF, no other special token.
Args:
RDF (pd.DataFrame):
Returns:
pd.DataFrame: ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
"""
# if the filter runned before sliced the RDF and created a View, here the problem is resolved
# for more context: SettingWithCopyWarning
RDF = RDF.copy()
# at the beginning of SubjectURI RelationshipURI ObjectURI, add their special token
RDF["SubjectURI"] = SpecialToken.SUBJECT.value + RDF["SubjectURI"]
RDF["ObjectURI"] = SpecialToken.OBJECT.value + RDF["ObjectURI"]
RDF["RelationshipURI"] = SpecialToken.RELATIONSHIP.value + RDF["RelationshipURI"]
return RDF
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
# dataset has SubjectURI RelationshipURI ObjectURI
# want to drop the '' in them
# Replace empty strings with NaN
RDF = RDF.replace('', np.nan)
# Drop rows where any of the key columns are NaN
RDF = RDF.dropna(subset=["SubjectURI", "RelationshipURI", "ObjectURI"])
return RDF
def rebuild_by_movie(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""_summary_
Args:
RDF (pd.DataFrame): ["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
Returns:
pd.DataFrame: ["MovieID","Triple","Abstract"]
"""
# to execute this method you have to have itereted by movie_id
# because as design we want at the end one row for each movie
# MovieID and abstract can be given as input for a more generic method
# movie_id = RDF["MovieID"].iloc(0)
# abstract = RDF["Abstract"].iloc(0)
# first let's combine each row creating column triple as join of rdf
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
# special token
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
# combine rows into one
# MovieID and Abstract are unique for each other 1 <-> 1
RDF = RDF.groupby(["MovieID", "Abstract"])["Triple"].apply("".join).reset_index()
# add special token for: start of triple, end of triple and start of abstract
RDF["Triple"] = SpecialToken.START_TRIPLE_LIST.value + RDF["Triple"]
RDF["Abstract"] = SpecialToken.ABSTRACT.value + RDF["Abstract"]
return RDF[["MovieID","Triple","Abstract"]]
def group_by_movie_from_triple(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""
Args:
RDF (pd.DataFrame): ["MovieID","Triple","Abstract"]
Returns:
pd.DataFrame: ["MovieID","Triple","Abstract"]
"""
# combine rows into one
# MovieID and Abstract are unique for each other 1 <-> 1
RDF = RDF.groupby(["MovieID", "Abstract"])["Triple"].apply("".join).reset_index()
# add special token for: start of triple, end of triple and start of abstract
RDF["Triple"] = SpecialToken.START_TRIPLE_LIST.value + RDF["Triple"]
RDF["Abstract"] = SpecialToken.ABSTRACT.value + RDF["Abstract"]
return RDF[["MovieID","Triple","Abstract"]]
@staticmethod
def build_triple(RDF: pd.DataFrame):
"""
Obtains joined RDF triple in one element, togheter with START and END special token
Args:
RDF (pd.DataFrame): at least ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
pd.DataFrame: RDF["Triple"] (just this column)
"""
# let's combine each row creating column triple as join of rdf
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
# special token
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
return RDF["Triple"]
@staticmethod
def build_incomplete_triple(RDF: pd.DataFrame):
"""
Method helper used for the third task: "Predicting a masked component within an RDF triple".
Obtains joined RDF triple in one element, togheter with START and END special token.
The MISSING element will be replaced by the special token <MASK>
Args:
RDF (pd.DataFrame): 2 of the following ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
RDF["Triple"]: pd.Series (just this column, NOT A DATAFRAME)
"""
# let's create a new column "Triple" with the joined RDF
# the following creates a column of MASK token of the lenght of the dataframe,
# it is not needed since we expect to have a dataframe of just one column, but its more robust (AND SLOW)
MISSING = pd.Series([SpecialToken.MASK.value] * len(RDF), index=RDF.index)
RDF["Triple"] = (
RDF.get("SubjectURI", MISSING) +
RDF.get("RelationshipURI", MISSING) +
RDF.get("ObjectURI", MISSING))
# special token
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
return RDF["Triple"]
@staticmethod
def build_for_mask_task(RDF_incomplete: pd.DataFrame, MISSING: pd.DataFrame) -> pd.DataFrame:
# currently not used
"""
Method helper used for the third task: "Predicting a masked component within an RDF triple".
Given two Dataframe, the first containing the incompleted RDF and the other only the missing componment,
this methods applies the special token
Args:
RDF (pd.DataFrame): _description_
Returns:
pd.DataFrame: _description_
"""
# take an example dataframe as ["SubjectURI",""]
# as input two dataframe, one with 2 column
return None
def regex_on_objects(self, RDF: pd.DataFrame) -> pd.DataFrame:
RDF["ObjectURI"] = (RDF["ObjectURI"].astype("string")
.str.replace(r"\r?\n+", ", ", regex=True) # newlines -> ", "
.str.replace(r"\*", "", regex=True)) # delete all asterisks
return RDF

