4 Commits

Author SHA1 Message Date
GassiGiuseppe
1d23b9cc8b little snippet to trim big dictionaries 2025-10-07 16:05:32 +02:00
GassiGiuseppe
165290162c added tokenano to the init 2025-10-04 19:03:56 +02:00
GassiGiuseppe
502016f843 a new exasperated way to train the bpe, just a wild experimen that could be useful later 2025-10-04 19:03:07 +02:00
GassiGiuseppe
845c63dbef updated tokenano to be more easy to read 2025-10-04 19:01:21 +02:00
108 changed files with 89 additions and 5816 deletions

Binary file not shown.

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:6e0a193f90f2b0efc5185b0db9555178b172268b3eab289225b894ac1493493f
3 size 2471083

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:dd309865b60df86f63f76341858e382a8423297ec63eb6f525ccd28b62caf486
3 size 2494589

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:2949f2e9c6ae2b4784e04405dd7f5a3ec2eb65537b421fdc6751e9d5a19af41d
3 size 19527224

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:bc28507d806df96d6c953fbba1999f62a55e26025001de5135892069df05b9bc
3 size 22021103

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:176f13b63859c4dc0ca42b94d875aa82b74ad1cd88a186c439ef5444f45ed715
3 size 24455751

Binary file not shown.

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:206f83b88b442f617575985ac88f4241071fa1b7d66b5935405178051511a369
3 size 1344466

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:6914b6b1f8f06f8cf73b96b9c27bf556f1ee93256f435b7da0be0df2af093d05
3 size 1334675

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:41e92da8af52ca1c83334ebea7312c63d37fdeacde425ba91b78f44a56e4fb88
3 size 10568092

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:80da574017b251c9f07ecbce837d9d36a9ee8183a2a3bdbe0a2e31e22226ab79
3 size 12773126

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:41b30ab739a01482036c40b6560adfe751c5905ae80aafef6ee0f1a716849c68
3 size 13222824

Binary file not shown.

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:39012a1e59eaa740d01515aa6b9744267dbb3ae13941b28558060795a94d90e0
3 size 86122

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:8f31602eba47f7daff3b13bb243abaf429ff5900a8d26ae854ba790fda47d287
3 size 517642

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:1189e04d3ba9d9138a4e216200313f5842b8a49de1745bb553ba2e3abf18d818
3 size 102533

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:203b6cb364cf95cbb6cc0ebbff9e8b80e80dda73ff210ad91edeedf6024f6ab1
3 size 2876

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -1,193 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ddfb4457",
"metadata": {},
"outputs": [
{
"ename": "AssertionError",
"evalue": "target id 3872 >= V (256). Fix TOKEN_SPACE_SIZE.",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mAssertionError\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 126\u001b[39m\n\u001b[32m 124\u001b[39m \u001b[38;5;66;03m# sanity guard (helps debug vocab mismatches fast)\u001b[39;00m\n\u001b[32m 125\u001b[39m max_seen = tgt[:, :Tp].max().item()\n\u001b[32m--> \u001b[39m\u001b[32m126\u001b[39m \u001b[38;5;28;01massert\u001b[39;00m max_seen < V \u001b[38;5;129;01mor\u001b[39;00m (tgt[:, :Tp] == PAD_TOKEN).all(), \\\n\u001b[32m 127\u001b[39m \u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mtarget id \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmax_seen\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m >= V (\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mV\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m). Fix TOKEN_SPACE_SIZE.\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 129\u001b[39m \u001b[38;5;66;03m# CE over all tokens produced so far (0..t). PAD is ignored by ignore_index\u001b[39;00m\n\u001b[32m 130\u001b[39m loss_t = cross_entropy(\n\u001b[32m 131\u001b[39m logits_btV.reshape(-\u001b[32m1\u001b[39m, V), \u001b[38;5;66;03m# [B*(t+1), V]\u001b[39;00m\n\u001b[32m 132\u001b[39m tgt[:, :Tp].reshape(-\u001b[32m1\u001b[39m) \u001b[38;5;66;03m# [B*(t+1)]\u001b[39;00m\n\u001b[32m 133\u001b[39m )\n",
"\u001b[31mAssertionError\u001b[39m: target id 3872 >= V (256). Fix TOKEN_SPACE_SIZE."
]
}
],
"source": [
"import random\n",
"import torch\n",
"import pandas as pd\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"import Project_Model.Libs.TorchShims as torch_shims\n",
"from Project_Model.Libs.Training.learning_rade_shedulers import CustomLR\n",
"from Project_Model.Libs.Training.logistic_collector import LogitsCollector # external collector\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"DEVICE = torch_shims.get_default_device()\n",
"torch.set_default_device(DEVICE)\n",
"\n",
"# BPE Init\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"# Constants (TEMP size; will be corrected after dataset scan below)\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_MULTIPLIER = 4\n",
"ATTENTION_HEADS = 4\n",
"SENTENCE_LENGTH = 256\n",
"NUMBER_OF_BLOCKS = 2\n",
"MAX_EPOCHS = int(1e4)\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"\n",
"# Load CSV\n",
"TOY_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"TOY_DATASET = pd.read_csv(TOY_DATASET_PATH)\n",
"\n",
"TOY_BATCH_INPUT_LIST: list[list[int]] = []\n",
"TOY_BATCH_PADDING_LIST: list[list[bool]] = []\n",
"TOY_BATCH_TARGET_LIST: list[list[int]] = []\n",
"TOY_BATCH_DECODER_DEFAULT: list[list[int]] = []\n",
"\n",
"for index, row in TOY_DATASET.iterrows():\n",
" RDFs: str = row[\"RDFs\"]\n",
" Abstract: str = row[\"Abstract\"]\n",
"\n",
" input_tokens = TOKENANO.encode(RDFs) # encoder input ids\n",
" output_tokens = TOKENANO.encode(Abstract)[1:] # decoder target ids (shifted left)\n",
" decoder_default_tokens = TOKENANO.encode(\"<SOS>\") # decoder input starts with <SOS>\n",
"\n",
" input_tokens, padding = Transformer.normalize_sequence(\n",
" input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" ) # pad/trim + end token\n",
" output_tokens, _ = Transformer.normalize_sequence(\n",
" output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" ) # pad/trim + end token\n",
" decoder_default_tokens = Transformer.pad_sequence(\n",
" decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN\n",
" ) # pad with PAD up to SENTENCE_LENGTH\n",
"\n",
" TOY_BATCH_INPUT_LIST.append(input_tokens)\n",
" TOY_BATCH_PADDING_LIST.append(padding)\n",
" TOY_BATCH_TARGET_LIST.append(output_tokens)\n",
" TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)\n",
"\n",
"# fix V to cover ALL ids (including specials) # <- important\n",
"max_enc_id = max(max(row) for row in TOY_BATCH_INPUT_LIST) if TOY_BATCH_INPUT_LIST else 0\n",
"max_tgt_id = max(max(row) for row in TOY_BATCH_TARGET_LIST) if TOY_BATCH_TARGET_LIST else 0\n",
"TOKEN_SPACE_SIZE = max(TOKEN_SPACE_SIZE, max(PAD_TOKEN, END_TOKEN, max_enc_id, max_tgt_id) + 1)\n",
"\n",
"# Training loop\n",
"LOSS_HISTORY = []\n",
"NANOSOCRATES = Transformer.TrainingModel(\n",
" TOKEN_SPACE_SIZE,\n",
" EMBEDDED_SIZE,\n",
" FEED_FORWARD_MULTIPLIER,\n",
" ATTENTION_HEADS,\n",
" NUMBER_OF_BLOCKS,\n",
")\n",
"\n",
"collector = LogitsCollector(PAD_TOKEN, END_TOKEN, TOKENANO) # collects logits and decodes\n",
"\n",
"NANOSOCRATES.train()\n",
"cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)\n",
"optimizer = torch.optim.AdamW(NANOSOCRATES.parameters(), lr=1.0) # base lr works as factor\n",
"scheduler = CustomLR(optimizer, EMBEDDED_SIZE, warmup_steps=4000, factor=1.0) # step each optimizer step\n",
"\n",
"current_epoch = 0\n",
"BATCH_SIZE = min(32, len(TOY_BATCH_INPUT_LIST)) # small batch to stabilize\n",
"\n",
"while current_epoch < MAX_EPOCHS:\n",
" # simple fixed mini-batch from the top; later you can shuffle/slice\n",
" enc = torch.tensor(TOY_BATCH_INPUT_LIST[:BATCH_SIZE], dtype=torch.long) # [B,T] encoder token ids\n",
" pad = torch.tensor(TOY_BATCH_PADDING_LIST[:BATCH_SIZE], dtype=torch.bool) # [B,T] True where encoder PAD is present\n",
" tgt = torch.tensor(TOY_BATCH_TARGET_LIST[:BATCH_SIZE], dtype=torch.long) # [B,T] decoder targets (ground-truth)\n",
"\n",
" # decoder prefix buffer: <SOS> at pos 0, PAD elsewhere (no shift here) # we will fill it step by step\n",
" dec = torch.tensor(TOY_BATCH_DECODER_DEFAULT[:BATCH_SIZE], dtype=torch.long) # [B,T]\n",
"\n",
" total_loss = 0.0\n",
" collector.reset() # start fresh for this epoch\n",
"\n",
" T = tgt.size(1) # sequence length\n",
" for t in range(T):\n",
" # skip all-PAD steps to avoid CE divide-by-zero late in the sequence\n",
" if (tgt[:, t] == PAD_TOKEN).all(): # all PAD at this timestep\n",
" break\n",
"\n",
" optimizer.zero_grad(set_to_none=True) # clear grads for this token step\n",
"\n",
" prefix = dec[:, : t + 1] # [B, t+1] current decoder prefix\n",
" dec_pad_mask = prefix.eq(PAD_TOKEN) # [B, t+1] True where PAD inside prefix\n",
"\n",
" # now decoder returns all steps up to t -> [B, t+1, V]\n",
" logits_btV: torch.Tensor = NANOSOCRATES((enc, pad, prefix, dec_pad_mask)) # full logits for learning\n",
" collector.add(logits_btV) # collector will take the last step\n",
"\n",
" Tp = logits_btV.size(1) # t+1\n",
" V = logits_btV.size(-1) # vocab size\n",
"\n",
" # sanity guard (helps debug vocab mismatches fast)\n",
" max_seen = tgt[:, :Tp].max().item()\n",
" assert max_seen < V or (tgt[:, :Tp] == PAD_TOKEN).all(), \\\n",
" f\"target id {max_seen} >= V ({V}). Fix TOKEN_SPACE_SIZE.\"\n",
"\n",
" # CE over all tokens produced so far (0..t). PAD is ignored by ignore_index\n",
" loss_t = cross_entropy(\n",
" logits_btV.reshape(-1, V), # [B*(t+1), V]\n",
" tgt[:, :Tp].reshape(-1) # [B*(t+1)]\n",
" )\n",
"\n",
" loss_t.backward() # backprop for this step\n",
" optimizer.step() # update params\n",
" scheduler.step() # Noam/warmup: step per optimizer step\n",
"\n",
" total_loss = float(loss_t.detach()) # keep last step loss for logging\n",
"\n",
" # teacher forcing: reveal the correct token for next position\n",
" if t < T - 1:\n",
" dec[:, t + 1] = tgt[:, t] # write ground-truth into next slot\n",
"\n",
" current_epoch += 1\n",
" print(f\"EPOCH {current_epoch}\\n\\tLoss: {total_loss:.6f}\") # simple log\n",
" collector.print_decoded() # print decoded predictions for the batch\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