View File

@@ -0,0 +1,145 @@
import re
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
from Scripts.DataCleaning.legacy.filter import PipelineApplier
# tasks dataset builder
from Scripts.DataCleaning.data_output_models.rdf_mask_task import RDF_mask_task_dataset
from Scripts.DataCleaning.data_output_models.bpe_corpus import BPE_corpus
from Scripts.DataCleaning.data_output_models.rdf_text_tasks import RDF_text_task_dataset
from Scripts.DataCleaning.data_output_models.rdf_completation_task import RDF_completation_task_dataset
from Scripts.DataCleaning.data_output_models.debug_csv import Debug_csv
import pandas as pd
class Pipeline():
def __init__(self):
self.sql_endpoint = SqlEndpoint()
# classes to manage taskes' datasets
self.task_rdf_mask = RDF_mask_task_dataset("./Assets/Dataset/Tmp/rdf_mask.csv")
self.task_bpe_corpus = BPE_corpus("./Assets/Dataset/Tmp/corpus.txt")
self.task_rdf_text = RDF_text_task_dataset("./Assets/Dataset/Tmp/rdf_text.csv")
self.task_rdf_completation = RDF_completation_task_dataset("./Assets/Dataset/Tmp/rdf_completation.csv")
# prepare the filter
# the filter applier needs to know the frequence of Movies and Relationship among all the Dataset
self.filter_applier = PipelineApplier()
MOVIE_COUNT = self.sql_endpoint.get_movies_id_count()
REL_COUNT = self.sql_endpoint.get_relationship_count()
self.filter_applier.generate_frequency_movie_filter(MOVIE_COUNT,50,3000)
self.filter_applier.generate_frequency_relationship_filter(REL_COUNT, 50, 2395627) # from 2718 to 3069
# prepare the filter on the relationshipURI you want to delete:
relationship_uri_banned_list = [
"dbp-dbp:wikiPageUsesTemplate","w3:2000/01/rdf-schema#label","dbp-dbo:abstract",
"dbp-dbo:wikiPageID","dbp-dbo:wikiPageRevisionID", "dbp-dbo:wikiPageDisambiguates",
"w3:2002/07/owl#sameAs","dbp-dbp:image","dbp-dbo:wikiPageLength", "w3:2000/01/rdf-schema#comment",
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type",
"dbp-dbp:id","dbp-dbp:totalWidth", "w3:ns/prov#wasDerivedFrom", "dbp-dbp:n", "dbp-dbp:alt",
"dbp-dbo:soundRecording"
]
self.filter_applier.generate_list_relationship_filter(relationship_uri_banned_list)
def execute_task_bpe_corpus(self):
for RDF in self._get_cleaned_movie_rows():
RDF = self.filter_applier.rebuild_by_movie(RDF)
RDF = RDF[["Triple","Abstract"]]
self.task_bpe_corpus.write_from_df(RDF)
self._end_file_handler()
def execute_task_rdf_mask(self):
for RDF in self._get_cleaned_movie_rows():
self.task_rdf_mask.write(RDF)
self._end_file_handler()
def execute_tasks_rdf_text(self):
for RDF in self._get_cleaned_movie_rows():
RDF = self.filter_applier.rebuild_by_movie(RDF)
self.task_rdf_text.write(RDF)
self._end_file_handler()
def execute_task_rdf_completation(self):
for RDF in self._get_cleaned_movie_rows():
RDF["Triple"] = self.filter_applier.build_triple(RDF)
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
self._end_file_handler()
def execute_all_task(self):
for RDF in self._get_cleaned_movie_rows():
self.task_rdf_mask.write(RDF)
RDF["Triple"] = self.filter_applier.build_triple(RDF)
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
RDF = self.filter_applier.group_by_movie_from_triple(RDF[["MovieID","Triple","Abstract"]])
self.task_rdf_text.write(RDF)
self.task_bpe_corpus.write_from_df(RDF[["Triple","Abstract"]])
self._end_file_handler()
def _end_file_handler(self):
self.task_bpe_corpus.close()
self.task_rdf_mask.close()
self.task_rdf_text.close()
self.task_rdf_completation.close()
def _get_cleaned_movie_rows(self):
for RDF in self.sql_endpoint.get_abbreviated_dataset_by_movie_id():
RDF = self.filter_applier.drop_na_from_dataset(RDF)
RDF = self.filter_applier.filter_by_frequency_movie_id(RDF)
RDF = self.filter_applier.filter_by_frequency_relationship(RDF)
# other filter
#
RDF = self.filter_applier.delete_relationship_by_list_filter(RDF)
# regex on ObjectURI
RDF = self.filter_applier.regex_on_objects(RDF)
if RDF.empty:
continue
RDF = self.filter_applier.rdf_add_special_token(RDF) # WARNING, THIS MUST BE DONE AFTER FILTER BY FREQUENCE
yield RDF
def use_toy_dataset(self):
# CHOOSEN MOVIE:
# The Dark Knight : 117248
# Inception : 147074
# The Avengers : 113621
# Cast Away : 1123
# The Departed : 117586
# American Psycho : 90177
# Avatar : 71587
# Django Unchained : 138952
# Spirited Away : 144137
# Knives Out : 148025
movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
self.sql_endpoint.movie_ids = movie_list
def generate_csv_debug_file(self, debug_path:str):
debug_csv = Debug_csv(debug_path)
for RDF in self._get_cleaned_movie_rows():
debug_csv.write(RDF)
debug_csv.close()
# there are a lot of settings to manage
# you only need to change settings:
# in the init for file paths, frequency filter limit, banned reletionshipURI
# in the use_toy_dataset , to change the toy dataset
# in _get_cleaned_movie_rows: to change how the pipeline behave
pipeline = Pipeline()
pipeline.use_toy_dataset()
# pipeline.execute_task_bpe_corpus()
# pipeline.execute_task_rdf_mask()
# pipeline.execute_tasks_rdf_text()
# pipeline.execute_task_rdf_completation()
# pipeline.execute_all_task()
pipeline.generate_csv_debug_file("Assets/Dataset/Tmp/debug.csv")

View File

@@ -101,7 +101,6 @@ def tree_like(file: str, csv_uri_header:str, out: str):
FILE = open(file, "r", encoding="utf-8")
# TODO: Change here so it takes single URI from a CSV file
# It is needed the header-name
for row in csv.DictReader(FILE):

View File

@@ -0,0 +1,86 @@
# This file deletes in the pipeline the unwanted relationship by different rules
import pandas as pd
import sqlite3
import numpy as np
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class PipelineApplier():
def __init__(self):
pass
def rdf_add_special_token(self, RDF: pd.DataFrame):
"""
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI, OBJ to ObjectURI, REL to RelationshipURI.
Check Scrits/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
It only adds the special token of the three element of the RDF, no other special token.
Args:
RDF (pd.DataFrame):
Returns:
pd.DataFrame: ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
"""
# if the filter runned before sliced the RDF and created a View, here the problem is resolved
# for more context: SettingWithCopyWarning
RDF = RDF.copy()
# at the beginning of SubjectURI RelationshipURI ObjectURI, add their special token
RDF["SubjectURI"] = SpecialToken.SUBJECT.value + RDF["SubjectURI"]
RDF["ObjectURI"] = SpecialToken.OBJECT.value + RDF["ObjectURI"]
RDF["RelationshipURI"] = SpecialToken.RELATIONSHIP.value + RDF["RelationshipURI"]
return RDF
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
RDF = RDF.replace('', np.nan)
# Drop rows where any of the key columns are NaN
RDF = RDF.dropna(subset=["SubjectURI", "RelationshipURI", "ObjectURI"])
return RDF
def rebuild_by_movie(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""
Args:
RDF (pd.DataFrame): ["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
Returns:
pd.DataFrame: ["MovieID","Triple","Abstract"]
"""
# to execute this method you have to have itereted by movie_id
# because as design we want at the end one row for each movie
# MovieID and abstract can be given as input for a more generic method
# first let's combine each row creating column triple as join of rdf
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
# special token
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
# combine rows into one
# MovieID and Abstract are unique for each other 1 <-> 1
RDF = RDF.groupby(["MovieID", "Abstract"])["Triple"].apply("".join).reset_index()
# add special token for: start of triple, end of triple and start of abstract
RDF["Triple"] = SpecialToken.START_TRIPLE_LIST.value + RDF["Triple"]+SpecialToken.END_OF_SENTENCE.value
RDF["Abstract"] = SpecialToken.ABSTRACT.value + RDF["Abstract"] + SpecialToken.END_OF_SENTENCE.value
return RDF[["MovieID","Triple","Abstract"]]
@staticmethod
def build_triple(RDF: pd.DataFrame):
"""
Obtains joined RDF triple in one element, togheter with START and END special token
Args:
RDF (pd.DataFrame): at least ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
pd.DataFrame: RDF["Triple"] (just this column)
"""
# let's combine each row creating column triple as join of rdf
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
# special token
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
return RDF["Triple"]
def regex_on_objects(self, RDF: pd.DataFrame) -> pd.DataFrame:
RDF["ObjectURI"] = (RDF["ObjectURI"].astype("string")
.str.replace(r"\r?\n+", ", ", regex=True) # newlines -> ", "
.str.replace(r"\*", "", regex=True)) # delete all asterisks
return RDF