View File

@@ -1,308 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"id": "7a311d4b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[7706, 290, 756, 4270, 7357, 115, 351, 1507, 1213, 410, 3382, 317, 497, 4740, 2784, 7712], [7706, 290, 756, 4270, 7357, 115, 351, 1507, 1213, 410, 3382, 317, 497, 4740, 2784, 7712], [7706, 290, 756, 4270, 7357, 115, 351, 1507, 1213, 410, 3382, 317, 497, 4740, 2784, 7712]]\n",
"3\n",
"Embedder Tensor: torch.Size([3, 16, 256])\n",
"Values:\n",
"tensor([[[-0.6981, 0.0804, -2.1672, ..., 0.3919, 0.3341, 1.0794],\n",
" [ 2.5818, -0.2308, 0.6001, ..., -0.0500, -0.0408, -0.9852],\n",
" [-0.6967, 0.8109, 1.3108, ..., 2.1693, 1.4143, -0.1236],\n",
" ...,\n",
" [ 2.1226, 2.5695, -1.6178, ..., -0.0652, -0.0802, 0.1103],\n",
" [ 0.8770, -2.4782, 0.8536, ..., 2.0471, -1.5702, 0.7387],\n",
" [ 1.4284, -0.4654, 0.1394, ..., 1.6520, 0.6728, 1.3851]],\n",
"\n",
" [[-0.6981, 0.0804, -2.1672, ..., 0.3919, 0.3341, 1.0794],\n",
" [ 2.5818, -0.2308, 0.6001, ..., -0.0500, -0.0408, -0.9852],\n",
" [-0.6967, 0.8109, 1.3108, ..., 2.1693, 1.4143, -0.1236],\n",
" ...,\n",
" [ 2.1226, 2.5695, -1.6178, ..., -0.0652, -0.0802, 0.1103],\n",
" [ 0.8770, -2.4782, 0.8536, ..., 2.0471, -1.5702, 0.7387],\n",
" [ 1.4284, -0.4654, 0.1394, ..., 1.6520, 0.6728, 1.3851]],\n",
"\n",
" [[-0.6981, 0.0804, -2.1672, ..., 0.3919, 0.3341, 1.0794],\n",
" [ 2.5818, -0.2308, 0.6001, ..., -0.0500, -0.0408, -0.9852],\n",
" [-0.6967, 0.8109, 1.3108, ..., 2.1693, 1.4143, -0.1236],\n",
" ...,\n",
" [ 2.1226, 2.5695, -1.6178, ..., -0.0652, -0.0802, 0.1103],\n",
" [ 0.8770, -2.4782, 0.8536, ..., 2.0471, -1.5702, 0.7387],\n",
" [ 1.4284, -0.4654, 0.1394, ..., 1.6520, 0.6728, 1.3851]]],\n",
" grad_fn=<AddBackward0>)\n",
"ENCODER Tensor: torch.Size([3, 1, 256])\n",
"Values:\n",
"tensor([[[ 8.0069e-01, 4.0532e-01, -1.8316e+00, -1.3902e+00, -1.1784e+00,\n",
" 1.3667e+00, -9.7890e-01, 6.0696e-01, -1.4899e+00, 5.5765e-01,\n",
" 4.5991e-02, 5.1214e-01, 3.1901e-01, 4.7577e-01, -2.9585e-01,\n",
" -1.0811e+00, -1.5281e+00, -6.3773e-01, -9.5954e-01, 1.8497e+00,\n",
" -1.1789e+00, -9.7387e-01, 1.1931e-01, -7.2703e-01, 5.3108e-01,\n",
" -6.4877e-01, -4.5188e-01, 1.5185e+00, -8.3408e-01, 3.2824e-01,\n",
" -1.8166e+00, 1.9548e+00, -5.2419e-01, -1.0693e+00, -1.8510e+00,\n",
" 1.5440e+00, -3.2370e-01, -1.3990e+00, -4.6940e-01, 6.5840e-02,\n",
" -9.2057e-01, 1.2513e+00, -5.9168e-01, 7.8198e-01, -1.3121e+00,\n",
" 1.1492e+00, -2.3695e-01, -1.8935e+00, 1.1639e+00, -5.8169e-01,\n",
" 2.5051e-01, -8.1654e-01, -1.0328e+00, 1.4285e+00, -8.1485e-01,\n",
" 1.0614e+00, -3.3834e-01, -4.1667e-02, -1.1920e-01, 3.1383e-01,\n",
" -5.9857e-01, 1.7327e-01, -1.6854e+00, -1.5174e+00, -2.6508e-01,\n",
" -6.0082e-01, 5.1468e-01, 2.7909e-01, -2.5296e-01, -1.4670e+00,\n",
" -1.3587e+00, -8.8864e-02, 3.2825e-01, 1.0950e+00, -1.0371e+00,\n",
" 1.1744e+00, 5.2984e-01, 4.1751e-01, -9.8803e-01, 3.5631e-01,\n",
" 4.7484e-01, 2.2435e-01, 1.4022e+00, 1.2242e+00, 1.1447e+00,\n",
" -5.4052e-01, -9.1786e-01, -1.2299e+00, 1.1656e+00, 9.1570e-01,\n",
" 1.8956e+00, 7.4344e-01, 4.2187e-01, -9.5426e-02, -3.2428e-01,\n",
" 9.6364e-01, -2.3252e-01, 2.9036e-01, -2.4432e+00, 9.8019e-01,\n",
" -4.6697e-02, 8.3910e-01, -4.3541e-01, -7.1915e-01, -7.5638e-01,\n",
" 9.0217e-01, 2.0919e+00, -7.9533e-01, -1.5413e-01, -6.9260e-01,\n",
" -1.3086e+00, 7.8925e-01, 1.8855e-01, 7.4043e-01, -3.8834e-01,\n",
" 1.0272e-02, 1.0763e+00, 4.2142e-01, 6.6520e-01, 4.5996e-01,\n",
" -8.5060e-01, -9.0101e-01, -4.2090e-01, 2.5596e-01, -1.4946e+00,\n",
" 1.0925e-01, -7.5359e-01, -3.0447e-01, 1.0679e+00, 1.9398e+00,\n",
" 8.1472e-01, 1.3498e+00, 1.1107e+00, 6.3288e-01, 3.1149e-01,\n",
" -1.9333e+00, -1.5274e+00, 2.1794e-01, -3.1895e-02, 1.0756e+00,\n",
" 1.0215e+00, 1.6938e+00, -1.0939e+00, 2.2690e+00, -7.0921e-01,\n",
" 6.4212e-01, -6.5468e-01, 1.6839e+00, 5.7296e-01, -1.4031e+00,\n",
" 3.9133e-01, -5.3541e-01, 4.3439e-01, -1.6785e+00, 5.2030e-03,\n",
" 4.5155e-01, -7.0953e-01, -1.9656e-01, -3.8671e-02, -1.0927e+00,\n",
" -3.0405e-01, -1.3818e-02, -3.7748e-01, 1.4412e+00, -1.4254e-01,\n",
" 7.9939e-01, -8.5402e-01, -1.0330e+00, 1.7661e+00, -3.6084e-01,\n",
" 1.5622e+00, 1.0240e+00, 1.9056e-01, -4.1480e-01, 6.9056e-01,\n",
" 1.7204e+00, -9.9218e-01, -1.6504e-01, -1.1807e+00, 1.0827e+00,\n",
" 1.5973e+00, 1.4849e-01, -2.2867e+00, 7.7322e-01, -6.8401e-01,\n",
" -6.0493e-01, 1.0616e+00, -1.8034e-01, -1.8828e+00, 1.1031e-01,\n",
" 2.5452e-01, -4.2489e-02, 8.1171e-01, 1.3429e+00, -6.5058e-01,\n",
" -1.3531e+00, -1.2263e+00, 1.1226e+00, 1.2407e+00, -9.7453e-01,\n",
" 9.4696e-01, 6.6186e-01, -5.0804e-01, 1.2647e-01, -1.1777e+00,\n",
" 6.8443e-02, -1.3043e-01, 2.9595e-01, -1.5330e+00, -6.5733e-01,\n",
" 1.1291e+00, 6.9629e-01, 4.4690e-01, 8.0151e-01, -1.2406e+00,\n",
" 2.6085e+00, -2.0310e-01, -1.0226e+00, -6.9182e-02, 7.6600e-01,\n",
" -9.9842e-01, 2.0896e+00, 2.6334e-01, -1.1559e-01, -6.6876e-01,\n",
" -6.6295e-01, -1.6461e-01, 2.8270e+00, 3.2727e-01, 1.3724e+00,\n",
" -1.0749e+00, 3.7782e-01, -1.5472e+00, 3.0822e-01, 5.7273e-02,\n",
" 3.9136e-01, 8.2948e-01, 2.1438e-01, -9.8623e-01, 5.6053e-01,\n",
" -1.5617e+00, -3.9595e-01, 1.0451e-02, -1.1860e+00, -1.4994e-01,\n",
" 1.6566e+00, 2.0369e+00, -4.3995e-01, -4.4262e-01, -3.1014e-01,\n",
" 5.9083e-01, -1.0765e+00, -5.2906e-01, 4.6039e-02, -1.0154e+00,\n",
" 5.9942e-01]],\n",
"\n",
" [[ 1.2683e+00, -4.3200e-01, -1.3333e+00, -3.6705e-01, -5.8895e-01,\n",
" 9.9266e-01, -4.2914e-01, 9.2765e-01, -1.0935e+00, 1.4975e+00,\n",
" -5.3739e-01, -2.8332e-01, 9.1166e-01, 1.5010e+00, -2.1787e-01,\n",
" -1.4258e+00, -2.7524e-01, -1.2602e+00, 2.0117e-01, 2.3906e+00,\n",
" -9.6397e-01, -7.5872e-01, 3.3948e-01, -7.9353e-01, 9.1668e-01,\n",
" 8.7734e-04, -3.0271e-01, 1.7087e+00, -1.0273e+00, 1.5174e+00,\n",
" -2.6405e-02, 1.4236e+00, -9.9093e-01, 5.4787e-01, -1.0904e+00,\n",
" 5.2156e-01, -6.3470e-01, -7.7688e-01, -1.2538e+00, -3.9307e-01,\n",
" -7.6707e-01, 1.3733e+00, -7.2709e-01, 1.1185e+00, -1.5860e+00,\n",
" -2.6148e-01, -3.7984e-01, -1.3604e+00, 9.2864e-02, -7.9642e-01,\n",
" 1.0956e+00, 3.1202e-01, -4.1234e-01, 3.6488e-02, -1.4639e+00,\n",
" 1.0947e+00, -7.9230e-01, 4.6913e-01, -2.3407e-01, 4.1768e-02,\n",
" -1.5921e+00, 6.9743e-01, -7.0222e-01, -5.4705e-01, -6.5663e-01,\n",
" -4.1810e-01, 2.7744e-01, 7.9178e-01, 7.5886e-01, -7.6302e-01,\n",
" -1.2204e+00, -1.1103e+00, -1.3646e-01, 1.9589e+00, -1.3637e+00,\n",
" 9.0804e-01, 2.3094e-01, -5.5953e-02, -6.7626e-01, 1.4242e+00,\n",
" 1.0167e+00, 1.0705e+00, 2.2947e+00, 9.1274e-01, 1.2281e+00,\n",
" -7.0638e-01, -1.2249e+00, -8.9208e-02, 1.1016e+00, 1.1940e+00,\n",
" 3.5834e-01, 1.2961e+00, -4.6674e-01, 3.4572e-01, -4.3458e-01,\n",
" 1.1008e+00, 3.7783e-01, -6.5841e-01, -2.3127e+00, 1.4617e+00,\n",
" -1.2826e-01, 1.3463e-01, -8.5268e-01, -8.4144e-01, -1.8594e+00,\n",
" 1.9260e-01, 1.6432e+00, -2.0640e-02, -5.0030e-01, -1.5334e-01,\n",
" -6.1072e-01, -1.3694e-01, -3.7308e-01, 1.6603e+00, 1.1246e-01,\n",
" 6.0823e-02, 7.8749e-01, -1.7002e-01, 1.2058e+00, 8.5615e-01,\n",
" 1.2525e-01, -1.0584e+00, -4.7931e-01, 1.4088e-01, -1.8149e+00,\n",
" 1.4654e+00, -1.0936e+00, 5.3182e-01, 9.5694e-01, 3.2472e+00,\n",
" 3.4877e-01, 1.8491e+00, -1.5184e-01, 1.4711e+00, -7.6064e-01,\n",
" -2.2144e+00, -1.8952e+00, -4.9502e-01, -6.6836e-01, 1.4946e+00,\n",
" 6.7616e-01, 1.1501e+00, -9.4747e-01, 1.1009e+00, -1.4211e+00,\n",
" 3.9528e-01, -9.5220e-01, 1.4886e+00, 7.1784e-01, -1.9941e+00,\n",
" 6.7901e-02, -1.3109e-01, 1.1695e+00, 1.2861e-01, -2.8123e-01,\n",
" -6.1611e-01, 1.5513e-01, -3.9289e-01, -4.5543e-02, -2.8628e-01,\n",
" 2.6118e-01, 2.2623e-01, -6.3705e-01, 7.3591e-01, -7.8799e-01,\n",
" 2.5053e-01, -1.5923e-01, -4.9584e-01, 1.9009e+00, -2.3263e-01,\n",
" 1.2213e+00, 1.0313e+00, 2.0177e-02, -6.2209e-01, -3.5161e-01,\n",
" 1.5143e+00, -7.2332e-02, 2.3909e-02, -2.1261e+00, 8.5199e-01,\n",
" 1.9084e+00, 4.6845e-02, -2.3554e+00, 1.3735e+00, -7.3909e-01,\n",
" -8.3949e-01, -3.9314e-01, -4.3324e-01, -9.6804e-01, -5.3124e-01,\n",
" -6.5091e-01, -1.1738e+00, 1.3315e+00, 6.5606e-01, -1.4131e-01,\n",
" -1.7712e+00, -1.1628e+00, 9.6813e-01, 8.7314e-01, -9.8027e-01,\n",
" 6.9376e-01, 5.3878e-01, -1.6169e+00, 2.2860e-01, -6.2179e-01,\n",
" -1.1043e-01, -3.9658e-01, 2.8712e-01, 8.2201e-02, 2.0888e-01,\n",
" -5.9884e-01, 7.3092e-01, 6.9128e-01, 5.3977e-01, -1.5728e+00,\n",
" 1.6878e+00, -8.2669e-01, -9.8076e-01, -3.4203e-01, 4.6939e-02,\n",
" -1.3158e-01, 2.1923e+00, -6.6483e-02, -4.0687e-01, -1.2715e+00,\n",
" -8.1549e-01, -1.2047e+00, 1.3547e+00, -4.2072e-01, 1.1674e+00,\n",
" -5.1421e-01, 1.3055e+00, -1.1277e+00, 1.8372e+00, -1.1215e+00,\n",
" 1.4797e+00, 2.8354e-01, -6.3974e-01, -1.2869e+00, -2.7897e-01,\n",
" -1.0397e+00, 1.8622e-01, -5.0397e-02, -4.4865e-02, -7.6067e-01,\n",
" 1.7715e+00, 1.5040e+00, -2.6854e-01, -5.2802e-01, -5.3407e-01,\n",
" 2.0313e-02, -2.6276e-01, -7.0748e-01, -8.7328e-01, -3.4108e-01,\n",
" 1.4313e+00]],\n",
"\n",
" [[ 7.7464e-01, -4.2187e-01, -2.0571e+00, -8.6709e-01, -1.5722e+00,\n",
" 4.9540e-01, -1.5270e+00, 1.0499e+00, -1.9579e+00, -2.5298e-02,\n",
" 4.3419e-01, 5.8822e-01, 1.3392e+00, 6.9604e-01, -9.7883e-01,\n",
" -9.1354e-01, -9.1852e-01, -6.0951e-01, -6.6255e-02, 1.3907e+00,\n",
" -6.2912e-01, -2.7524e-01, 1.9520e-02, -2.7154e-01, 1.5162e-01,\n",
" 1.3318e-02, -8.9196e-01, 9.0976e-01, -1.3544e+00, 2.4276e-01,\n",
" -7.4038e-01, 9.7062e-01, 3.2011e-01, 3.4486e-01, -2.3374e+00,\n",
" 1.3311e+00, -3.1871e-02, -1.4468e+00, -1.5968e+00, 3.0418e-01,\n",
" -7.7136e-01, 1.3427e+00, -1.2493e+00, 1.4114e+00, -1.2475e+00,\n",
" 7.0239e-01, -9.6120e-02, -4.4365e-01, 5.3238e-01, -1.4933e+00,\n",
" 5.4476e-01, -1.8490e-02, -5.9936e-01, 1.0878e+00, -1.8892e+00,\n",
" 1.2810e+00, -1.0747e+00, 5.3514e-01, 1.7422e-01, 1.1354e+00,\n",
" -7.4837e-01, 4.0327e-01, -1.8950e+00, -7.2336e-01, 2.4441e-01,\n",
" -1.3650e-01, -4.8344e-01, 3.3921e-02, 5.0889e-01, -1.3769e+00,\n",
" -2.5907e-01, -2.7549e-01, -1.9128e-01, 1.9751e+00, -7.1191e-01,\n",
" 5.1910e-01, 1.0902e-01, 2.9995e-01, -3.5180e-01, -6.2139e-01,\n",
" 7.2905e-01, -5.3177e-01, 4.3340e-01, 1.0071e+00, 1.7586e+00,\n",
" -3.9963e-01, -2.5139e-01, -9.4213e-01, 9.2847e-01, 1.1298e+00,\n",
" 7.8545e-01, 1.3188e+00, 3.7466e-01, 9.0773e-01, -4.0454e-02,\n",
" 1.3444e+00, 6.0301e-01, 8.9929e-02, -2.0754e+00, 4.8614e-01,\n",
" -9.7160e-01, 8.2446e-01, -1.1813e+00, -9.6185e-01, -9.2922e-02,\n",
" 6.0154e-01, 1.6640e+00, -1.0461e+00, 1.5868e-01, -5.7239e-01,\n",
" -6.2726e-01, 3.2848e-01, 5.9609e-01, 1.5563e+00, -4.0883e-01,\n",
" 4.4902e-01, 1.4004e+00, 2.2426e-01, 3.8314e-01, -2.0641e-01,\n",
" -1.6465e-01, -6.4645e-01, 1.5772e-01, 6.8907e-01, -1.2703e+00,\n",
" 1.8914e-01, -6.2678e-01, 3.0179e-01, 1.2687e+00, 1.6849e+00,\n",
" 1.5690e+00, 1.0999e+00, 1.5820e+00, -6.4808e-01, 5.1003e-01,\n",
" -1.6674e+00, -1.2224e+00, 1.9769e-01, -1.3883e-01, 1.2179e+00,\n",
" 1.2971e+00, 4.6259e-01, -5.8717e-01, 1.4532e+00, -1.0540e+00,\n",
" 2.8689e-01, -1.3895e+00, 1.4014e+00, -4.0430e-01, -2.6099e+00,\n",
" -1.0293e+00, -1.1097e+00, 8.6266e-01, -1.0535e+00, 7.1789e-01,\n",
" 6.0642e-01, -1.2493e+00, -3.7762e-01, -4.1281e-02, -7.3049e-01,\n",
" -7.2913e-04, -7.3122e-02, -2.3850e-01, 1.2546e+00, 1.8802e-01,\n",
" 1.3135e+00, -5.0367e-01, 1.2456e-01, 2.7475e+00, -1.2486e+00,\n",
" 1.4441e+00, 8.7469e-01, -5.6901e-01, -1.2145e-01, 3.1091e-01,\n",
" 1.9406e+00, -8.1891e-01, 3.1316e-02, -1.2867e+00, 8.0780e-01,\n",
" 7.0041e-01, 2.8903e-01, -1.6387e+00, 6.6553e-01, -1.3696e+00,\n",
" -7.9454e-01, 3.3899e-01, -5.5822e-01, -8.1969e-01, -1.2410e-01,\n",
" -3.7024e-01, -7.2536e-01, 7.5648e-01, 1.6899e+00, -1.7404e-01,\n",
" -1.7191e+00, -7.2603e-01, 1.5046e+00, 8.3216e-01, -1.5304e+00,\n",
" -1.8264e-01, 3.3451e-01, -5.6636e-02, 6.1099e-01, -9.8517e-01,\n",
" 4.4856e-01, -8.6275e-01, 6.9264e-02, -1.1572e+00, 2.3373e-01,\n",
" 5.9896e-01, 1.2384e-01, 1.0309e+00, 1.4273e+00, -8.4776e-01,\n",
" 2.6236e+00, -9.0133e-01, -4.0009e-01, -4.9727e-01, 3.7945e-01,\n",
" -9.0712e-01, 1.5725e+00, 1.6298e-01, 1.1544e-01, -4.3125e-01,\n",
" -8.7131e-01, -2.5880e-01, 2.9032e+00, 2.7154e-01, 1.3677e+00,\n",