View File

@@ -0,0 +1,103 @@
import pandas as pd
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class MovieFilter:
def __init__(self) -> None:
self.sql_endpoint = SqlEndpoint()
# first obtain all movie_id
movie_query = "SELECT MovieID FROM Movies"
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(movie_query)
def frequency_filter(self, min_treshold:int, max_treshold:int):
movie_list_placeholder = ",".join(["?"] * len(self.MOVIE_FILTER))
filter_query = f"""
SELECT MovieID
FROM RDFs
WHERE MovieID IN ({movie_list_placeholder})
GROUP BY MovieID
HAVING COUNT(*) BETWEEN {min_treshold} AND {max_treshold};
"""
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, tuple(self.MOVIE_FILTER["MovieID"].to_list()))
def get_movie_id(self):
return self.MOVIE_FILTER
def relation_filter(self, parsed_rel_uri: str, min_treshold:int, max_treshold:int):
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
filter_query = f"""
SELECT MovieID
FROM RDFs
JOIN ParsedRelationships ON ParsedRelationships.RelationshipID = RDFs.RelationshipID
WHERE MovieID IN ({movie_list_placeholder})
GROUP BY MovieID
HAVING SUM(CASE WHEN ParsedRelationships.RelationshipURI = '{parsed_rel_uri}' THEN 1 ELSE 0 END)
BETWEEN {min_treshold} AND {max_treshold};
"""
params = tuple(movie_ids) # + (parsed_rel_uri, min_treshold, max_treshold)
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)
def filter_by_director(self):
director_list = ['dbp-dbo:director','dbp-dbp:director']
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
filter_query = f"""
SELECT DISTINCT RDFs.MovieID
FROM RDFs
JOIN ParsedRelationships USING (RelationshipID)
WHERE RDFs.MovieID IN ({movie_list_placeholder})
AND ParsedRelationships.RelationshipURI IN {tuple(director_list)};
"""
params = tuple(movie_ids)
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)
def filter_by_english_movies(self):
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
relationship = ["dbp-dbp:language"]
objects_list = ["English", "dbp-dbr:English_language"]
filter_query = f"""
SELECT DISTINCT RDFs.MovieID
FROM RDFs
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
WHERE RDFs.MovieID IN ({movie_list_placeholder})
AND ParsedRelationships.RelationshipURI IN ('{relationship[0]}')
AND ParsedObjects.ObjectURI in {tuple(objects_list)};
"""
other_query = f"""
SELECT RDFs.MovieID
FROM RDFs
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
WHERE RDFs.MovieID IN ({movie_list_placeholder})
AND ParsedRelationships.RelationshipURI IN ('{relationship[0]}')
GROUP BY RDFs.MovieID
HAVING
SUM(CASE WHEN ParsedObjects.ObjectURI IN {tuple(objects_list)} THEN 1 ELSE 0 END) >= 1
AND
SUM(CASE WHEN ParsedObjects.ObjectURI NOT IN {tuple(objects_list)} THEN 1 ELSE 0 END) = 0;
"""
params = tuple(movie_ids)
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(other_query, params)
# movie_filter = MovieFilter()
# movie_filter.frequency_filter(5,10)

View File

@@ -0,0 +1,155 @@
from movie_filter import MovieFilter
from relationship_filter import RelationshipFilter
from rdf_filter import RdfFilter
from cleaner import PipelineApplier
from Scripts.DataCleaning.data_output_models.bpe_corpus import BPE_corpus
from Scripts.DataCleaning.data_output_models.rdf_text_tasks import RDF_text_task_dataset
from Scripts.DataCleaning.data_output_models.rdf_completation_task import RDF_completation_task_dataset
from Scripts.DataCleaning.data_output_models.debug_csv import Debug_csv
import pandas as pd
RELATIONSHIP_FILTER_LIST = [
"dbp-dbp:wikiPageUsesTemplate","w3:2000/01/rdf-schema#label","dbp-dbo:abstract",
"dbp-dbo:wikiPageID","dbp-dbo:wikiPageRevisionID", "dbp-dbo:wikiPageDisambiguates",
"w3:2002/07/owl#sameAs","dbp-dbp:image","dbp-dbo:wikiPageLength", "w3:2000/01/rdf-schema#comment",
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type",
"dbp-dbp:id","dbp-dbp:totalWidth", "w3:ns/prov#wasDerivedFrom", "dbp-dbp:n", "dbp-dbp:alt",
"dbp-dbo:soundRecording", "dbp-dbp:align", "dbp-dbp:format",
"dbp-dbp:filename", "dbp-dbp:wikt", "foaf:isPrimaryTopicOf", "dbp-dbp:quote", "foaf:homepage",
"dbp-dbp:wordnet_type", "dbp-dbp:length","dbp-dbp:caption", "dbp-dbo:imdbId", "dbp-dbp:border", "dbp-dbp:note",
"dbp-dbp:postalCodeType", "dbp-dbp:extraColumn", "foaf:homepage", "dbp-dbp:bgcolor","dbp-dbp:prevTitle",
"dbp-dbp:imageUpright", "dbp-dbp:url", "dbp-dbp:italicTitle", "dbp-dbp:imageSize", "dbp-dbp:text",
"dbp-dbp:captionAlign", "dbp-dbp:headerAlign", "dbp-dbp:height", "dbp-dbp:link", "dbp-dbo:wikiPageInterLanguageLink",
"w3:2003/01/geo/wgs84_pos#lat", "w3:2003/01/geo/wgs84_pos#long", "http://www.georss.org/georss/point",
"dbp-dbp:bgcolor", "dbp-dbp:mc", "dbp-dbp:rev3score", "dbp-dbp:rev4score", "dbp-dbp:imageAlt",
"dbp-dbp:b", "dbp-dbp:s", "dbp-dbp:c", "dbp-dbp:d", "dbp-dbp:m", "dbp-dbp:v", "dbp-dbp:mw", "dbp-dbp:fontsize",
"dbp-dbp:salign", "dbp-dbp:q", "dbp-dbp:portal", "dbp-dbp:dSearch", "dbp-dbp:header", "w3:2003/01/geo/wgs84_pos#geometry",
"dbp-dbp:shortsummary", "dbp-dbp:fixAttempted", "dbp-dbo:developer", "dbp-dbp:no", "dbp-dbp:ref", "dbp-dbp:infoa"
"dbp-dbp:infob", "dbp-dbp:1a", "dbp-dbp:1p", "dbp-dbp:2a", "dbp-dbp:2p", "http://rdvocab.info/RDARelationshipsWEMI/manifestationOfWork",
"dbp-dbp:isbn", "dbp-dbp:titleWidth", "dbp-dbp:prodcode", "dbp-dbp:page", "w3:2004/02/skos/core#closeMatch",
"dbp-dbp:colwidth", "dbp-dbp:imagesize", "dbp-dbp:rr", "dbp-dbp:date", "dbp-dbp:type", "dbp-dbp:list",
"dbp-dbp:listEpisodes", "dbp-dbp:footerAlign", "dbp-dbp:float", "dbp-dbp:bot", "dbp-dbp:p", "dbp-dbp:l", "dbp-dbp:t", "dbp-dbp:j",
"dbp-dbp:1y", "dbp-dbp:2y", "dbp-dbp:1pp", "dbp-dbp:vgs", "dbp-dbp:3a", "dbp-dbp:3p", "dbp-dbp:3y", "dbp-dbp:4a", "dbp-dbp:4y",
"dbp-dbp:website"
]
RELATIONSHIP_WHITE_LIST = [
"dbp-dbp:director","dbp-dbo:starring", "dbp-dbo:writer", "dbp-dbp:name", "dbp-dbp:genre", "purl:dc/terms/subject"
]
"""
SELECT DISTINCT field3
FROM debug
"""
class Pipeline():
def __init__(self) -> None:
self._movie_filter = MovieFilter()
self._relationship_filter = RelationshipFilter()
self._rdf_filter = RdfFilter()
self._pipeline = PipelineApplier()
self.task_bpe_corpus = BPE_corpus("./Assets/Dataset/Tmp/corpus.txt")
self.task_rdf_text = RDF_text_task_dataset("./Assets/Dataset/Tmp/rdf_text.csv")
self.task_rdf_completation = RDF_completation_task_dataset("./Assets/Dataset/Tmp/rdf_completation.csv")
self._movie_filter.frequency_filter(50,3000)
self._relationship_filter.frequency_filter(25, 2395627) # from 2718 to 3069
self._relationship_filter.delete_relationship_uri_by_list(RELATIONSHIP_FILTER_LIST)
def other_filter(self):
self._movie_filter.relation_filter("purl:dc/terms/subject",5,100)
self._movie_filter.filter_by_director()
self._movie_filter.filter_by_english_movies()
self._movie_filter.relation_filter("dbp-dbp:budget",1,100) # the most important film have relationship budget
self._movie_filter.relation_filter("dbp-dbp:released",1,100) # to cut to 2000 :(
def _get_cleaned_movie_rows(self):
movie_ids = self._movie_filter.get_movie_id()
rel_ids = self._relationship_filter.get_relationship_id()
# rel_ids = self._relationship_filter.get_relationship_id_from_white_list(RELATIONSHIP_WHITE_LIST)
for RDF in self._rdf_filter.yield_movie_abbreviated_rdfs(movie_ids,rel_ids):
RDF = self._pipeline.drop_na_from_dataset(RDF)
RDF = self._pipeline.regex_on_objects(RDF)
RDF = self._pipeline.rdf_add_special_token(RDF)
if RDF.empty:
continue
yield RDF
def execute_task_bpe_corpus(self):
for RDF in self._get_cleaned_movie_rows():
RDF = self._pipeline.rebuild_by_movie(RDF)
RDF = RDF[["Triple","Abstract"]]
self.task_bpe_corpus.write_from_df(RDF)
self._end_file_handler()
def execute_tasks_rdf_text(self):
for RDF in self._get_cleaned_movie_rows():
RDF = self._pipeline.rebuild_by_movie(RDF)
self.task_rdf_text.write(RDF)
self._end_file_handler()
def execute_task_rdf_completation(self):
for RDF in self._get_cleaned_movie_rows():
RDF["Triple"] = self._pipeline.build_triple(RDF)
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
self._end_file_handler()
def _end_file_handler(self):
self.task_bpe_corpus.close()
self.task_rdf_text.close()
self.task_rdf_completation.close()
def execute_all_task(self):
for RDF in self._get_cleaned_movie_rows():
completation_RDF = RDF.copy()
completation_RDF["Triple"] = self._pipeline.build_triple(completation_RDF)
self.task_rdf_completation.write(completation_RDF[["MovieID","Triple"]])
RDF = self._pipeline.rebuild_by_movie(RDF)
self.task_rdf_text.write(RDF)
self.task_bpe_corpus.write_from_df(RDF[["Triple","Abstract"]])
self._end_file_handler()
def use_toy_dataset(self):
# CHOOSEN MOVIE:
# The Dark Knight : 117248
# Inception : 147074
# The Avengers : 113621
# Cast Away : 1123
# The Departed : 117586
# American Psycho : 90177
# Avatar : 71587
# Django Unchained : 138952
# Spirited Away : 144137
# Knives Out : 148025
# [106465,106466,106467,106468,106469,106470,106471,106472,106473]
movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
self._movie_filter.MOVIE_FILTER = pd.DataFrame({"MovieID": movie_list})
def generate_csv_debug_file(self, debug_path:str):
debug_csv = Debug_csv(debug_path)
for RDF in self._get_cleaned_movie_rows():
debug_csv.write(RDF)
debug_csv.close()
pipe = Pipeline()
#pipe.use_toy_dataset()
pipe.other_filter()
# pipe.execute_all_task()
pipe.generate_csv_debug_file("Assets/Dataset/Tmp/debug.csv")

View File

@@ -0,0 +1,32 @@
import pandas as pd
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class RdfFilter:
def __init__(self) -> None:
self.sql_endpoint = SqlEndpoint()
# def delete_hyperum_when_movie(self):
# purl:linguistics/gold/hypernym
# is almost ever as "dbp-dbr:Movie" or "dbp-dbr:Film"
# banned triple
def yield_movie_abbreviated_rdfs(self, MOVIE_ID: pd.DataFrame, REL_ID: pd.DataFrame):
relationship_placeholder = ",".join(["?"] * len(REL_ID))
param = tuple(REL_ID["RelationshipID"].to_list())
QUERY = f"""
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
FROM RDFs
INNER JOIN ParsedSubjects USING (SubjectID)
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
INNER JOIN WikipediaAbstracts USING (MovieID)
WHERE MovieID = (?) AND RelationshipID IN ({relationship_placeholder});
"""
for movie_id in MOVIE_ID["MovieID"].to_list():
params = (movie_id,) + param
yield self.sql_endpoint.get_dataframe_from_query(QUERY, params=params)

View File

@@ -0,0 +1,54 @@
import pandas as pd
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class RelationshipFilter:
def __init__(self) -> None:
self.sql_endpoint = SqlEndpoint()
# first obtain all relationship_id
relationship_query = "SELECT RelationshipID FROM Relationships"
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(relationship_query)
def frequency_filter(self, min_treshold:int, max_treshold:int):
movie_list_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
filter_query = f"""
SELECT RelationshipID
FROM RDFs
WHERE RelationshipID IN ({movie_list_placeholder})
GROUP BY RelationshipID
HAVING COUNT(*) BETWEEN {min_treshold} AND {max_treshold};
"""
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()))
def get_relationship_id(self):
return self.RELATIONSHIP_FILTER
def get_relationship_id_from_white_list(self, relationship_list: list[str]):
ids_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
uri_placeholder = ",".join(["?"] * len(relationship_list))
filter_query = f"""
SELECT RelationshipID
FROM ParsedRelationships
WHERE RelationshipID IN ({ids_placeholder})
AND RelationshipURI IN ({uri_placeholder});
"""
params = tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()) + tuple(relationship_list)
return self.sql_endpoint.get_dataframe_from_query(filter_query, params)
def delete_relationship_uri_by_list(self, filter_list: list[str]):
ids_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
uri_placeholder = ",".join(["?"] * len(filter_list))
filter_query = f"""
SELECT RelationshipID
FROM ParsedRelationships
WHERE RelationshipID IN ({ids_placeholder})
AND RelationshipURI NOT IN ({uri_placeholder});
"""
params = tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()) + tuple(filter_list)
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)

View File

@@ -0,0 +1,22 @@
from enum import Enum
class SpecialToken(str, Enum):
# (Enum, str) -> throws an error
START_TRIPLE_LIST = "<SOTL>"
START_TRIPLE = "<SOT>"
END_TRIPLE = "<EOT>"
SUBJECT = "<SUBJ>"
RELATIONSHIP = "<PRED>"
OBJECT = "<OBJ>"
ABSTRACT = "<ABS>"
END_OF_SENTENCE = "<EOS>"
CORPUS_END = "<END>"
## Tasks' Token
RDF_TO_TEXT = "<RDF2TXT>"
TEXT_TO_RDF = "<TEXT2RDF>"
CONTINUE_RDF = "<CONTINUERDF>"
MASK = "<MASK>"
#BPE Training:

View File

@@ -0,0 +1,149 @@
#######################################################
# This file stand as endpoint to interact with DB #
#######################################################
# import sqlite3
import pandas as pd
from sqlalchemy import create_engine
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
class SqlEndpoint():
def __init__(self, DB_PATH = "./Assets/Dataset/DatawareHouse/dataset.db", chunk_size_row = 500):
# self.CONN = sqlite3.connect(DB_PATH) # DEPRECATED
self.sql_engine = create_engine(f"sqlite:///{DB_PATH}")
# /// 3 slash -> relative path
# //// 4 slash -> absolute
# self.conn = self.sql_engine.connect().execution_options(stream_results=True)
# it seems that sqlite doenst support streamer cursor
# PRAGMA exeutes better in writing not reading
self.chunk_size_row = chunk_size_row # not used now, since each chunk is a movie
self.movie_ids = movie_ids = pd.read_sql_query("SELECT MovieID FROM Movies;", self.sql_engine)["MovieID"]
def get_RDF(self) -> pd.DataFrame :
QUERY = """
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI
FROM RDFs
INNER JOIN Subjects USING (SubjectID)
INNER JOIN Relationships USING (RelationshipID)
INNER JOIN Objects USING (ObjectID);
"""
return pd.read_sql_query(QUERY, self.CONN)
def get_chunked_abbreviated_dataset(self) -> pd.DataFrame :
"""
Returns:
pd.DataFrame: MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
"""
QUERY = """
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
FROM RDFs
INNER JOIN ParsedSubjects USING (SubjectID)
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
INNER JOIN WikipediaAbstracts USING (MovieID);
"""
# return pd.read_sql_query(QUERY, self.CONN, chunksize=500)
# sqlite3
return pd.read_sql_query(QUERY, self.sql_engine, chunksize=self.chunk_size_row)
def get_chunked_abbreviated_dataset_with_start_token(self)-> pd.DataFrame:
# DEPRECATED !
start_token = SpecialToken()
QUERY = """
SELECT
MovieID,
? || SubjectURI AS SubjectURI,
? || RelationshipURI AS RelationshipURI,
? || ObjectURI AS ObjectURI,
Abstract
FROM RDFs
INNER JOIN ParsedSubjects USING (SubjectID)
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
INNER JOIN WikipediaAbstracts USING (MovieID);
"""
return pd.read_sql_query(QUERY, self.sql_engine, chunksize=self.chunk_size_row)
def get_abbreviated_dataset_by_movie_id(self):# -> iter[pd.DataFrame]:
"""
Gets each time a DataFrame per movie ( with all its rows in the dataset).
The retrieved RDFs are already abbrevieted by the sql parser
Yields:
Pandas.DataFrame: [MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract]
"""
# chunk by movieId, abstract is the same and some intersting logic are appliable
# movie_ids = pd.read_sql_query("SELECT MovieID FROM Movies;", self.sql_engine)["MovieID"]
# CHOOSEN MOVIE:
# The Dark Knight : 117248
# Inception : 147074
# The Avengers : 113621
# Cast Away : 1123
# The Departed : 117586
# American Psycho : 90177
# Avatar : 71587
# Django Unchained : 138952
# Spirited Away : 144137
# Knives Out : 148025
# movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
# movie_ids = movie_list
QUERY = """
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
FROM RDFs
INNER JOIN ParsedSubjects USING (SubjectID)
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
INNER JOIN WikipediaAbstracts USING (MovieID)
WHERE MovieID = (?);
"""
for movie_id in self.movie_ids:
yield pd.read_sql_query(QUERY, self.sql_engine, params=(movie_id,))
def get_movies_id_count(self) -> pd.DataFrame:
"""
Gets the count of each Movie in the Dataset
Returns:
Pandas.DataFrame: [MovieID, Count]
"""
QUERY = """
SELECT MovieID, COUNT(*) AS Count
FROM RDFs
GROUP BY MovieID;
"""
return pd.read_sql_query(QUERY, self.sql_engine)
def get_relationship_count(self) -> pd.DataFrame:
"""
Gets the count of each Relationship in the Dataset
Returns:
Pandas.DataFrame: [RelationshipURI, Count]
"""
QUERY = """
SELECT RelationshipURI, COUNT(*) AS Count
FROM RDFs
INNER JOIN ParsedRelationships USING (RelationshipID)
GROUP BY RelationshipURI;
"""
return pd.read_sql_query(QUERY, self.sql_engine)
def get_dataframe_from_query(self, query: str, params=None):
if params is None:
return pd.read_sql_query(query, self.sql_engine)
return pd.read_sql_query(query, self.sql_engine, params=params)
if __name__ == "__main__" :
sql_endpoint = SqlEndpoint()
for pandas_row in sql_endpoint.get_abbreviated_dataset_by_movie_id():
print(pandas_row)
# sql_endpoint.get_RDF()
print("done")

View File

@@ -0,0 +1,9 @@
import pandas as pd
def get_raw_from_dataframe(DF: pd.DataFrame) -> str:
output = ''
for row in DF.itertuples(index=False, name=None):
output += "".join(map(str, row))
return output