" -8.8544e-01, 5.6083e-01, -1.8256e+00, 9.4832e-01, -1.0762e+00,\n",
" 7.5421e-01, 6.5008e-01, -8.6361e-01, -1.4911e+00, -7.5930e-02,\n",
" -1.6896e+00, 1.5223e-02, -1.5283e-01, -1.8741e+00, 1.1400e-01,\n",
" 1.8822e+00, 2.6615e+00, 2.1607e-01, -5.6243e-01, 3.6730e-01,\n",
" 4.0374e-01, -1.1973e+00, -5.3006e-01, -3.4750e-01, -4.4187e-01,\n",
" 7.4358e-01]]], grad_fn=<NativeLayerNormBackward0>)\n"
]
}
],
"source": [
"import random\n",
"import torch\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"\n",
"TEXT = (\n",
" \"<ABS>The Dark Knight is a 2008 superhero film directed by Christopher Nolan,<SOTL>\"\n",
")\n",
"OUT_TEXT = \"<START>\"\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"\n",
"ENCODER_INPUT = TOKENANO.encode(TEXT)\n",
"DECODER_INPUT = TOKENANO.encode(OUT_TEXT)\n",
"MAX_LEN = len(ENCODER_INPUT) + 1\n",
"\n",
"EN_IN, PAD_MASK = Transformer.normalize_sequence(ENCODER_INPUT, MAX_LEN, PAD_TOKEN, END_TOKEN)\n",
"DEC_IN, _ = Transformer.normalize_sequence(DECODER_INPUT, MAX_LEN, PAD_TOKEN, END_TOKEN)\n",
"BATCH_LEN = 3\n",
"\n",
"INPUT_TOKENIZATION = [\n",
" EN_IN\n",
"] * BATCH_LEN\n",
"OUTPUT_TOKENIZATION = [\n",
" DEC_IN\n",
"] * BATCH_LEN\n",
"\n",
"\n",
"print(INPUT_TOKENIZATION)\n",
"\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_DIM = EMBEDDED_SIZE * 4\n",
"\n",
"EMBEDDER = Embedder.NanoSocratesEmbedder(TOKEN_SPACE_SIZE, EMBEDDED_SIZE)\n",
"encoder_tensor: torch.Tensor = EMBEDDER(INPUT_TOKENIZATION)\n",
"ENCODER = torch.nn.Sequential(\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
")\n",
"decoder_tensor: torch.Tensor = EMBEDDER(OUTPUT_TOKENIZATION)\n",
"DECODER = torch.nn.Sequential(\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
")\n",
"\n",
"print(len(INPUT_TOKENIZATION))\n",
"print(f\"Embedder Tensor: {encoder_tensor.shape}\")\n",
"print(f\"Values:\\n{encoder_tensor}\")\n",
"\n",
"BATCH_SIZE, TOKENS, DIMENSIONS = encoder_tensor.shape\n",
"PAD_MASK = torch.tensor([PAD_MASK] * BATCH_LEN)\n",
"\n",
"encoder_out, _ = ENCODER((encoder_tensor, PAD_MASK))\n",
"tensor: torch.Tensor\n",
"tensor, _, _, _ = DECODER((decoder_tensor, encoder_out, encoder_out, None))\n",
"\n",
"print(f\"ENCODER Tensor: {tensor.shape}\")\n",
"print(f\"Values:\\n{tensor}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,131 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "c64b0e24",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[7706, 290, 756, 4270, 7357, 115, 351, 1507, 1213, 410, 3382, 317, 497, 4740, 2784, 7700], [7706, 290, 756, 4270, 7357, 115, 351, 1507, 1213, 410, 3382, 317, 497, 4740, 2784, 7700]]\n",
"2\n",
"Embedder Tensor: torch.Size([2, 16, 256])\n",
"Values:\n",
"tensor([[[-0.6981, 0.0804, -2.1672, ..., 0.3919, 0.3341, 1.0794],\n",
" [ 2.5818, -0.2308, 0.6001, ..., -0.0500, -0.0408, -0.9852],\n",
" [-0.6967, 0.8109, 1.3108, ..., 2.1693, 1.4143, -0.1236],\n",
" ...,\n",
" [ 2.1226, 2.5695, -1.6178, ..., -0.0652, -0.0802, 0.1103],\n",
" [ 0.8770, -2.4782, 0.8536, ..., 2.0471, -1.5702, 0.7387],\n",
" [-0.0495, -1.8601, 0.0405, ..., 2.3944, -0.4297, 1.1141]],\n",
"\n",
" [[-0.6981, 0.0804, -2.1672, ..., 0.3919, 0.3341, 1.0794],\n",
" [ 2.5818, -0.2308, 0.6001, ..., -0.0500, -0.0408, -0.9852],\n",
" [-0.6967, 0.8109, 1.3108, ..., 2.1693, 1.4143, -0.1236],\n",
" ...,\n",
" [ 2.1226, 2.5695, -1.6178, ..., -0.0652, -0.0802, 0.1103],\n",
" [ 0.8770, -2.4782, 0.8536, ..., 2.0471, -1.5702, 0.7387],\n",
" [-0.0495, -1.8601, 0.0405, ..., 2.3944, -0.4297, 1.1141]]],\n",
" grad_fn=<AddBackward0>)\n",
"ENCODER Tensor: torch.Size([2, 16, 256])\n",
"Values:\n",
"tensor([[[-1.6325, 0.4094, -2.1403, ..., 0.4654, 0.5993, 0.9683],\n",
" [ 1.8236, 0.4025, -0.6972, ..., 0.2430, 0.2536, -1.0889],\n",
" [-0.0587, 0.1618, -0.2335, ..., 1.7609, 1.2664, -0.4452],\n",
" ...,\n",
" [ 2.0337, 1.3184, -1.3165, ..., -0.3303, 0.6572, 0.0884],\n",
" [ 0.5752, -2.5594, -0.2393, ..., 1.3318, -1.4236, 0.4686],\n",
" [ 1.0075, -2.4273, -0.4593, ..., 1.6660, 0.0359, 0.2927]],\n",
"\n",
" [[-1.8300, -0.3079, -1.6585, ..., 0.4859, 0.5652, 0.8072],\n",
" [ 1.5461, -0.5666, -0.0330, ..., 0.5651, 0.2974, -1.0879],\n",
" [-0.9060, 0.2700, -0.4585, ..., 2.0363, 1.2657, -0.7060],\n",
" ...,\n",
" [ 1.6688, 1.7038, -1.9549, ..., -0.2052, 0.6270, 0.4598],\n",
" [ 0.0482, -2.3951, -0.4351, ..., 1.6230, -1.3662, -0.0390],\n",
" [ 0.8146, -2.6169, -0.6188, ..., 1.4525, 0.0507, 0.5177]]],\n",
" grad_fn=<NativeLayerNormBackward0>)\n"
]
}
],
"source": [
"import random\n",
"import torch\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"\n",
"TEXT = \"<ABS>The Dark Knight is a 2008 superhero film directed by Christopher Nolan,<SOTL>\"\n",
"\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(\n",
" VOCABULARY,\n",
" SPECIAL_VOC\n",
")\n",
"\n",
"TOKENIZATION = [TOKENANO.encode(TEXT), TOKENANO.encode(TEXT)]\n",
"print(TOKENIZATION)\n",
"\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_DIM = EMBEDDED_SIZE * 4\n",
"\n",
"EMBEDDER = Embedder.NanoSocratesEmbedder(TOKEN_SPACE_SIZE, EMBEDDED_SIZE)\n",
"tensor: torch.Tensor = EMBEDDER(TOKENIZATION)\n",
"ENCODER = torch.nn.Sequential(\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
")\n",
"print(len(TOKENIZATION))\n",
"print(f\"Embedder Tensor: {tensor.shape}\")\n",
"print(f\"Values:\\n{tensor}\")\n",
"\n",
"BATCH_SIZE, TOKENS, DIMENSIONS = tensor.shape\n",
"PAD_MASK = torch.tensor([[True] * TOKENS] * BATCH_SIZE, dtype=torch.bool)\n",
"tensor, _ = ENCODER((tensor, PAD_MASK))\n",
"print(f\"ENCODER Tensor: {tensor.shape}\")\n",
"print(f\"Values:\\n{tensor}\")\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,263 +0,0 @@
import random
import torch
from pathlib import Path
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
import Project_Model.Libs.TransformerUtils as TUtils
import Project_Model.Libs.TorchShims as torch_shims
import Project_Model.Libs.Batch as Batch
# set a default device
DEVICE = torch_shims.get_default_device()
torch.set_default_device(DEVICE)
# set a fixed seed
torch.manual_seed(0)
random.seed(0)
# Get paths
MODEL_DIR = "Assets/Model/curated"
# MODEL_DIR= "Assets/Dataset/Tmp"
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv")
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv")
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv")
# TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
MODEL_PATH = Path(f"{MODEL_DIR}/NanoSocrates.zip")
# BPE Init
SPECIAL_VOC = BPE.default_special_tokens()
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
# Constants
MASK_EXTRA_SPACE = 100
REAL_TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE
EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 4
SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 2
SOS_TOKEN = TOKENANO.encode("<SOS>")[0]
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
END_TOKEN = TOKENANO.encode("<EOS>")[0]
SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0]
REL_TOKEN = TOKENANO.encode("<PRED>")[0]
OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0]
MASK_TOKEN = TOKENANO.encode("<MASK>")[0]
CONTINUTE_TOKEN = TOKENANO.encode("<CONTINUERDF>")[0]
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens())))
ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])
FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS
# Spanned_Masker
MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS, average_span=4)
TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
VALIDATION_BATCHER = Batch.Batcher(
VALIDATION_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER
)
TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER, debug=True)
# Model
NANOSOCRATES_TRAIN = Transformer.TrainingModel(
TOKEN_SPACE_SIZE,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
NANOSOCRATES = Transformer.NanoSocratesCore(
TOKEN_SPACE_SIZE,
SENTENCE_LENGTH,
SOS_TOKEN,
PAD_TOKEN,
END_TOKEN,
CONTINUTE_TOKEN,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
if MODEL_PATH.is_file():
nanosocrates_dict = torch.load(MODEL_PATH, weights_only=True, map_location=DEVICE)
NANOSOCRATES_TRAIN.load_state_dict(nanosocrates_dict)
_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(
NANOSOCRATES, TOKEN_SPACE_SIZE, EMBEDDED_SIZE
)
NANOSOCRATES = TUtils.train2inference(
NANOSOCRATES_TRAIN,
NANOSOCRATES
)
NANOSOCRATES.eval()
ENCODER_ONLY.eval()
DECODER_ONLY.eval()
NANOSOCRATES_TRAIN.eval()
task_1_metrics = []
task_2_metrics = []
task_3_metrics = []
task_4_metrics = []
example_num = 0
with torch.no_grad():
for example in TEST_BATCHER.batch(1):
print(f"DOING Example: {example_num}")
src_x, tgt_y, pad_x, pad_y, tasktype = example
enc_x = torch.tensor(src_x)
ACTUAL_BATCH_SIZE, _ = enc_x.shape
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x[:, 1:] = tgt[:, :-1]
dec_x_pad = dec_x.eq(PAD_TOKEN)
out: torch.Tensor = NANOSOCRATES.inference((enc_x, enc_x_pad), tasktype)
tokens: list[int] = out.tolist()[0]
tokens.append(END_TOKEN)
tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, tokens))
out_string = TOKENANO.decode(tokens)
exp_tokens: list[int] = tgt_y[0]
exp_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, exp_tokens))
exp_string = TOKENANO.decode(exp_tokens)
enc_tokens: list[int] = src_x[0]
enc_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, enc_tokens))
enc_string = TOKENANO.decode(enc_tokens)
print(f"PROMPT:\n{enc_string}")
print(f"EXPECTED:\n{exp_string}")
print(f"ACTUAL:\n{out_string}")
if tasktype == Batch.TaskType.RDF2TXT:
example_num += 1
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
pred = TUtils.remove_padding(tokens, PAD_TOKEN, END_TOKEN)
ref_str = TOKENANO.decode(ref)
pred_str = TOKENANO.decode(pred)
bleu, rouge, meteor = TUtils.rdf2txt([ref_str], [pred_str])
task_1_metrics.append(
[
bleu["bleu"], rouge["rougeL"], meteor["meteor"] # type: ignore
]
)
if tasktype == Batch.TaskType.TEXT2RDF:
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
pred = TUtils.remove_padding(tokens[1:], PAD_TOKEN, END_TOKEN)
ref, pred = TUtils.balance_paddings(ref, pred, PAD_TOKEN)
precision, recall = TUtils.txt2rdf(ref, pred)
task_2_metrics.append(
[
precision["precision"], recall["recall"] # type: ignore
]
)
if tasktype == Batch.TaskType.MASKING:
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
pred = TUtils.remove_padding(tokens, PAD_TOKEN, END_TOKEN)
ref, pred = TUtils.balance_paddings(ref, pred, PAD_TOKEN)
accuracy = TUtils.accuracy(ref, pred)
task_3_metrics.append(
accuracy["accuracy"] # type: ignore
)
if tasktype == Batch.TaskType.COMPLETATION:
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
pred = TUtils.remove_padding(tokens, PAD_TOKEN, END_TOKEN)
ref, pred = TUtils.balance_paddings(ref, pred, PAD_TOKEN)
precision, recall = TUtils.txt2rdf(ref, pred)
task_4_metrics.append(
[
precision["precision"], recall["recall"] # type: ignore
]
)
bleus = [row[0] for row in task_1_metrics]
rouges = [row[1] for row in task_1_metrics]
meteors = [row[2] for row in task_1_metrics]
prec_1 = [row[0] for row in task_2_metrics]
rec_1 = [row[1] for row in task_2_metrics]
acc = task_3_metrics
prec_2 = [row[0] for row in task_4_metrics]
rec_2 = [row[1] for row in task_4_metrics]
BLEU = TUtils.average(bleus)
ROUGE = TUtils.average(rouges)
METEOR = TUtils.average(meteors)
PREC_1 = TUtils.average(prec_1)
REC_1 = TUtils.average(rec_1)
F1_1 = TUtils.f1(PREC_1, REC_1)
ACC = TUtils.average(acc)
PREC_2 = TUtils.average(prec_2)
REC_2 = TUtils.average(rec_2)
F1_2 = TUtils.f1(PREC_2, REC_2)
SEPARATOR = "**************************************************************************"
OUTPUT = "".join([
f"{SEPARATOR}\n",
"*\tRDF2TXT:\n",
f"*\t\tBLEU: {BLEU} - ROUGE: {ROUGE} - METEOR: {METEOR}\n"
f"{SEPARATOR}\n",
"*\tTXT2RDF:\n",
f"*\t\tPRECISION: {PREC_1} - RECALL: {REC_1} - F1: {F1_1}\n"
f"{SEPARATOR}\n",
"*\tRDF Completion 1:\n",
f"*\t\tACCURACY: {ACC}\n"
f"{SEPARATOR}\n",
"*\tRDF Completion 2:\n",
f"*\t\tPRECISION: {PREC_2} - RECALL: {REC_2} - F1: {F1_2}\n"
f"{SEPARATOR}\n",
""
])
print(OUTPUT)
print("\nDEBUG")
print(task_1_metrics)
print(task_2_metrics)
print(task_3_metrics)
print(task_4_metrics)