View File

@@ -0,0 +1,897 @@
{
"type": "excalidraw",
"version": 2,
"source": "https://marketplace.visualstudio.com/items?itemName=pomdtr.excalidraw-editor",
"elements": [
{
"id": "3zbCui3XtIGozHXTVAGRp",
"type": "rectangle",
"x": 316.5,
"y": 123,
"width": 436.5,
"height": 145.5,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a0",
"roundness": {
"type": 3
},
"seed": 1698427950,
"version": 35,
"versionNonce": 601575602,
"isDeleted": false,
"boundElements": [
{
"id": "wD66RDbG05HfvRhAtMb0J",
"type": "text"
},
{
"id": "gus_rxauKJ6T2L_F59PfN",
"type": "arrow"
}
],
"updated": 1758818588814,
"link": null,
"locked": false
},
{
"id": "wD66RDbG05HfvRhAtMb0J",
"type": "text",
"x": 480.98004150390625,
"y": 183.25,
"width": 107.5399169921875,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a1",
"roundness": null,
"seed": 910769774,
"version": 31,
"versionNonce": 1120989938,
"isDeleted": false,
"boundElements": null,
"updated": 1758818416720,
"link": null,
"locked": false,
"text": "dataset.db",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "3zbCui3XtIGozHXTVAGRp",
"originalText": "dataset.db",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "87-MeaiZGT1wln0nggYPZ",
"type": "rectangle",
"x": 339.5,
"y": 309.5,
"width": 392,
"height": 156,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a2",
"roundness": {
"type": 3
},
"seed": 655550318,
"version": 77,
"versionNonce": 1103939826,
"isDeleted": false,
"boundElements": null,
"updated": 1758818339000,
"link": null,
"locked": false
},
{
"id": "EjUxEhZqEBzwvlw0VE9eJ",
"type": "rectangle",
"x": 355.5,
"y": 327,
"width": 162,
"height": 125.5,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a3",
"roundness": {
"type": 3
},
"seed": 1739846638,
"version": 64,
"versionNonce": 1594290034,
"isDeleted": false,
"boundElements": [
{
"type": "text",
"id": "ogRkV0neHrhEKTE6zlggl"
}
],
"updated": 1758818391415,
"link": null,
"locked": false
},
{
"id": "ogRkV0neHrhEKTE6zlggl",
"type": "text",
"x": 378.7100524902344,
"y": 377.25,
"width": 115.57989501953125,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a3V",
"roundness": null,
"seed": 2037675630,
"version": 12,
"versionNonce": 1286472046,
"isDeleted": false,
"boundElements": null,
"updated": 1758818399222,
"link": null,
"locked": false,
"text": "RDF_String",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "EjUxEhZqEBzwvlw0VE9eJ",
"originalText": "RDF_String",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "hoIRMNiMJZl4YDo-hovWy",
"type": "rectangle",
"x": 542.5,
"y": 327,
"width": 173,
"height": 125.5,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a4",
"roundness": {
"type": 3
},
"seed": 1189796530,
"version": 99,
"versionNonce": 1071057006,
"isDeleted": false,
"boundElements": [
{
"type": "text",
"id": "rsapATFAT5YSBCXzLupgZ"
},
{
"id": "gus_rxauKJ6T2L_F59PfN",
"type": "arrow"
},
{
"id": "Wk1bJbbtC31FqObEL5xWt",
"type": "arrow"
}
],
"updated": 1758818593647,
"link": null,
"locked": false
},
{
"id": "rsapATFAT5YSBCXzLupgZ",
"type": "text",
"x": 585.6800384521484,
"y": 377.25,
"width": 86.63992309570312,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a5",
"roundness": null,
"seed": 829619694,
"version": 12,
"versionNonce": 713902318,
"isDeleted": false,
"boundElements": null,
"updated": 1758818405150,
"link": null,
"locked": false,
"text": "Abstract",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "hoIRMNiMJZl4YDo-hovWy",
"originalText": "Abstract",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "jSx8ApfhtRs_nk37VvDMb",
"type": "rectangle",
"x": 316.5,
"y": 511,
"width": 436.5,
"height": 145.5,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a6",
"roundness": {
"type": 3
},
"seed": 492582894,
"version": 132,
"versionNonce": 893797614,
"isDeleted": false,
"boundElements": [
{
"type": "text",
"id": "6E23g-rgowNqHsBxX-LuM"
},
{
"id": "hyFKqXwet_F79QM71atgI",
"type": "arrow"
},
{
"id": "x_DP1FcQ7jraGz0gBuDi3",
"type": "arrow"
},
{
"id": "1IGbCps2EHnzKgJUWM5nq",
"type": "arrow"
},
{
"id": "Wk1bJbbtC31FqObEL5xWt",
"type": "arrow"
}
],
"updated": 1758818593647,
"link": null,
"locked": false
},
{
"id": "6E23g-rgowNqHsBxX-LuM",
"type": "text",
"x": 499.9100341796875,
"y": 571.25,
"width": 69.679931640625,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a7",
"roundness": null,
"seed": 267696178,
"version": 132,
"versionNonce": 1668243186,
"isDeleted": false,
"boundElements": null,
"updated": 1758818543211,
"link": null,
"locked": false,
"text": "Pandas",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "jSx8ApfhtRs_nk37VvDMb",
"originalText": "Pandas",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "ohj18N4AOTDz5lJNcV9gi",
"type": "rectangle",
"x": 261,
"y": 765.5,
"width": 157,
"height": 87,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a8",
"roundness": {
"type": 3
},
"seed": 1446207150,
"version": 279,
"versionNonce": 317375026,
"isDeleted": false,
"boundElements": [
{
"id": "Ea1_ke2wA0D8ZjVOUtvfY",
"type": "text"
},
{
"id": "hyFKqXwet_F79QM71atgI",
"type": "arrow"
}
],
"updated": 1758818570993,
"link": null,
"locked": false
},
{
"id": "Ea1_ke2wA0D8ZjVOUtvfY",
"type": "text",
"x": 297.0800323486328,
"y": 796.5,
"width": 84.83993530273438,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a9",
"roundness": null,
"seed": 435116270,
"version": 199,
"versionNonce": 1282911218,
"isDeleted": false,
"boundElements": null,
"updated": 1758818570993,
"link": null,
"locked": false,
"text": "train.txt",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "ohj18N4AOTDz5lJNcV9gi",
"originalText": "train.txt",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "A4Y54Y26fe257U_QU9lxX",
"type": "rectangle",
"x": 464,
"y": 765.5,
"width": 157,
"height": 87,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aA",
"roundness": {
"type": 3
},
"seed": 186148850,
"version": 232,
"versionNonce": 997119858,
"isDeleted": false,
"boundElements": [
{
"id": "v4TvUlDEjH7EvPDmtbOn2",
"type": "text"
},
{
"id": "1IGbCps2EHnzKgJUWM5nq",
"type": "arrow"
}
],
"updated": 1758818570993,
"link": null,
"locked": false
},
{
"id": "v4TvUlDEjH7EvPDmtbOn2",
"type": "text",
"x": 476.3500442504883,
"y": 796.5,
"width": 132.29991149902344,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aB",
"roundness": null,
"seed": 1131059634,
"version": 171,
"versionNonce": 239540530,
"isDeleted": false,
"boundElements": null,
"updated": 1758818570993,
"link": null,
"locked": false,
"text": "validation.txt",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "A4Y54Y26fe257U_QU9lxX",
"originalText": "validation.txt",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "mPaYpJ9Xn7tlJPmKPqJKJ",
"type": "rectangle",
"x": 674.5,
"y": 765.5,
"width": 157,
"height": 87,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aC",
"roundness": {
"type": 3
},
"seed": 1049323314,
"version": 235,
"versionNonce": 330560690,
"isDeleted": false,
"boundElements": [
{
"type": "text",
"id": "kg9nm2rpud6cax5aNPSnu"
},
{
"id": "x_DP1FcQ7jraGz0gBuDi3",
"type": "arrow"
}
],
"updated": 1758818570993,
"link": null,
"locked": false
},
{
"id": "kg9nm2rpud6cax5aNPSnu",
"type": "text",
"x": 711.4300231933594,
"y": 796.5,
"width": 83.13995361328125,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aD",
"roundness": null,
"seed": 522572142,
"version": 193,
"versionNonce": 1920372338,
"isDeleted": false,
"boundElements": null,
"updated": 1758818570993,
"link": null,
"locked": false,
"text": "test.txt",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "mPaYpJ9Xn7tlJPmKPqJKJ",
"originalText": "test.txt",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "hyFKqXwet_F79QM71atgI",
"type": "arrow",
"x": 534.65,
"y": 661.5,
"width": 195.25,
"height": 99,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aG",
"roundness": null,
"seed": 873266098,
"version": 71,
"versionNonce": 541154738,
"isDeleted": false,
"boundElements": null,
"updated": 1758818570993,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
0,
49.5
],
[
-195.25,
49.5
],
[
-195.25,
99
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "jSx8ApfhtRs_nk37VvDMb",
"fixedPoint": [
0.49977090492554405,
1.034364261168385
],
"focus": 0,
"gap": 0
},
"endBinding": {
"elementId": "ohj18N4AOTDz5lJNcV9gi",
"fixedPoint": [
0.4993630573248406,
-0.05747126436781609
],
"focus": 0,
"gap": 0
},
"startArrowhead": null,
"endArrowhead": "triangle",
"elbowed": true,
"fixedSegments": null,
"startIsSpecial": null,
"endIsSpecial": null
},
{
"id": "x_DP1FcQ7jraGz0gBuDi3",
"type": "arrow",
"x": 534.65,
"y": 661.5,
"width": 218.25,
"height": 99,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aH",
"roundness": null,
"seed": 1210817582,
"version": 77,
"versionNonce": 1483392370,
"isDeleted": false,
"boundElements": null,
"updated": 1758818580594,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
0,
49.5
],
[
218.25,
49.5
],
[
218.25,
99
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "jSx8ApfhtRs_nk37VvDMb",
"fixedPoint": [
0.49977090492554405,
1.034364261168385
],
"focus": 0,
"gap": 0
},
"endBinding": {
"elementId": "mPaYpJ9Xn7tlJPmKPqJKJ",
"fixedPoint": [
0.4993630573248406,
-0.05747126436781609
],
"focus": 0,
"gap": 0
},
"startArrowhead": null,
"endArrowhead": "triangle",
"elbowed": true,
"fixedSegments": null,
"startIsSpecial": null,
"endIsSpecial": null
},
{
"id": "1IGbCps2EHnzKgJUWM5nq",
"type": "arrow",
"x": 534.65,
"y": 661.5,
"width": 0.5719232650604908,
"height": 99.07394122590165,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aK",
"roundness": null,
"seed": 1205316658,
"version": 96,
"versionNonce": 1748050674,
"isDeleted": false,
"boundElements": null,
"updated": 1758818570993,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
-0.5719232650604908,
99.07394122590165
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "jSx8ApfhtRs_nk37VvDMb",
"fixedPoint": [
0.49977090492554405,
1.034364261168385
],
"focus": 0,
"gap": 0
},
"endBinding": {
"elementId": "A4Y54Y26fe257U_QU9lxX",
"fixedPoint": [
0.44635717665566554,
-0.056621365219521276
],
"focus": 0,
"gap": 0
},
"startArrowhead": null,
"endArrowhead": "triangle",
"elbowed": true,
"fixedSegments": null,
"startIsSpecial": null,
"endIsSpecial": null
},
{
"id": "gus_rxauKJ6T2L_F59PfN",
"type": "arrow",
"x": 539,
"y": 271.5,
"width": 0,
"height": 33.5,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aL",
"roundness": null,
"seed": 763990258,
"version": 17,
"versionNonce": 1028811378,
"isDeleted": false,
"boundElements": null,
"updated": 1758818588814,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
0,
33.5
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "3zbCui3XtIGozHXTVAGRp",
"focus": -0.019473081328751418,
"gap": 3
},
"endBinding": {
"elementId": "hoIRMNiMJZl4YDo-hovWy",
"focus": -1.0404624277456647,
"gap": 30.7545797799829
},
"startArrowhead": null,
"endArrowhead": "triangle",
"elbowed": false
},
{
"id": "Wk1bJbbtC31FqObEL5xWt",
"type": "arrow",
"x": 536.5,
"y": 468.5,
"width": 0,
"height": 39,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aM",
"roundness": null,
"seed": 1489771054,
"version": 33,
"versionNonce": 1828178606,
"isDeleted": false,
"boundElements": null,
"updated": 1758818593647,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
0,
39
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "hoIRMNiMJZl4YDo-hovWy",
"focus": 1.0693641618497107,
"gap": 27.157190169432425
},
"endBinding": {
"elementId": "jSx8ApfhtRs_nk37VvDMb",
"focus": 0.008018327605956525,
"gap": 3.5
},
"startArrowhead": null,
"endArrowhead": "triangle",
"elbowed": false
}
],
"appState": {
"gridSize": 20,
"gridStep": 5,
"gridModeEnabled": false,
"viewBackgroundColor": "#ffffff"
},
"files": {}
}