View File

@@ -1,157 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "f5762da9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([3, 17, 7714])\n",
"torch.Size([3, 17])\n",
"tensor([[2034, 6523, 5406, 3985, 5406, 6523, 2034, 2034, 5745, 643, 5406, 7405,\n",
" 6523, 6230, 6419, 5745, 657],\n",
" [2458, 830, 5745, 5745, 5406, 3741, 2034, 5745, 6302, 6419, 5406, 2411,\n",
" 719, 830, 5745, 3189, 2775],\n",
" [2034, 5745, 5327, 4696, 6523, 643, 6419, 1671, 6302, 4406, 5745, 643,\n",
" 643, 1901, 1914, 1914, 719]])\n"
]
}
],
"source": [
"import random\n",
"import torch\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"\n",
"# BPE Init\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"\n",
"# Constants\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_DIM = EMBEDDED_SIZE * 4\n",
"\n",
"\n",
"# Model Init\n",
"ENCODER_EMBEDDER = Embedder.NanoSocratesEmbedder(TOKEN_SPACE_SIZE, EMBEDDED_SIZE)\n",
"DECODER_EMBEDDER = Embedder.NanoSocratesEmbedder(TOKEN_SPACE_SIZE, EMBEDDED_SIZE)\n",
"\n",
"ENCODER = torch.nn.Sequential(\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
")\n",
"\n",
"DECODER = torch.nn.Sequential(\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Decoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
")\n",
"\n",
"DETOKENER = Transformer.DeToken(\n",
" EMBEDDED_SIZE,\n",
" TOKEN_SPACE_SIZE\n",
")\n",
"\n",
"\n",
"# Data\n",
"TEXT = (\n",
" \"<ABS>The Dark Knight is a 2008 superhero film directed by Christopher Nolan,<SOTL>\"\n",
")\n",
"OUT_TEXT = \"<START>\"\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"\n",
"ENCODER_INPUT = TOKENANO.encode(TEXT)\n",
"DECODER_INPUT = TOKENANO.encode(OUT_TEXT)\n",
"MAX_LEN = len(ENCODER_INPUT) + 1\n",
"\n",
"EN_IN, PAD_MASK = Transformer.normalize_sequence(ENCODER_INPUT, MAX_LEN, PAD_TOKEN, END_TOKEN)\n",
"DEC_IN, _ = Transformer.normalize_sequence(DECODER_INPUT, MAX_LEN, PAD_TOKEN, END_TOKEN)\n",
"\n",
"BATCH_LEN = 3\n",
"\n",
"INPUT_TOKENIZATION = [\n",
" EN_IN\n",
"] * BATCH_LEN\n",
"OUTPUT_TOKENIZATION = [\n",
" DEC_IN\n",
"] * BATCH_LEN\n",
"\n",
"encoder_tensor_input = ENCODER_EMBEDDER(INPUT_TOKENIZATION)\n",
"encoder_padding_mask = torch.tensor([PAD_MASK] * BATCH_LEN)\n",
"\n",
"encoder_output, _ = ENCODER((encoder_tensor_input, encoder_padding_mask))\n",
"\n",
"decoder_tensor_input = DECODER_EMBEDDER(OUTPUT_TOKENIZATION)\n",
"decoder_padding_mask = torch.tensor([[False] * MAX_LEN] * BATCH_LEN)\n",
"\n",
"decoder_output, _, _, _ = DECODER((decoder_tensor_input, encoder_output, encoder_output, None))\n",
"\n",
"logits: torch.Tensor = DETOKENER(decoder_output)\n",
"\n",
"print(logits.shape)\n",
"\n",
"# print(logits)\n",
"\n",
"most_probable_tokens = torch.argmax(logits, 2)\n",
"\n",
"print(most_probable_tokens.shape)\n",
"print(most_probable_tokens)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,472 +0,0 @@
import random
import sys
import torch
import pandas as pd
from pathlib import Path
import Project_Model.Libs.Embedder as Embedder
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
import Project_Model.Libs.TransformerUtils as TUtils
import Project_Model.Libs.TorchShims as torch_shims
import Project_Model.Libs.Batch as Batch
from Project_Model.Libs.Training.loss_saver import Log
# set a fixed seed
torch.manual_seed(0)
random.seed(0)
# set a default device
DEVICE = torch_shims.get_default_device()
torch.set_default_device(DEVICE)
# Get paths
CHECKPOINT_DIR = "Assets/Dataset/Tmp"
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
CHECKPOINT_PATH = Path(f"{CHECKPOINT_DIR}/NanoSocrates.zip")
NANO_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/nano_optim.zip")
ENC_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/enc_optim.zip")
DEC_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/dec_optim.zip")
LAST_EPOCH_PATH = Path(f"{CHECKPOINT_DIR}/last_epoch.txt")
# log saver:
loss_saver = Log(f"{CHECKPOINT_DIR}/log_loss.csv")
# BPE Init
SPECIAL_VOC = BPE.default_special_tokens()
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
# Constants
MASK_EXTRA_SPACE = 100
REAL_TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE
EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 4
SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 2
MAX_EPOCHS = int(300)
PRETRAIN_EPOCHS = int(20)
WARMUP_EPOCHS = int(30)
MINI_BATCH_SIZE = 20
VALIDATION_STEPS = 10
CHECKPOINT_STEPS = VALIDATION_STEPS
PATIENCE = 4
CURRENT_EPOCH = -1 if not LAST_EPOCH_PATH.is_file() else int(LAST_EPOCH_PATH.read_text())
VERBOSE = False
LEARNING_RATE = 0.05
LABEL_SMOOTHING = 0.01
SOS_TOKEN = TOKENANO.encode("<SOS>")[0]
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
END_TOKEN = TOKENANO.encode("<END>")[0]
SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0]
REL_TOKEN = TOKENANO.encode("<PRED>")[0]
OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0]
MASK_TOKEN = TOKENANO.encode("<MASK>")[0]
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens())))
ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])
FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS
# Spanned_Masker
MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS, average_span=4)
TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
VALIDATION_BATCHER = Batch.Batcher(
VALIDATION_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER
)
TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
# Model
NANOSOCRATES = Transformer.TrainingModel(
TOKEN_SPACE_SIZE,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
if CHECKPOINT_PATH.is_file():
nanosocrates_dict = torch.load(CHECKPOINT_PATH, weights_only=True)
NANOSOCRATES.load_state_dict(nanosocrates_dict)
_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(
NANOSOCRATES, TOKEN_SPACE_SIZE, EMBEDDED_SIZE
)
# Training constants
nano_cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN, label_smoothing=LABEL_SMOOTHING)
encoder_ce = torch.nn.CrossEntropyLoss( label_smoothing=LABEL_SMOOTHING)
decoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN, label_smoothing=LABEL_SMOOTHING)
nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters(), LEARNING_RATE)
encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters(), LEARNING_RATE)
decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters(), LEARNING_RATE)
if NANO_OPTIM_PATH.is_file():
optim_dict = torch.load(NANO_OPTIM_PATH)
nano_optim.load_state_dict(optim_dict)
if ENC_OPTIM_PATH.is_file():
optim_dict = torch.load(ENC_OPTIM_PATH)
encoder_only_optim.load_state_dict(optim_dict)
if DEC_OPTIM_PATH.is_file():
optim_dict = torch.load(DEC_OPTIM_PATH)
decoder_only_optim.load_state_dict(optim_dict)
nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH)
encoder_only_scheduler = Transformer.WarmupLR(
encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH
)
decoder_only_scheduler = Transformer.WarmupLR(
decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH
)
current_epoch = CURRENT_EPOCH + 2
patience = 0
average_loss_validation = {
"txt": float("inf"),
"encoder_only": float("inf"),
"decoder_only": float("inf"),
}
while current_epoch < MAX_EPOCHS:
NANOSOCRATES.train()
ENCODER_ONLY.train()
DECODER_ONLY.train()
text_batch_losses = []
encoder_batch_losses = []
decoder_batch_losses = []
batch_counter = 0
if VERBOSE:
print(f"EPOCH {current_epoch} STARTING")
for batch in TRAIN_BATCHER.batch(MINI_BATCH_SIZE):
batch_counter += 1
src_x, tgt_y, pad_x, pad_y, tasktype = batch
enc_x = torch.tensor(src_x)
ACTUAL_BATCH_SIZE, _ = enc_x.shape
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x[:, 1:] = tgt[:, :-1]
dec_x_pad = dec_x.eq(PAD_TOKEN)
if VERBOSE:
for s in TUtils.decode_batch(enc_x, TOKENANO, MASK_TOKEN):
print("Input")
print(s)
for s in TUtils.decode_batch(enc_x_pad, TOKENANO, MASK_TOKEN):
print("Encoder Padding mask")
print(s)
for s in TUtils.decode_batch(tgt, TOKENANO, MASK_TOKEN):
print("Desired Output")
print(s)
a_dx = dec_x[:,:]
a_dx[:, -1]= END_TOKEN
for s in TUtils.decode_batch(a_dx, TOKENANO, MASK_TOKEN):
print("Decoder Input")
print(s)
if VERBOSE:
print(f"\tBATCH {batch_counter} Starting")
# Task 1 and Task 2
if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:
if VERBOSE:
print(f"\tExecuting TASK 1 or 2 - BATCH {batch_counter}")
nano_optim.zero_grad()
pred_logits: torch.Tensor = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = nano_cross_entropy(pred_logits, tgt)
loss.backward()
nano_optim.step()
text_batch_losses.append(loss)
continue
# Pretrain first
if current_epoch < PRETRAIN_EPOCHS:
continue
# Task 3
if tasktype == Batch.TaskType.MASKING:
if VERBOSE:
print(f"\tExecuting TASK 3 - BATCH {batch_counter}")
encoder_only_optim.zero_grad()
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
# print(torch.max(tgt))
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
loss.backward()
encoder_only_optim.step()
exp_tokens: list[int] = tgt_y[0]
exp_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, exp_tokens))
exp_string = TOKENANO.decode(exp_tokens)
enc_tokens: list[int] = src_x[0]
enc_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, enc_tokens))
enc_string = TOKENANO.decode(enc_tokens)
print(f"PROMPT:\n{enc_string}")
print(f"EXPECTED:\n{exp_string}")
encoder_batch_losses.append(loss.item())
continue
# Task 4
if tasktype == Batch.TaskType.COMPLETATION:
if VERBOSE:
print(f"\tExecuting TASK 4 - BATCH {batch_counter}")
decoder_only_optim.zero_grad()
pred_logits = DECODER_ONLY((dec_x, enc_x_pad, dec_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = decoder_ce(pred_logits, tgt)
loss.backward()
decoder_only_optim.step()
decoder_batch_losses.append(
loss
)
continue
nano_scheduler.step()
encoder_only_scheduler.step()
decoder_only_scheduler.step()
current_epoch += 1
if current_epoch % VALIDATION_STEPS == 0:
NANOSOCRATES.eval()
ENCODER_ONLY.eval()
DECODER_ONLY.eval()
with torch.no_grad():
txt_avg_batch_losses = []
enc_avg_batch_losses = []
dec_avg_batch_losses = []
for batch in VALIDATION_BATCHER.batch(MINI_BATCH_SIZE):
src_x, tgt_y, pad_x, pad_y, tasktype = batch
enc_x = torch.tensor(src_x)
ACTUAL_BATCH_SIZE, _ = enc_x.shape
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x[:, 1:] = tgt[:, :-1]
dec_x_pad = dec_x.eq(PAD_TOKEN)
# Task 1 and Task 2
if (
tasktype == Batch.TaskType.RDF2TXT
or tasktype == Batch.TaskType.TEXT2RDF
):
pred_logits = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = nano_cross_entropy(
pred_logits, tgt
)
txt_avg_batch_losses.append(loss)
continue
# Pretrain first
if current_epoch <= PRETRAIN_EPOCHS:
continue
# Task 3
if tasktype == Batch.TaskType.MASKING:
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
enc_avg_batch_losses.append(loss.item())
continue
# Task 4
if tasktype == Batch.TaskType.COMPLETATION:
pred_logits = DECODER_ONLY((dec_x, enc_x_pad, dec_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = decoder_ce(pred_logits, tgt)
dec_avg_batch_losses.append(loss)
continue
txt_avg_loss = sum(txt_avg_batch_losses) / len(txt_avg_batch_losses)
enc_avg_loss = float("inf")
dec_avg_loss = float("inf")
if current_epoch > PRETRAIN_EPOCHS:
enc_avg_loss = sum(enc_avg_batch_losses) / len(enc_avg_batch_losses)
dec_avg_loss = sum(dec_avg_batch_losses) / len(dec_avg_batch_losses)
if current_epoch < PRETRAIN_EPOCHS:
if txt_avg_loss < average_loss_validation["txt"]:
average_loss_validation["txt"] = txt_avg_loss
else:
patience += 1
if VERBOSE:
print(f"losing a patience, current irritation: {patience}")
else:
counter = 0
if txt_avg_loss > average_loss_validation["txt"]:
if VERBOSE:
print("txt average is higher than lowest")
counter += 1
else:
average_loss_validation["txt"] = txt_avg_loss
if enc_avg_loss > average_loss_validation["encoder_only"]:
if VERBOSE:
print("masking average is higher than lowest")
counter += 1
else:
average_loss_validation["encoder_only"] = enc_avg_loss
if dec_avg_loss > average_loss_validation["decoder_only"]:
if VERBOSE:
print("decoding only average is higher than lowest")
counter += 1
else:
average_loss_validation["decoder_only"] = dec_avg_loss
if counter > 1:
patience += 1
if VERBOSE:
print(f"losing a patience, current irritation: {patience}")
if counter == 0:
patience = max(0, patience - 1)
if VERBOSE:
print(f"all good, gaining a patience, current irritation: {patience}")
txt_train_avg_loss = sum(text_batch_losses) / len(text_batch_losses)
enc_avg_train_loss = float("inf")
dec_avg_train_loss = float("inf")
if current_epoch > PRETRAIN_EPOCHS:
try:
enc_avg_train_loss = sum(encoder_batch_losses) / len(encoder_batch_losses)
dec_avg_train_loss = sum(decoder_batch_losses) / len(decoder_batch_losses)
except:
pass
# write on log
loss_saver.write([current_epoch, txt_train_avg_loss,enc_avg_train_loss,dec_avg_train_loss,txt_avg_loss,enc_avg_loss,dec_avg_loss])
SEPARATOR = "================================================================================================================"
DEBUG_TEXT = "".join(
[
f"{SEPARATOR}\n",
f"EPOCH {current_epoch}\n",
f"{SEPARATOR}\n",
f"Train Losses:\n",
f"\tAvg Losses:\n",
f"\t\tavg_txt: {txt_train_avg_loss} - avg_enc: {enc_avg_train_loss} - avg_dec: {dec_avg_train_loss}\n",
f"{SEPARATOR}\n",
f"Validation Losses:\n",
f"\ttxt_loss: {txt_avg_loss} - masking_loss: {enc_avg_loss} - prediction_loss: {dec_avg_loss}\n",
f"{SEPARATOR}\n",
]
)
print(DEBUG_TEXT)
# Warn about patience
if patience == PATIENCE:
print("Model is likely overfitting, so let's stop here")
# SAVE MODEL
if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:
print(f"Saving model at {CHECKPOINT_PATH.as_posix()}")
torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)
torch.save(nano_optim.state_dict(), NANO_OPTIM_PATH)
torch.save(encoder_only_optim.state_dict(), ENC_OPTIM_PATH)
torch.save(decoder_only_optim.state_dict(), DEC_OPTIM_PATH)
FILE = open(LAST_EPOCH_PATH, "w", encoding="utf-8")
FILE.write(f"{current_epoch}")
FILE.close()
if patience == PATIENCE:
exit(0)

View File

@@ -1,224 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "adbd9598",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Chris\\miniconda3\\envs\\deep_learning\\Lib\\site-packages\\torch\\utils\\_device.py:103: UserWarning: Aten Op fallback from XPU to CPU happends. This may have performance implications. If need debug the fallback ops please set environment variable `PYTORCH_DEBUG_XPU_FALLBACK=1` (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\build\\xpu\\ATen\\RegisterXPU_0.cpp:54528.)\n",
" return func(*args, **kwargs)\n"
]
},
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"import random\n",
"import torch\n",
"import pandas as pd\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"import Project_Model.Libs.TorchShims as torch_shims\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"DEVICE = torch_shims.get_default_device()\n",
"torch.set_default_device(DEVICE)\n",
"\n",
"# set a default device\n",
"\n",
"# BPE Init\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"\n",
"# Constants\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_MULTIPLIER = 4\n",
"ATTENTION_HEADS = 8\n",
"SENTENCE_LENGTH = 256\n",
"NUMBER_OF_BLOCKS = 4\n",
"MAX_EPOCHS = int(1e3)\n",
"\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"\n",
"\n",
"# Load CSV\n",
"TOY_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"\n",
"TOY_DATASET = pd.read_csv(TOY_DATASET_PATH)\n",
"\n",
"TOY_BATCH_INPUT_LIST: list[list[int]] = []\n",
"TOY_BATCH_PADDING_LIST: list[list[bool]] = []\n",
"TOY_BATCH_TARGET_LIST: list[list[int]] = []\n",
"TOY_BATCH_DECODER_DEFAULT: list[list[int]]= []\n",
"\n",
"\n",
"for index, row in TOY_DATASET.iterrows():\n",
"\n",
" RDFs: str = row[\"RDFs\"]\n",
" Abstract: str = row[\"Abstract\"]\n",
"\n",
" input_tokens = TOKENANO.encode(RDFs)\n",
" output_tokens = TOKENANO.encode(Abstract)[1:]\n",
" decoder_default_tokens = TOKENANO.encode(\"<SOS>\")\n",
"\n",
" input_tokens, padding = Transformer.normalize_sequence(\n",
" input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" output_tokens, _ = Transformer.normalize_sequence(\n",
" output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" decoder_default_tokens, _ = Transformer.normalize_sequence(\n",
" decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN, False\n",
" )\n",
"\n",
" TOY_BATCH_INPUT_LIST.append(input_tokens)\n",
" TOY_BATCH_PADDING_LIST.append(padding)\n",
" TOY_BATCH_TARGET_LIST.append(output_tokens)\n",
" TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)\n",
"\n",
" output_tokens = TOKENANO.encode(RDFs)\n",
" input_tokens = TOKENANO.encode(Abstract)[1:]\n",
" decoder_default_tokens = TOKENANO.encode(\"<SOS>\")\n",
"\n",
" input_tokens, padding = Transformer.normalize_sequence(\n",
" input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" output_tokens, _ = Transformer.normalize_sequence(\n",
" output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" decoder_default_tokens, _ = Transformer.normalize_sequence(\n",
" decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN, False\n",
" )\n",
"\n",
" TOY_BATCH_INPUT_LIST.append(input_tokens)\n",
" TOY_BATCH_PADDING_LIST.append(padding)\n",
" TOY_BATCH_TARGET_LIST.append(output_tokens)\n",
" TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)\n",
"\n",
"# Training loop\n",
"LOSS_HISTORY = []\n",
"NANOSOCRATES = Transformer.TrainingModel(\n",
" TOKEN_SPACE_SIZE,\n",
" EMBEDDED_SIZE,\n",
" FEED_FORWARD_MULTIPLIER,\n",
" ATTENTION_HEADS,\n",
" NUMBER_OF_BLOCKS\n",
")\n",
"cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)\n",
"optimizer = torch.optim.AdamW(NANOSOCRATES.parameters())\n",
"scheduler = Transformer.WarmupLR(optimizer, 4000, EMBEDDED_SIZE)\n",
"last_loss = 0\n",
"current_epoch = 0\n",
"\n",
"while current_epoch < MAX_EPOCHS:\n",
"\n",
" optimizer.zero_grad()\n",
"\n",
" encoder_list = torch.tensor(TOY_BATCH_INPUT_LIST[:])\n",
" decoder_list = torch.tensor(TOY_BATCH_DECODER_DEFAULT[:])\n",
" src_padding = torch.tensor(TOY_BATCH_PADDING_LIST[:], dtype=torch.bool)\n",
"\n",
" # Transform target into logits\n",
" target_logits = torch.tensor(TOY_BATCH_TARGET_LIST[:])\n",
"\n",
" last_loss = 0\n",
" last_prediction: torch.Tensor\n",
"\n",
" for i in range(0, SENTENCE_LENGTH):\n",
"\n",
" optimizer.zero_grad()\n",
" tgt_padding = decoder_list.eq(PAD_TOKEN)\n",
"\n",
" logits: torch.Tensor = NANOSOCRATES((encoder_list, src_padding, decoder_list, tgt_padding))\n",
" prob = torch.softmax(logits, 2)\n",
"\n",
" most_probable_tokens = torch.argmax(prob, 2)\n",
" last_prediction = most_probable_tokens\n",
"\n",
" logits = logits[:,:i,:]\n",
" logits = logits.permute(0, 2, 1)\n",
"\n",
" loss : torch.Tensor = cross_entropy(logits, target_logits[:, 0:i])\n",
" # loss : torch.Tensor = cross_entropy(logits, target_logits)\n",
"\n",
" last_loss = loss\n",
" loss.backward()\n",
" optimizer.step()\n",
" scheduler.step()\n",
"\n",
" if i < SENTENCE_LENGTH - 1:\n",
" decoder_list[:,i+1] = target_logits[:,i]\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" current_epoch += 1\n",
"\n",
" if current_epoch % 1 == 0:\n",
" print(f\"EPOCH {current_epoch}\\n\\tLoss: {last_loss}\")\n",
"\n",
" for encoded_sentence, expected_sentence in zip(\n",
" Transformer.tensor2token(last_prediction[:,:], END_TOKEN), # type: ignore\n",
" Transformer.tensor2token(target_logits[:,:], END_TOKEN)\n",
" ):\n",
" decoded_sentence = TOKENANO.decode(encoded_sentence)\n",
" decoded_target = TOKENANO.decode(expected_sentence)\n",
" print(f\"\\tACTUAL:\\n\\t\\t{decoded_sentence}\\n\\tEXPECTED:\\n\\t\\t{decoded_target}\\n\")\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,509 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "adbef43f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Chris\\miniconda3\\envs\\deep_learning\\Lib\\site-packages\\torch\\utils\\_device.py:103: UserWarning: Aten Op fallback from XPU to CPU happends. This may have performance implications. If need debug the fallback ops please set environment variable `PYTORCH_DEBUG_XPU_FALLBACK=1` (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\build\\xpu\\ATen\\RegisterXPU_0.cpp:54528.)\n",
" return func(*args, **kwargs)\n",
"c:\\Users\\Chris\\miniconda3\\envs\\deep_learning\\Lib\\site-packages\\torch\\optim\\lr_scheduler.py:192: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate\n",
" warnings.warn(\n"
]
},
{
"ename": "IndexError",
"evalue": "list index out of range",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mIndexError\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 383\u001b[39m\n\u001b[32m 381\u001b[39m txt_min_train_losses = text_batch_losses[:][\u001b[32m0\u001b[39m]\n\u001b[32m 382\u001b[39m txt_avg_train_losses = text_batch_losses[:][\u001b[32m1\u001b[39m]\n\u001b[32m--> \u001b[39m\u001b[32m383\u001b[39m txt_max_train_losses = \u001b[43mtext_batch_losses\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m[\u001b[49m\u001b[32;43m2\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[32m 385\u001b[39m txt_min_loss = \u001b[38;5;28mmin\u001b[39m(txt_min_train_losses)\n\u001b[32m 386\u001b[39m txt_avg_min_loss = \u001b[38;5;28msum\u001b[39m(txt_min_train_losses) / \u001b[38;5;28mlen\u001b[39m(txt_min_train_losses)\n",
"\u001b[31mIndexError\u001b[39m: list index out of range"
]
}
],
"source": [
"import random\n",
"import sys\n",
"import torch\n",
"import pandas as pd\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"import Project_Model.Libs.TransformerUtils as TUtils\n",
"import Project_Model.Libs.TorchShims as torch_shims\n",
"import Project_Model.Libs.Batch as Batch\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"\n",
"\n",
"# set a default device\n",
"DEVICE = torch_shims.get_default_device()\n",
"torch.set_default_device(DEVICE)\n",
"\n",
"\n",
"# Get paths\n",
"VOCABULARY_PATH = Path(\"Assets/Model/small/bpe-small-16.json\")\n",
"TRAIN_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"VALIDATION_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"TEST_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"CHECKPOINT_PATH = Path(\"Assets/Dataset/Tmp/NanoSocrates.zip\")\n",
"\n",
"\n",
"# BPE Init\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"\n",
"# Constants\n",
"MASK_EXTRA_SPACE = 25\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_MULTIPLIER = 4\n",
"ATTENTION_HEADS = 8\n",
"SENTENCE_LENGTH = 256\n",
"NUMBER_OF_BLOCKS = 4\n",
"MAX_EPOCHS = int(1e3)\n",
"PRETRAIN_EPOCHS = int(2)\n",
"WARMUP_EPOCHS = int(4e3)\n",
"MINI_BATCH_SIZE = 10\n",
"VALIDATION_STEPS = 1\n",
"CHECKPOINT_STEPS = VALIDATION_STEPS * 4\n",
"PATIENCE = 4\n",
"CURRENT_EPOCH = 0\n",
"\n",
"SOS_TOKEN = TOKENANO.encode(\"<SOS>\")[0]\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"SUBJ_TOKEN = TOKENANO.encode(\"<SUBJ>\")[0]\n",
"REL_TOKEN = TOKENANO.encode(\"<PRED>\")[0]\n",
"OBJ_TOKEN = TOKENANO.encode(\"<OBJ>\")[0]\n",
"\n",
"SPECIAL_TOKENS: set[int] = set(TOKENANO.encode(\"\".join(BPE.default_special_tokens())))\n",
"ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])\n",
"FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS\n",
"\n",
"\n",
"# Spanned_Masker\n",
"MASKER = Transformer.SpannedMasker(\n",
" TOKEN_SPACE_SIZE,\n",
" FORBIDDEN_TOKENS\n",
")\n",
"\n",
"TRAIN_BATCHER = Batch.Batcher(\n",
" TRAIN_DATASET_PATH,\n",
" SENTENCE_LENGTH,\n",
" TOKENANO,\n",
" MASKER\n",
")\n",
"VALIDATION_BATCHER = Batch.Batcher(\n",
" VALIDATION_DATASET_PATH,\n",
" SENTENCE_LENGTH,\n",
" TOKENANO,\n",
" MASKER\n",
")\n",
"TEST_BATCHER = Batch.Batcher(\n",
" TEST_DATASET_PATH,\n",
" SENTENCE_LENGTH,\n",
" TOKENANO,\n",
" MASKER\n",
")\n",
"\n",
"\n",
"# Model\n",
"NANOSOCRATES = Transformer.TrainingModel(\n",
" TOKEN_SPACE_SIZE,\n",
" EMBEDDED_SIZE,\n",
" FEED_FORWARD_MULTIPLIER,\n",
" ATTENTION_HEADS,\n",
" NUMBER_OF_BLOCKS\n",
")\n",
"_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(\n",
" NANOSOCRATES,\n",
" TOKEN_SPACE_SIZE,\n",
" EMBEDDED_SIZE\n",
")\n",
"\n",
"\n",
"# Training constants\n",
"cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)\n",
"nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters())\n",
"encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters())\n",
"decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters())\n",
"\n",
"nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)\n",
"encoder_only_scheduler = Transformer.WarmupLR(encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)\n",
"decoder_only_scheduler = Transformer.WarmupLR(decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)\n",
"\n",
"current_epoch = CURRENT_EPOCH\n",
"patience = 0\n",
"\n",
"\n",
"average_loss_validation = {\n",
" \"txt\": float(\"inf\"),\n",
" \"encoder_only\": float(\"inf\"),\n",
" \"decoder_only\": float(\"inf\")\n",
"}\n",
"\n",
"while current_epoch < MAX_EPOCHS:\n",
"\n",
" text_batch_losses = []\n",
" encoder_batch_losses = []\n",
" decoder_batch_losses = []\n",
"\n",
" for batch in TRAIN_BATCHER.batch(MINI_BATCH_SIZE):\n",
"\n",
" src_x, tgt_y, pad_x, pad_y, tasktype = batch\n",
"\n",
" enc_x = torch.tensor(src_x)\n",
" enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)\n",
" dec_x = Transformer.get_decoder_input(MINI_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH)\n",
" dec_x_pad = dec_x.eq(PAD_TOKEN)\n",
" tgt = torch.tensor(tgt_y)\n",
" tgt_pad = torch.tensor(pad_y, dtype=torch.bool)\n",
"\n",
" # Task 1 and Task 2\n",
" if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:\n",
"\n",
" BATCH_LOSS = []\n",
"\n",
" for token_idx in range(0, SENTENCE_LENGTH):\n",
"\n",
" nano_optim.zero_grad()\n",
"\n",
"\n",
"\n",
" pred_logits = NANOSOCRATES((\n",
" enc_x, enc_x_pad, dec_x, dec_x_pad\n",
" ))\n",
"\n",
" pred_logits = pred_logits[:, token_idx, :]\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
"\n",
" loss.backward()\n",
" nano_optim.step()\n",
"\n",
"\n",
" BATCH_LOSS.append(\n",
" loss.item()\n",
" )\n",
"\n",
" if token_idx < SENTENCE_LENGTH - 1:\n",
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
"\n",
" MIN_BATCH_LOSS = min(BATCH_LOSS)\n",
" MAX_BATCH_LOSS = max(BATCH_LOSS)\n",
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
"\n",
" text_batch_losses.append([MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS])\n",
" continue\n",
"\n",
"\n",
" # Pretrain first\n",
" if current_epoch < PRETRAIN_EPOCHS:\n",
" continue\n",
"\n",
"\n",
" # Task 3\n",
" if tasktype == Batch.TaskType.MASKING:\n",
"\n",
" encoder_only_optim.zero_grad()\n",
"\n",
" pred_logits = ENCODER_ONLY((\n",
" enc_x, enc_x_pad\n",
" ))\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt)\n",
"\n",
" loss.backward()\n",
" encoder_only_optim.step()\n",
"\n",
" encoder_batch_losses.append(\n",
" loss.item()\n",
" )\n",
"\n",
" continue\n",
"\n",
"\n",
" # Task 4\n",
" if tasktype == Batch.TaskType.COMPLETATION:\n",
"\n",
" BATCH_LOSS = []\n",
"\n",
" for token_idx in range(0, SENTENCE_LENGTH):\n",
"\n",
" decoder_only_optim.zero_grad()\n",
"\n",
" pred_logits = DECODER_ONLY((\n",
" enc_x, enc_x_pad\n",
" ))\n",
"\n",
" pred_logits = pred_logits[:, token_idx, :]\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
"\n",
" loss.backward()\n",
" decoder_only_optim.step()\n",
"\n",
" BATCH_LOSS.append(\n",
" loss.item()\n",
" )\n",
"\n",
" if token_idx < SENTENCE_LENGTH - 1:\n",
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
"\n",
"\n",
" MIN_BATCH_LOSS = min(BATCH_LOSS)\n",
" MAX_BATCH_LOSS = max(BATCH_LOSS)\n",
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
"\n",
" decoder_batch_losses.append([MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS])\n",
"\n",
" continue\n",
"\n",
"\n",
" nano_scheduler.step()\n",
" encoder_only_scheduler.step()\n",
" decoder_only_scheduler.step()\n",
"\n",
" current_epoch += 1\n",
"\n",
" if current_epoch % VALIDATION_STEPS == 0:\n",
"\n",
" txt_avg_batch_losses = []\n",
" enc_avg_batch_losses = []\n",
" dec_avg_batch_losses = []\n",
"\n",
" for batch in VALIDATION_BATCHER.batch(MINI_BATCH_SIZE):\n",
"\n",
" src_x, tgt_y, pad_x, pad_y, tasktype = batch\n",
"\n",
" enc_x = torch.tensor(src_x)\n",
" enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)\n",
" dec_x = Transformer.get_decoder_input(MINI_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH)\n",
" dec_x_pad = dec_x.eq(PAD_TOKEN)\n",
" tgt = torch.tensor(tgt_y)\n",
" tgt_pad = torch.tensor(pad_y, dtype=torch.bool)\n",
"\n",
" # Task 1 and Task 2\n",
" if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:\n",
"\n",
" BATCH_LOSS = []\n",
"\n",
" for token_idx in range(0, SENTENCE_LENGTH):\n",
"\n",
"\n",
"\n",
" pred_logits = NANOSOCRATES((\n",
" enc_x, enc_x_pad, dec_x, dec_x_pad\n",
" ))\n",
"\n",
" pred_logits = pred_logits[:, token_idx, :]\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
"\n",
"\n",
" BATCH_LOSS.append(\n",
" loss.item()\n",
" )\n",
"\n",
" if token_idx < SENTENCE_LENGTH - 1:\n",
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
"\n",
"\n",
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
" txt_avg_batch_losses.append(AVG_BATCH_LOSS)\n",
"\n",