View File

@@ -0,0 +1,634 @@
{
"type": "excalidraw",
"version": 2,
"source": "https://marketplace.visualstudio.com/items?itemName=pomdtr.excalidraw-editor",
"elements": [
{
"id": "JNB9z-PeqZ4s8KDfWaoXe",
"type": "rectangle",
"x": 106,
"y": 27,
"width": 653,
"height": 263,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a2",
"roundness": {
"type": 3
},
"seed": 710740889,
"version": 326,
"versionNonce": 1107631703,
"isDeleted": false,
"boundElements": null,
"updated": 1759156408059,
"link": null,
"locked": false
},
{
"id": "e13wNTgUpn2flMpmMttqx",
"type": "text",
"x": 200.5943407656526,
"y": 44.07937975075269,
"width": 307.2781467269385,
"height": 23.3097531902191,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a3",
"roundness": null,
"seed": 1012740663,
"version": 444,
"versionNonce": 589551257,
"isDeleted": false,
"boundElements": null,
"updated": 1759156408059,
"link": null,
"locked": false,
"text": "Libs/CleaningPipeline/sql_endpoint",
"fontSize": 18.64780255217528,
"fontFamily": 5,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "Libs/CleaningPipeline/sql_endpoint",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "CgxCElJkKBtIHv-5WQrbo",
"type": "text",
"x": 195,
"y": 80.44259472749451,
"width": 403.64997665852184,
"height": 186.4780255217528,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a4",
"roundness": null,
"seed": 1261951799,
"version": 507,
"versionNonce": 1922906999,
"isDeleted": false,
"boundElements": null,
"updated": 1759156408059,
"link": null,
"locked": false,
"text": "Class SqlEndpoint:\n - sql_engine\n + movie_ids: list[int]\n\n #\n + get_abbreviated_dataset_by_movie_id\n\n",
"fontSize": 18.64780255217528,
"fontFamily": 5,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "Class SqlEndpoint:\n - sql_engine\n + movie_ids: list[int]\n\n #\n + get_abbreviated_dataset_by_movie_id\n\n",
"autoResize": true,
"lineHeight": 1.25
},
{
"type": "line",
"version": 4979,
"versionNonce": 1473849177,
"isDeleted": false,
"id": "sYReMTdYblr-oJtYYJALU",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -67.14432426259049,
"y": 87.19293561900287,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 77.09201683999922,
"height": 99.49948667804088,
"seed": 1263944119,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "round",
"boundElementIds": [],
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
0.2542098813493443,
75.20117273657175
],
[
0.011896425679918422,
83.76249969444815
],
[
3.970409367559332,
87.46174320643391
],
[
17.75573317066317,
90.59250103325854
],
[
41.05683533152865,
91.56737225214069
],
[
63.319497586673116,
90.01084754868091
],
[
75.14781395923075,
86.28844687220405
],
[
76.81603792670788,
83.15042405259751
],
[
77.05033394391478,
76.25776215104557
],
[
76.86643881413028,
6.3089586511537865
],
[
76.45188016352971,
-0.2999144698665015
],
[
71.50179495549581,
-3.9936571317850627
],
[
61.077971898861186,
-6.132877429442784
],
[
37.32348754161154,
-7.932114425900202
],
[
18.278415656797975,
-6.859225353587373
],
[
3.2995959613238286,
-3.2201165291205287
],
[
-0.04168289608444441,
-0.045185660461322996
],
[
0,
0
]
],
"index": "a6",
"frameId": null,
"roundness": {
"type": 2
},
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "line",
"version": 2684,
"versionNonce": 952947769,
"isDeleted": false,
"id": "0S6dEWQVqKUVkP6Z5IX1l",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -66.6203948243155,
"y": 144.31921927673278,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 77.17198221193564,
"height": 8.562348957853036,
"seed": 817033943,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "round",
"boundElementIds": [],
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
2.033150371639873,
3.413095389435587
],
[
10.801287372573954,
6.276651055277943
],
[
22.468666942209353,
8.010803051612635
],
[
40.747074201802775,
8.168828515515864
],
[
62.077348233027564,
7.0647721921469495
],
[
74.53446931782398,
3.04824021069218
],
[
77.17198221193564,
-0.3935204423371723
]
],
"index": "a7",
"frameId": null,
"roundness": {
"type": 2
},
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "line",
"version": 2770,
"versionNonce": 477619481,
"isDeleted": false,
"id": "szGLND7J0nVOvRkNXX9AS",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -67.65225214681931,
"y": 115.35516394150972,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 77.17198221193564,
"height": 8.562348957853036,
"seed": 1704755191,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "round",
"boundElementIds": [],
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
2.033150371639873,
3.413095389435587
],
[
10.801287372573954,
6.276651055277943
],
[
22.468666942209353,
8.010803051612635
],
[
40.747074201802775,
8.168828515515864
],
[
62.077348233027564,
7.0647721921469495
],
[
74.53446931782398,
3.04824021069218
],
[
77.17198221193564,
-0.3935204423371723
]
],
"index": "a8",
"frameId": null,
"roundness": {
"type": 2
},
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "ellipse",
"version": 5767,
"versionNonce": 2119031289,
"isDeleted": false,
"id": "O3t2uGktJlDd1_OX_bpV4",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -68.71020112890136,
"y": 80.06066699332126,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 76.59753601865496,
"height": 15.49127539284798,
"seed": 471296279,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "sharp",
"boundElementIds": [
"bxuMGTzXLn7H-uBCptINx"
],
"index": "a9",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "ellipse",
"version": 1177,
"versionNonce": 525480665,
"isDeleted": false,
"id": "_SzKlOBOvJgBg7FX0JTTM",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -32.218214023678854,
"y": 104.53733467322485,
"strokeColor": "#000000",
"backgroundColor": "#228be6",
"width": 11.226103154161754,
"height": 12.183758484455605,
"seed": 1368927799,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "sharp",
"boundElementIds": [],
"index": "aA",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "ellipse",
"version": 1465,
"versionNonce": 1410887609,
"isDeleted": false,
"id": "oJMl2Kxa3SPaiAY0kxo7A",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -31.867072239745255,
"y": 130.75394896028996,
"strokeColor": "#000000",
"backgroundColor": "#228be6",
"width": 11.226103154161754,
"height": 12.183758484455605,
"seed": 1627606871,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "sharp",
"boundElementIds": [],
"index": "aB",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "ellipse",
"version": 1348,
"versionNonce": 314839193,
"isDeleted": false,
"id": "fB6pJBSMA-pRHrpgYKaLL",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 6.239590202363168,
"x": -31.218214023678854,
"y": 159.52267553159635,
"strokeColor": "#000000",
"backgroundColor": "#228be6",
"width": 11.226103154161754,
"height": 12.183758484455605,
"seed": 1420643447,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "sharp",
"boundElementIds": [],
"index": "aC",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "text",
"version": 846,
"versionNonce": 1091081593,
"isDeleted": false,
"id": "9gZ3Yy1MeP9kEOTLODqLG",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -76.81018163712321,
"y": 181.11281713043917,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 95.63072204589844,
"height": 23.595161071904883,
"seed": 2019206551,
"groupIds": [
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "sharp",
"boundElementIds": [],
"fontSize": 17.4778970902999,
"fontFamily": 1,
"text": "dataset.db",
"baseline": 16.595161071904883,
"textAlign": "center",
"verticalAlign": "top",
"index": "aD",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false,
"containerId": null,
"originalText": "dataset.db",
"autoResize": true,
"lineHeight": 1.350000000000001
},
{
"id": "3eOw20xMhpB5jf_RMG24P",
"type": "text",
"x": 1131.3333333333335,
"y": 31.333333333333428,
"width": 508.3333333333333,
"height": 550,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aE",
"roundness": null,
"seed": 1535658041,
"version": 821,
"versionNonce": 1630266809,
"isDeleted": false,
"boundElements": null,
"updated": 1759157181677,
"link": null,
"locked": false,
"text": "Class PipelineApplier\n - movie_frequence_filter : pd.DataFrame()\n - rel_Frequence_Filter : pd.DataFrame()\n - rel_banned_list: list[str]\n\n + generate_movie_frequency_filter()\n + generate_rel_frequency_filter()\n + generate_list_relationship_filter()\n \n + filter_by_movie_frequency()\n + filter_by_relationship_frequency()\n + delete_relationship_by_list_filter()\n + delete_relationship_by_str()\n\n + drop_na() \n\n + rdf_add_special_token()\n + group_triple_by_movie()\n + build_by_movie()\n # static\n + build_triple()\n + build_incomplete_triple()",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "Class PipelineApplier\n - movie_frequence_filter : pd.DataFrame()\n - rel_Frequence_Filter : pd.DataFrame()\n - rel_banned_list: list[str]\n\n + generate_movie_frequency_filter()\n + generate_rel_frequency_filter()\n + generate_list_relationship_filter()\n \n + filter_by_movie_frequency()\n + filter_by_relationship_frequency()\n + delete_relationship_by_list_filter()\n + delete_relationship_by_str()\n\n + drop_na() \n\n + rdf_add_special_token()\n + group_triple_by_movie()\n + build_by_movie()\n # static\n + build_triple()\n + build_incomplete_triple()",
"autoResize": false,
"lineHeight": 1.25
},
{
"id": "Fbl1gpb5r7QrdRauGUWm2",
"type": "text",
"x": 158.23809523809535,
"y": 502.52380952380935,
"width": 484.2857142857143,
"height": 500,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aF",
"roundness": null,
"seed": 2066618807,
"version": 552,
"versionNonce": 1269344823,
"isDeleted": false,
"boundElements": null,
"updated": 1759158199532,
"link": null,
"locked": false,
"text": "Class Pipeline\n - sql_endpoint: SqlEndpoint()\n\n - task_rdf_mask_file_handler:\n - task_bpe_corpus_file_handler:\n - task_rdf_text_file_handler:\n - task_rdf_completation_file_handler:\n\n - Filter_applier : PipelineApplier()\n\n #\n - get_cleaned_movie_rows()\n \n + execute_task_bpe_corpus()\n + execute_task_rdf_mask()\n + execute_task_rdf_text()\n + execute_task_rdf_completation()\n + execute_all_task()\n\n + use_toy_dataset()",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "Class Pipeline\n - sql_endpoint: SqlEndpoint()\n\n - task_rdf_mask_file_handler:\n - task_bpe_corpus_file_handler:\n - task_rdf_text_file_handler:\n - task_rdf_completation_file_handler:\n\n - Filter_applier : PipelineApplier()\n\n #\n - get_cleaned_movie_rows()\n \n + execute_task_bpe_corpus()\n + execute_task_rdf_mask()\n + execute_task_rdf_text()\n + execute_task_rdf_completation()\n + execute_all_task()\n\n + use_toy_dataset()",
"autoResize": false,
"lineHeight": 1.25
}
],
"appState": {
"gridSize": 20,
"gridStep": 5,
"gridModeEnabled": false,
"viewBackgroundColor": "#ffffff"
},
"files": {}
}

View File

@@ -15,3 +15,4 @@ tzdata==2025.2
urllib3==2.5.0
wheel==0.45.1
Wikipedia-API==0.8.1
SQLAlchemy