" continue\n",
"\n",
"\n",
" # Pretrain first\n",
" if current_epoch < PRETRAIN_EPOCHS:\n",
" continue\n",
"\n",
"\n",
" # Task 3\n",
" if tasktype == Batch.TaskType.MASKING:\n",
"\n",
" pred_logits = ENCODER_ONLY((\n",
" enc_x, enc_x_pad\n",
" ))\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt)\n",
"\n",
" enc_avg_batch_losses.append(\n",
" loss.item()\n",
" )\n",
"\n",
" continue\n",
"\n",
"\n",
" # Task 4\n",
" if tasktype == Batch.TaskType.COMPLETATION:\n",
"\n",
" BATCH_LOSS = []\n",
"\n",
" for token_idx in range(0, SENTENCE_LENGTH):\n",
"\n",
" pred_logits = DECODER_ONLY((\n",
" enc_x, enc_x_pad\n",
" ))\n",
"\n",
" pred_logits = pred_logits[:, token_idx, :]\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
"\n",
" BATCH_LOSS.append(\n",
" loss.item()\n",
" )\n",
"\n",
" if token_idx < SENTENCE_LENGTH - 1:\n",
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
"\n",
"\n",
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
"\n",
" dec_avg_batch_losses.append(AVG_BATCH_LOSS)\n",
"\n",
" continue\n",
"\n",
" txt_avg_loss = sum(txt_avg_batch_losses) / len(txt_avg_batch_losses)\n",
" enc_avg_loss = float(\"inf\")\n",
" dec_avg_loss = float(\"inf\")\n",
"\n",
" if current_epoch >= PRETRAIN_EPOCHS:\n",
" enc_avg_loss = sum(enc_avg_batch_losses) / len(enc_avg_batch_losses)\n",
" dec_avg_loss = sum(dec_avg_batch_losses) / len(dec_avg_batch_losses)\n",
"\n",
" if current_epoch < PRETRAIN_EPOCHS:\n",
"\n",
" if txt_avg_loss < average_loss_validation[\"txt\"]:\n",
" average_loss_validation[\"txt\"] = txt_avg_loss\n",
" else:\n",
" patience += 1\n",
" else:\n",
"\n",
" counter = 0\n",
"\n",
" if txt_avg_loss > average_loss_validation[\"txt\"]:\n",
" counter += 1\n",
"\n",
" if txt_avg_loss > average_loss_validation[\"encoder_only\"]:\n",
" counter += 1\n",
"\n",
" if txt_avg_loss > average_loss_validation[\"decoder_only\"]:\n",
" counter += 1\n",
"\n",
" if counter > 1:\n",
" patience += 1\n",
"\n",
" txt_min_train_losses = text_batch_losses[:][0]\n",
" txt_avg_train_losses = text_batch_losses[:][1]\n",
" txt_max_train_losses = text_batch_losses[:][2]\n",
"\n",
" txt_min_loss = min(txt_min_train_losses)\n",
" txt_avg_min_loss = sum(txt_min_train_losses) / len(txt_min_train_losses)\n",
" txt_max_loss = max(txt_max_train_losses)\n",
" txt_avg_max_loss = sum(txt_max_train_losses) / len(txt_max_train_losses)\n",
" txt_avg_loss = sum(txt_avg_train_losses) / len(txt_avg_train_losses)\n",
"\n",
" enc_avg_train_loss = float(\"inf\")\n",
"\n",
" dec_min_loss = float(\"inf\")\n",
" dec_avg_min_loss = float(\"inf\")\n",
" dec_max_loss = float(\"inf\")\n",
" dec_avg_max_loss = float(\"inf\")\n",
" dec_avg_loss = float(\"inf\")\n",
"\n",
" if current_epoch >= PRETRAIN_EPOCHS:\n",
" enc_avg_train_loss = sum(encoder_batch_losses) / len(encoder_batch_losses)\n",
"\n",
" dec_min_train_losses = decoder_batch_losses[:][0]\n",
" dec_avg_train_losses = decoder_batch_losses[:][1]\n",
" dec_max_train_losses = decoder_batch_losses[:][2]\n",
"\n",
" dec_min_loss = min(dec_min_train_losses)\n",
" dec_avg_min_loss = sum(dec_min_train_losses) / len(dec_min_train_losses)\n",
" dec_max_loss = max(dec_max_train_losses)\n",
" dec_avg_max_loss = sum(dec_max_train_losses) / len(dec_max_train_losses)\n",
" dec_avg_loss = sum(dec_avg_train_losses) / len(dec_avg_train_losses)\n",
"\n",
"\n",
" SEPARATOR = \"===========================================================================================\"\n",
" DEBUG_TEXT = \"\".join([\n",
" f\"{SEPARATOR}\\n\",\n",
" f\"EPOCH {current_epoch}\"\n",
" f\"{SEPARATOR}\\n\",\n",
" f\"Train Losses:\\n\"\n",
" f\"\\tMin Losses:\\n\"\n",
" f\"\\t\\tmin_txt: {txt_min_loss} - avg_txt: {txt_avg_min_loss}\\n\"\n",
" f\"\\t\\tmin_dec: {dec_min_loss} - avg_dec: {dec_avg_min_loss}\\n\"\n",
" f\"\\tMax Losses:\\n\"\n",
" f\"\\t\\tmax_txt: {txt_max_loss} - avg_txt: {txt_avg_max_loss}\\n\"\n",
" f\"\\t\\tmax_dec: {dec_min_loss} - avg_dec: {dec_avg_max_loss}\\n\"\n",
" f\"\\tAvg Losses:\\n\"\n",
" f\"\\t\\tavg_txt: {txt_avg_loss} - avg_enc: {enc_avg_loss} - avg_dec: {dec_avg_loss}\\n\"\n",
" f\"{SEPARATOR}\\n\",\n",
" f\"Validation Losses:\\n\"\n",
" f\"\\ttxt_loss: {txt_avg_loss} - masking_loss: {enc_avg_loss} - prediction: {dec_avg_loss}\"\n",
" f\"{SEPARATOR}\\n\",\n",
" ])\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" # Warn about patience\n",
" if patience == PATIENCE:\n",
" print(\n",
" \"Model is likely overfitting, so let's stop here\"\n",
" )\n",
"\n",
" # SAVE MODEL\n",
" if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:\n",
" print(f\"Saving model at {CHECKPOINT_PATH.as_posix()}\")\n",
" torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,433 +0,0 @@
import random
import sys
import torch
import pandas as pd
from pathlib import Path
import Project_Model.Libs.Embedder as Embedder
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
import Project_Model.Libs.TransformerUtils as TUtils
import Project_Model.Libs.TorchShims as torch_shims
import Project_Model.Libs.Batch as Batch
# set a fixed seed
torch.manual_seed(0)
random.seed(0)
# set a default device
DEVICE = torch_shims.get_default_device()
torch.set_default_device(DEVICE)
# Get paths
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv")
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv")
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv")
CHECKPOINT_PATH = Path("Assets/Dataset/Tmp/NanoSocrates.zip")
# BPE Init
SPECIAL_VOC = BPE.default_special_tokens()
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
# Constants
MASK_EXTRA_SPACE = 100
REAL_TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE
EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 8
SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 4
MAX_EPOCHS = int(1e3)
PRETRAIN_EPOCHS = int(10)
WARMUP_EPOCHS = int(4e3)
MINI_BATCH_SIZE = 100
VALIDATION_STEPS = 5
CHECKPOINT_STEPS = VALIDATION_STEPS * 4
PATIENCE = 4
CURRENT_EPOCH = 0
SOS_TOKEN = TOKENANO.encode("<SOS>")[0]
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
END_TOKEN = TOKENANO.encode("<END>")[0]
SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0]
REL_TOKEN = TOKENANO.encode("<PRED>")[0]
OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0]
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens())))
ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])
FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS
# Spanned_Masker
MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS)
TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
VALIDATION_BATCHER = Batch.Batcher(
VALIDATION_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER
)
TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
# Model
NANOSOCRATES = Transformer.TrainingModel(
TOKEN_SPACE_SIZE,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(
NANOSOCRATES, TOKEN_SPACE_SIZE, EMBEDDED_SIZE
)
# Training constants
nano_cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
encoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
decoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters())
encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters())
decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters())
nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)
encoder_only_scheduler = Transformer.WarmupLR(
encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE
)
decoder_only_scheduler = Transformer.WarmupLR(
decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE
)
current_epoch = CURRENT_EPOCH
patience = 0
average_loss_validation = {
"txt": float("inf"),
"encoder_only": float("inf"),
"decoder_only": float("inf"),
}
while current_epoch < MAX_EPOCHS:
NANOSOCRATES.train()
ENCODER_ONLY.train()
DECODER_ONLY.train()
text_batch_losses = []
encoder_batch_losses = []
decoder_batch_losses = []
batch_counter = 0
print(f"EPOCH {current_epoch} STARTING")
for batch in TRAIN_BATCHER.batch(MINI_BATCH_SIZE):
batch_counter += 1
src_x, tgt_y, pad_x, pad_y, tasktype = batch
enc_x = torch.tensor(src_x)
ACTUAL_BATCH_SIZE, _ = enc_x.shape
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x_pad = dec_x.eq(PAD_TOKEN)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
print(f"\tBATCH {batch_counter} Starting")
# Task 1 and Task 2
if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:
print(f"\tExecuting TASK 1 or 2 - BATCH {batch_counter}")
BATCH_LOSS = []
for token_idx in range(0, SENTENCE_LENGTH):
nano_optim.zero_grad()
pred_logits = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
pred_logits = pred_logits[:, token_idx, :]
loss: torch.Tensor = nano_cross_entropy(pred_logits, tgt[:, token_idx])
loss.backward()
nano_optim.step()
BATCH_LOSS.append(loss.item())
if token_idx < SENTENCE_LENGTH - 1:
dec_x[:, token_idx + 1] = tgt[:, token_idx]
MIN_BATCH_LOSS = min(BATCH_LOSS)
MAX_BATCH_LOSS = max(BATCH_LOSS)
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
text_batch_losses.append([MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS])
continue
# Pretrain first
if current_epoch < PRETRAIN_EPOCHS:
continue
# Task 3
if tasktype == Batch.TaskType.MASKING:
print(f"\tExecuting TASK 3 - BATCH {batch_counter}")
encoder_only_optim.zero_grad()
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
print(torch.max(tgt))
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
loss.backward()
encoder_only_optim.step()
encoder_batch_losses.append(loss.item())
continue
# Task 4
if tasktype == Batch.TaskType.COMPLETATION:
print(f"\tExecuting TASK 4 - BATCH {batch_counter}")
BATCH_LOSS = []
for token_idx in range(0, SENTENCE_LENGTH):
decoder_only_optim.zero_grad()
pred_logits = DECODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits[:, token_idx, :]
loss: torch.Tensor = decoder_ce(pred_logits, tgt[:, token_idx])
loss.backward()
decoder_only_optim.step()
BATCH_LOSS.append(loss.item())
if token_idx < SENTENCE_LENGTH - 1:
dec_x[:, token_idx + 1] = tgt[:, token_idx]
MIN_BATCH_LOSS = min(BATCH_LOSS)
MAX_BATCH_LOSS = max(BATCH_LOSS)
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
decoder_batch_losses.append(
[MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS]
)
continue
nano_scheduler.step()
encoder_only_scheduler.step()
decoder_only_scheduler.step()
current_epoch += 1
if current_epoch % VALIDATION_STEPS == 0:
NANOSOCRATES.eval()
ENCODER_ONLY.eval()
DECODER_ONLY.eval()
txt_avg_batch_losses = []
enc_avg_batch_losses = []
dec_avg_batch_losses = []
for batch in VALIDATION_BATCHER.batch(MINI_BATCH_SIZE):
src_x, tgt_y, pad_x, pad_y, tasktype = batch
enc_x = torch.tensor(src_x)
ACTUAL_BATCH_SIZE, _, _ = enc_x.shape
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x_pad = dec_x.eq(PAD_TOKEN)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
# Task 1 and Task 2
if (
tasktype == Batch.TaskType.RDF2TXT
or tasktype == Batch.TaskType.TEXT2RDF
):
BATCH_LOSS = []
for token_idx in range(0, SENTENCE_LENGTH):
pred_logits = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
pred_logits = pred_logits[:, token_idx, :]
loss: torch.Tensor = nano_cross_entropy(pred_logits, tgt[:, token_idx])
BATCH_LOSS.append(loss.item())
if token_idx < SENTENCE_LENGTH - 1:
dec_x[:, token_idx + 1] = tgt[:, token_idx]
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
txt_avg_batch_losses.append(AVG_BATCH_LOSS)
continue
# Pretrain first
if current_epoch < PRETRAIN_EPOCHS:
continue
# Task 3
if tasktype == Batch.TaskType.MASKING:
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
enc_avg_batch_losses.append(loss.item())
continue
# Task 4
if tasktype == Batch.TaskType.COMPLETATION:
BATCH_LOSS = []
for token_idx in range(0, SENTENCE_LENGTH):
pred_logits = DECODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits[:, token_idx, :]
loss: torch.Tensor = decoder_ce(pred_logits, tgt[:, token_idx])
BATCH_LOSS.append(loss.item())
if token_idx < SENTENCE_LENGTH - 1:
dec_x[:, token_idx + 1] = tgt[:, token_idx]
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
dec_avg_batch_losses.append(AVG_BATCH_LOSS)
continue
txt_avg_loss = sum(txt_avg_batch_losses) / len(txt_avg_batch_losses)
enc_avg_loss = float("inf")
dec_avg_loss = float("inf")
if current_epoch >= PRETRAIN_EPOCHS:
enc_avg_loss = sum(enc_avg_batch_losses) / len(enc_avg_batch_losses)
dec_avg_loss = sum(dec_avg_batch_losses) / len(dec_avg_batch_losses)
if current_epoch < PRETRAIN_EPOCHS:
if txt_avg_loss < average_loss_validation["txt"]:
average_loss_validation["txt"] = txt_avg_loss
else:
patience += 1
else:
counter = 0
if txt_avg_loss > average_loss_validation["txt"]:
counter += 1
if txt_avg_loss > average_loss_validation["encoder_only"]:
counter += 1
if txt_avg_loss > average_loss_validation["decoder_only"]:
counter += 1
if counter > 1:
patience += 1
txt_min_train_losses = [row[0] for row in text_batch_losses]
txt_avg_train_losses = [row[1] for row in text_batch_losses]
txt_max_train_losses = [row[2] for row in text_batch_losses]
txt_min_loss = min(txt_min_train_losses)
txt_avg_min_loss = sum(txt_min_train_losses) / len(txt_min_train_losses)
txt_max_loss = max(txt_max_train_losses)
txt_avg_max_loss = sum(txt_max_train_losses) / len(txt_max_train_losses)
txt_avg_loss = sum(txt_avg_train_losses) / len(txt_avg_train_losses)
enc_avg_train_loss = float("inf")
dec_min_loss = float("inf")
dec_avg_min_loss = float("inf")
dec_max_loss = float("inf")
dec_avg_max_loss = float("inf")
dec_avg_loss = float("inf")
if current_epoch >= PRETRAIN_EPOCHS:
enc_avg_train_loss = sum(encoder_batch_losses) / len(encoder_batch_losses)
dec_min_train_losses = [row[0] for row in decoder_batch_losses]
dec_avg_train_losses = [row[1] for row in decoder_batch_losses]
dec_max_train_losses = [row[2] for row in decoder_batch_losses]
dec_min_loss = min(dec_min_train_losses)
dec_avg_min_loss = sum(dec_min_train_losses) / len(dec_min_train_losses)
dec_max_loss = max(dec_max_train_losses)
dec_avg_max_loss = sum(dec_max_train_losses) / len(dec_max_train_losses)
dec_avg_loss = sum(dec_avg_train_losses) / len(dec_avg_train_losses)
SEPARATOR = "================================================================================================================"
DEBUG_TEXT = "".join(
[
f"{SEPARATOR}\n",
f"EPOCH {current_epoch}\n",
f"{SEPARATOR}\n",
f"Train Losses:\n",
f"\tMin Losses:\n",
f"\t\tmin_txt: {txt_min_loss} - avg_txt: {txt_avg_min_loss}\n",
f"\t\tmin_dec: {dec_min_loss} - avg_dec: {dec_avg_min_loss}\n",
f"\tMax Losses:\n",
f"\t\tmax_txt: {txt_max_loss} - avg_txt: {txt_avg_max_loss}\n",
f"\t\tmax_dec: {dec_min_loss} - avg_dec: {dec_avg_max_loss}\n",
f"\tAvg Losses:\n",
f"\t\tavg_txt: {txt_avg_loss} - avg_enc: {enc_avg_loss} - avg_dec: {dec_avg_loss}\n",
f"{SEPARATOR}\n",
f"Validation Losses:\n",
f"\ttxt_loss: {txt_avg_loss} - masking_loss: {enc_avg_loss} - prediction: {dec_avg_loss}\n",
f"{SEPARATOR}\n",
]
)
print(DEBUG_TEXT)
# Warn about patience
if patience == PATIENCE:
print("Model is likely overfitting, so let's stop here")
# SAVE MODEL
if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:
print(f"Saving model at {CHECKPOINT_PATH.as_posix()}")
torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)

View File

@@ -1,112 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "4ae47336",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"B, T, D = 4, 7, 32\n",
"x = torch.randn(B, T, D)\n",
"attn_mask = torch.triu(torch.ones(T, T, dtype=torch.bool), diagonal=1) # [T,T]\n",
"pad_mask = torch.zeros(B, T, dtype=torch.bool) # no pads\n",
"mha = torch.nn.MultiheadAttention(D, num_heads=4, batch_first=True)\n",
"y, _ = mha(x, x, x, attn_mask=attn_mask, key_padding_mask=pad_mask) # should work\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e38e3fb5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],\n",
" [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]],\n",
"\n",
" [[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],\n",
" [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],\n",
" [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]]])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"torch.nn.functional.one_hot(torch.tensor([\n",
" [4, 1, 9],\n",
" [2,4,5]\n",
"]))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7119ad53",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"device(type='cpu')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"torch.get_default_device()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8c95691a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"xpu\n"
]
}
],
"source": [
"from Project_Model.Libs.TorchShims import get_default_device\n",
"\n",
"print(get_default_device())"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,177 +0,0 @@
import random
import time
import torch
import pandas as pd
from pathlib import Path
import Project_Model.Libs.Embedder as Embedder
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
import Project_Model.Libs.TorchShims as torch_shims
# set a fixed seed
torch.manual_seed(0)
random.seed(0)
DEVICE = torch_shims.get_default_device()
torch.set_default_device(DEVICE)
# set a default device
# BPE Init
VOCABULARY_PATH = Path("Assets/Model/toy_10/toy_dictionary.json")
SPECIAL_VOC = BPE.default_special_tokens()
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
# Constants
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1
EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 8
SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 4
MAX_EPOCHS = int(1e3)
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
END_TOKEN = TOKENANO.encode("<END>")[0]
# Load CSV
TOY_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
TOY_DATASET = pd.read_csv(TOY_DATASET_PATH)
TOY_BATCH_INPUT_LIST: list[list[int]] = []
TOY_BATCH_PADDING_LIST: list[list[bool]] = []
TOY_BATCH_TARGET_LIST: list[list[int]] = []
TOY_BATCH_DECODER_DEFAULT: list[list[int]] = []
for index, row in TOY_DATASET.iterrows():
RDFs: str = row["RDFs"]
Abstract: str = row["Abstract"]
input_tokens = TOKENANO.encode(RDFs)
output_tokens = TOKENANO.encode(Abstract)[1:]
decoder_default_tokens = TOKENANO.encode("<SOS>")
input_tokens, padding = Transformer.normalize_sequence(
input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
)
output_tokens, _ = Transformer.normalize_sequence(
output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
)
decoder_default_tokens, _ = Transformer.normalize_sequence(
decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN, False
)
TOY_BATCH_INPUT_LIST.append(input_tokens)
TOY_BATCH_PADDING_LIST.append(padding)
TOY_BATCH_TARGET_LIST.append(output_tokens)
TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)
output_tokens = TOKENANO.encode(RDFs)
input_tokens = TOKENANO.encode(Abstract)[1:]
decoder_default_tokens = TOKENANO.encode("<SOS>")
input_tokens, padding = Transformer.normalize_sequence(
input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
)
output_tokens, _ = Transformer.normalize_sequence(
output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
)
decoder_default_tokens, _ = Transformer.normalize_sequence(
decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN, False
)
TOY_BATCH_INPUT_LIST.append(input_tokens)
TOY_BATCH_PADDING_LIST.append(padding)
TOY_BATCH_TARGET_LIST.append(output_tokens)
TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)
# Training loop
LOSS_HISTORY = []
NANOSOCRATES = Transformer.TrainingModel(
TOKEN_SPACE_SIZE,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
optimizer = torch.optim.AdamW(NANOSOCRATES.parameters())
scheduler = Transformer.WarmupLR(optimizer, 4000, EMBEDDED_SIZE)
last_loss = 0
current_epoch = 0
while current_epoch < MAX_EPOCHS:
optimizer.zero_grad()
encoder_list = torch.tensor(TOY_BATCH_INPUT_LIST[:])
decoder_list = torch.tensor(TOY_BATCH_DECODER_DEFAULT[:])
src_padding = torch.tensor(TOY_BATCH_PADDING_LIST[:], dtype=torch.bool)
# Transform target into logits
target_logits = torch.tensor(TOY_BATCH_TARGET_LIST[:])
last_loss = 0
last_prediction: torch.Tensor
LOSS_HISTORY = []
start = time.time_ns()
for i in range(0, SENTENCE_LENGTH):
optimizer.zero_grad()
tgt_padding = decoder_list.eq(PAD_TOKEN)
logits: torch.Tensor = NANOSOCRATES(
(encoder_list, src_padding, decoder_list, tgt_padding)
)
prob = torch.softmax(logits, 2)
most_probable_tokens = torch.argmax(prob, 2)
last_prediction = most_probable_tokens
logits = logits[:, i, :]
# logits = logits.permute(0, 2, 1)
loss: torch.Tensor = cross_entropy(logits, target_logits[:, i])
LOSS_HISTORY.append(loss.item())
# loss : torch.Tensor = cross_entropy(logits, target_logits[:, 0:i])
# loss : torch.Tensor = cross_entropy(logits, target_logits)
last_loss = loss
loss.backward()
optimizer.step()
scheduler.step()
if i < SENTENCE_LENGTH - 1:
decoder_list[:, i + 1] = target_logits[:, i]
current_epoch += 1
end = time.time_ns()
if current_epoch % 1 == 0:
MIN_LOSS = min(LOSS_HISTORY)
MAX_LOSS = max(LOSS_HISTORY)
AVERAGE_LOSS = sum(LOSS_HISTORY)/len(LOSS_HISTORY)
print(f"EPOCH {current_epoch}\n\tTime: {(end-start)/1E9}s\n\tLoss: {last_loss}")
print(f"\tMin Loss: {MIN_LOSS}\tAvg Loss: {AVERAGE_LOSS}\tMax Loss: {MAX_LOSS}\n")
# for encoded_sentence, expected_sentence in zip(
# Transformer.tensor2token(last_prediction[:, :], END_TOKEN), # type: ignore
# Transformer.tensor2token(target_logits[:, :], END_TOKEN),
# ):
# decoded_sentence = TOKENANO.decode(encoded_sentence)
# decoded_target = TOKENANO.decode(expected_sentence)
# print(
# f"\tACTUAL:\n\t\t{decoded_sentence}\n\tEXPECTED:\n\t\t{decoded_target}\n"
# )

View File

@@ -1,60 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "dd23cc94",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Current detected architecture is: xpu\n"
]
}
],
"source": [
"import torch\n",
"from Project_Model.Libs.TorchShims import get_default_device\n",
"\n",
"DEVICE = get_default_device()\n",
"\n",
"print(f\"Current detected architecture is: {DEVICE.type}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6584882e",
"metadata": {},
"outputs": [],
"source": [
"import Project_Model.Libs.Transformer as Transformer\n",
"DECODER = Transformer.Decoder(256, 1024, 4)\n",
"print()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -107,7 +107,7 @@ class NanoSocraTrainerPool:
bpe = NanoSocratesBPE()
BPE = bpe
if BPE.vocabulary_size >= self.__max_vocabulary:
if BPE.vocabulary_size > self.__max_vocabulary:
return BPE
exit = False

View File

@@ -189,7 +189,7 @@ class NanoSocratesBPE(Encoder):
token_stack.appendleft(right_token)
token_stack.appendleft(left_token)
return UTF_8_STRING_ARR.decode("utf-8", errors="ignore")
return UTF_8_STRING_ARR.decode("utf-8")
def __token_decode(self, token_id: int) -> tuple[int, int]:

View File

@@ -29,10 +29,6 @@ class NanoSocratesSpecial(Encoder):
VOC_LENGTH = len(self.__vocabulary)
return BPE_OFFSET + VOC_LENGTH + 1
@property
def vocabulary_size(self) -> int:
return len(self.vocabulary)
@property
def vocabulary(self) -> dict[str, int]:
return self.__vocabulary

View File

@@ -6,7 +6,6 @@ from ..Classes import NanoSocratesSpecial
from ..Utils import special_regex_maker
from ..Enums import TokenType
from ..Enums import SpecialToken
class TokeNanoCore:
@@ -27,46 +26,23 @@ class TokeNanoCore:
BPE_VOCABULARY_SIZE, special_token_list
)
@property
def vocabulary_size(self):
BPE_VOC_SIZE = self.__bpe_encoder.vocabulary_size
SPECIAL_VOC_SIZE = self.__special_encoder.vocabulary_size
return BPE_VOC_SIZE + SPECIAL_VOC_SIZE + 1
def encode(self, corpus: str) -> list[int]:
output: list[int] = []
for piece, token_type in self.__splitter.split_text(corpus):
if token_type == TokenType.SPECIAL:
output.extend(self.__special_encoder.encode(piece))
ENCODED_PIECE = self.__special_encoder.encode(piece)
output.extend(ENCODED_PIECE)
continue
# slow but clear
if token_type == TokenType.BPE:
output.extend(self.__bpe_encoder.encode(piece))
ENCODED_PIECE = self.__bpe_encoder.encode(piece)
output.extend(ENCODED_PIECE)
continue
return output
def encode_incomplete_string(self, corpus: str) -> list[int]:
"""
Encode string which don't end with a special token
"""
corpus = corpus + SpecialToken.CORPUS_END.value
output: list[int] = []
for piece, token_type in self.__splitter.split_text(corpus):
if token_type == TokenType.SPECIAL:
output.extend(self.__special_encoder.encode(piece))
# slow but clear
if token_type == TokenType.BPE:
output.extend(self.__bpe_encoder.encode(piece))
return output[:-1]
def decode(self, corpus: list[int]) -> str:
output_str = ""
for token, token_type in self.__splitter.split_tokens(corpus):
@@ -74,11 +50,13 @@ class TokeNanoCore:
if token_type == TokenType.SPECIAL:
output_str += self.__special_encoder.decode(
token
) # it accept an integer
)
continue
# slow but clear
if token_type == TokenType.BPE:
output_str += self.__bpe_encoder.decode(
token
) # it accept a list of integer
)
continue
return output_str

View File

@@ -6,7 +6,6 @@ from .NanoSocraTraineRam import NanoSocraTraineRam
from .NanoSocraTrainerPool import NanoSocraTrainerPool
from .NanoSocratesSpecial import NanoSocratesSpecial
from .TokeNanoCore import TokeNanoCore
from .TokeNano import TokeNano
__all__ = [
"NanoSocratesChunker",
@@ -15,6 +14,5 @@ __all__ = [
"NanoSocraTrainer",
"NanoSocraTraineRam",
"NanoSocraTrainerPool",
"TokeNanoCore",
"TokeNano"
"TokeNanoCore"
]

View File

@@ -10,6 +10,7 @@ class SpecialToken(Enum):
RELATIONSHIP = "<PRED>"
OBJECT = "<OBJ>"
ABSTRACT = "<ABS>"
CORPUS_END = "<END>"
## Tasks' Token
RDF_TO_TEXT = "<RDF2TXT>"
@@ -18,10 +19,3 @@ class SpecialToken(Enum):
MASK = "<MASK>"
# BPE Training:
# NanoSocrates
START = "<START>"
CORPUS_END = "<END>"
START_OF_SEQUENCE = "<SOS>"
END_OF_SEQUENCE = "<EOS>"
PAD = "<PAD>"

View File

@@ -1,6 +1 @@
from .TokenType import TokenType
from .SpecialToken import SpecialToken
__all__ = [
"SpecialToken"
]

View File

@@ -3,13 +3,11 @@ from .lag_checker_iterator import iterator_with_checks
from .vocabulary import save_nanos_vocabulary, load_nanos_vocabulary
from .json_utils import save_json, load_json
from .special_regex_maker import special_regex_maker
from .default_special_tokens import default_special_tokens
__all__ = [
"special_regex_maker",
"iterator_with_checks",
"save_nanos_vocabulary",
"load_nanos_vocabulary",
"save_json", "load_json",
"default_special_tokens"
"save_json", "load_json"
]

View File

@@ -1,4 +0,0 @@
from ..Enums import SpecialToken
def default_special_tokens() -> list[str]:
return [token.value for token in SpecialToken]

View File

@@ -1,243 +0,0 @@
import random
import sys
from typing import Any, Generator
import pandas as pd
from pathlib import Path
from ..Enums import TaskType
import Project_Model.Libs.BPE as BPE
# from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Project_Model.Libs.Transformer import (
SpannedMasker,
truncate_rdf_list,
normalize_sequence,
)
from Project_Model.Libs.BPE import SpecialToken
class Batcher:
def __init__(
self,
dataset_path: Path,
max_length: int,
tokenizer: BPE.TokeNanoCore,
masker: SpannedMasker,
seed: int = 0,
debug = False
) -> None:
# ABSTRACT, TRIPLE
# tasks:
# rdf2text: X: TRIPLE, Y: ABSTRACT
# text2rdf: X: ABSTRACT, X:TRIPLE
# masking ( call masker): X: incomplete_triple Y: complete_triple (as exam)
# completation: X: TRIPLE SUBSET, Y: related TRIPLE SUBSET
# it will truncate
# it will instantiate spanmaskter and truncator
self._dataset_path = dataset_path
self._tokenizer = tokenizer
self._masker = masker
self.__max_length = max_length
self._seed = seed
# self._token_completation = TokenCompletationTransformer(sotl,eos)
self._completation_task_token_truncator = truncate_rdf_list
self.__debug = debug
def batch(self, batch_size) -> Generator[
tuple[
list[list[int]],
list[list[int]],
list[list[int]],
list[list[int]],
TaskType
],
Any,
Any,
]:
"""
Yields: X,Y,padding_X
"""
RNG = random.Random(self._seed)
self._masker.reseed(self._seed)
for batch in pd.read_csv(self._dataset_path, chunksize=batch_size):
tokenized_batch = pd.DataFrame()
# encode
tokenized_batch[["Abstract", "RDFs"]] = batch[["Abstract", "RDFs"]].map(
lambda t: self._tokenizer.encode(t)
)
X, Y, padding_X, padding_Y = self.__rdf2txt_transformation(tokenized_batch)
yield X, Y, padding_X, padding_Y, TaskType.RDF2TXT
(
X,
Y,
padding_X,
padding_Y,
) = self.__txt2rdf_transformation(tokenized_batch)
yield X, Y, padding_X, padding_Y, TaskType.TEXT2RDF
(
X,
Y,
padding_X,
padding_Y,
) = self.__masking_trasformation(tokenized_batch)
yield X, Y, padding_X, padding_Y, TaskType.MASKING
(
X,
Y,
padding_X,
padding_Y,
) = self.__token_completation_task(
tokenized_batch, RNG.randint(0, sys.maxsize)
)
yield X, Y, padding_X, padding_Y, TaskType.COMPLETATION
# output = pd.concat([rdf2txt_batch,txt2rdf_batch,completation_batch],ignore_index=True)
# output = output.sample(frac=1).reset_index(drop=True)
# self.decode_debug(output)
# yield output
def __random_subset_rdfs(self, batch: pd.DataFrame, seed=0):
# WIP
rng = random.Random(seed)
def to_list(x):
return x.split(SpecialToken.START_TRIPLE.value)[1:]
batch["RDFs"] = batch["RDFs"].map(to_list)
def decode_debug(self, batch: pd.DataFrame):
decoded = pd.DataFrame()
decoded[["X", "Y"]] = batch[["X", "Y"]].map(lambda t: self._tokenizer.decode(t))
print(decoded)
def __normalization(
self, X: list[list[int]], Y: list[list[int]]
) -> tuple[list[list[int]], list[list[int]], list[list[int]], list[list[int]]]:
pad_token = self._tokenizer.encode(SpecialToken.PAD.value)[0]
end_token = self._tokenizer.encode(SpecialToken.END_OF_SEQUENCE.value)[0]
out_X = []
padding_X = []
out_Y = []
padding_Y = []
for x in X:
out_x, padding_x = normalize_sequence(
x, self.__max_length, pad_token, end_token, True
)
out_X.append(out_x)
padding_X.append(padding_x)
for y in Y:
out_y, padding_y = normalize_sequence(
y, self.__max_length, pad_token, end_token, True
)
out_Y.append(out_y)
padding_Y.append(padding_y)
return out_X, out_Y, padding_X, padding_Y
def __rdf2txt_transformation(self, batch: pd.DataFrame):
X: list[list[int]]
task_token = self._tokenizer.encode(SpecialToken.RDF_TO_TEXT.value)
out = batch.rename(columns={"RDFs": "X", "Abstract": "Y"})[["X", "Y"]]
out["X"] = [task_token + x for x in out["X"]]
return self.__normalization(out["X"].to_list(), out["Y"].to_list())
def __txt2rdf_transformation(self, batch: pd.DataFrame):
task_token = self._tokenizer.encode(SpecialToken.TEXT_TO_RDF.value)
out = batch.rename(columns={"Abstract": "X", "RDFs": "Y"})[["X", "Y"]]
out["X"] = [task_token + x for x in out["X"]]
return self.__normalization(out["X"].to_list(), out["Y"].to_list())
def __masking_trasformation(self, batch: pd.DataFrame):
X = []
Y = []
for rdf in batch["RDFs"]:
x, y = self._masker.mask_sequence(rdf[:self.__max_length])
X.append(x)
Y.append(y)
return self.__normalization(X, Y)
def __token_completation_task(self, batch: pd.DataFrame, minibatch_seed: int):
continue_triple_token = self._tokenizer.encode(SpecialToken.CONTINUE_RDF.value)[
0
]
eot = self._tokenizer.encode(SpecialToken.END_TRIPLE.value)[0]
X = []
Y = []
for rdf in batch["RDFs"]:
# here first truncate to max_lenght
rdf = rdf[: self.__max_length] # truncator that uses "eot" so no problem
x, y = self._completation_task_token_truncator(
rdf, 0.5, continue_triple_token, eot, minibatch_seed
)
X.append(x)
Y.append(y)
return self.__token_cmpletation_task_special_normalization(X, Y)
def __token_cmpletation_task_special_normalization(self, X: list[list[int]], Y: list[list[int]]
) -> tuple[list[list[int]], list[list[int]], list[list[int]], list[list[int]]]:
def continue_rdf_padding(sequence: list[int], pad_token: int):
for i, x in enumerate(sequence):
if x == pad_token:
i = i+1 # continueRDF will be excluded by the mask
# fill the tail with True and stop
return [False] * i + [True] * (len(sequence) - i)
return [False] * len(sequence) # no pad token found
pad_token = self._tokenizer.encode(SpecialToken.PAD.value)[0]
end_token = self._tokenizer.encode(SpecialToken.END_OF_SEQUENCE.value)[0]
continue_rdf = self._tokenizer.encode(SpecialToken.CONTINUE_RDF.value)[0]
out_X = []
padding_X = []
out_Y = []
padding_Y = []
for x in X:
out_x, _ = normalize_sequence(
x, self.__max_length, pad_token, end_token, True
)
out_X.append(out_x)
# padding_X.append(padding_x)
special_padding = continue_rdf_padding(out_x,continue_rdf)
padding_X.append(special_padding)
for y in Y:
out_y, padding_y = normalize_sequence(
y, self.__max_length, pad_token, end_token, True
)
out_Y.append(out_y)
# special padding
# special_padding = continue_rdf_padding(out_y,continue_rdf)
# padding_Y.append(special_padding)
padding_Y.append(padding_y)
return out_X, out_Y, padding_X, padding_Y
if __name__ == "__main__":
DATASET_PATH = Path("Assets/Dataset/Tmp/rdf_text.csv")
VOCABULARY_path = "Assets/Dataset/Tmp/trimmed.json"
from pathlib import Path
VOCABULARY = BPE.load_nanos_vocabulary(Path(VOCABULARY_path))
SPECIAL_LIST = BPE.default_special_tokens()
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_LIST)
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(SPECIAL_LIST)))
MASKER = SpannedMasker(TOKENANO.vocabulary_size, SPECIAL_TOKENS)
prova = "<ABS>Cactus Flower is a 1969 American screwball comedy film directed by Gene Saks, and starring Walter Matthau, Ingrid Bergman and Goldie Hawn, who won an Academy Award for her performance.The screenplay was adapted by I. A. L. Diamond from the 1965 Broadway play of the same title written by Abe Burrows, which, in turn, is based on the French play Fleur de cactus by Pierre Barillet and Jean-Pierre Gredy. Cactus Flower was the ninth highest-grossing film of 1969."
print(TOKENANO.encode(prova))
batcher = Batcher(DATASET_PATH,256, TOKENANO, MASKER)
for batch in batcher.batch(8):
print(batch)

View File

@@ -1,33 +0,0 @@
class TokenCompletationTransformer:
def __init__(self,SOTL_token,EOS_token, input_percent:float = 0.5) -> None:
self.__SOTL_token = SOTL_token
self.__EOS_token = EOS_token
self.__input_percent = input_percent
pass
def get_completation_tuple(
self,
token_sequence: list[int],
)-> tuple[list[int], list[int]]:
# split the sequence by encoded(<SOTL>), dont take the first, firts pertenge in as X the other as Y
sotl_count =int( token_sequence.count(self.__SOTL_token) * self.__input_percent)
sotl_index = 0
percent_index = 0
while sotl_index < sotl_count:
token = token_sequence[percent_index]
if token == self.__SOTL_token:
sotl_index += 1
percent_index+=1
percent_index = percent_index -1
x_list = token_sequence[:percent_index]
x_list.append(self.__EOS_token)
y_list = token_sequence[percent_index:]
return (x_list,y_list)

View File

@@ -1,2 +0,0 @@
from .Batcher import Batcher
from .TokenCompletation import TokenCompletationTransformer

View File

@@ -1,8 +0,0 @@
from enum import Enum, auto
class TaskType(Enum):
RDF2TXT = auto()
TEXT2RDF = auto()
MASKING = auto()
COMPLETATION = auto()

View File

@@ -1,5 +0,0 @@
from .TaskType import TaskType
__all__ = [
"TaskType"
]

View File

@@ -1,5 +0,0 @@
from .Classes import *
from .Enums import *
from . import Classes
from . import Enums

View File

@@ -1,23 +0,0 @@
import torch
from ..Utils import fixed_positional_encoding
# WIP FOR BATCHING
class NanoSocratesEmbedder(torch.nn.Module):
def __init__(self, vocabulary_size: int, embedding_size: int) -> None:
super().__init__()
self.__embedder = torch.nn.Embedding(vocabulary_size, embedding_size)
def forward(self, tokenized_sentence: torch.Tensor) -> torch.Tensor:
computed_embeddings: torch.Tensor = self.__embedder(tokenized_sentence)
_, SENTENCE_LENGHT, EMBEDDING_SIZE = computed_embeddings.shape # for batching
POSITIONAL_ENCODINGS = fixed_positional_encoding(
SENTENCE_LENGHT, EMBEDDING_SIZE
)
computed_embeddings = computed_embeddings + POSITIONAL_ENCODINGS # for batching
return computed_embeddings

View File

@@ -1,5 +0,0 @@
from .NanoSocratesEmbedder import NanoSocratesEmbedder
__all__ = [
"NanoSocratesEmbedder"
]

View File

@@ -1,5 +0,0 @@
from .fixed_positional_encoding import fixed_positional_encoding
__all__ = [
"fixed_positional_encoding"
]

View File

@@ -1,28 +0,0 @@
import torch
def fixed_positional_encoding(
sentence_dimension: int,
embedding_dimension: int,
) -> torch.Tensor:
BIG_CONST = int(1e4)
INITIAL_ENCODING = torch.tensor([i for i in range(0, sentence_dimension)])
ENCODINGS: list[torch.Tensor] = []
for i in range(0, embedding_dimension):
EMBEDDING_POSITION = i
# Note: The original paper did not specify
# to compute: pos mod 2!!
DIVISOR = BIG_CONST ** ((2 * (EMBEDDING_POSITION // 2)) / embedding_dimension)
INTERMEDIATE_ENCODING = INITIAL_ENCODING / DIVISOR
if EMBEDDING_POSITION % 2 == 0:
ENCODINGS.append(torch.sin(INTERMEDIATE_ENCODING))
continue
ENCODINGS.append(torch.cos(INTERMEDIATE_ENCODING))
return torch.stack(ENCODINGS).transpose(0, 1)

View File

@@ -1,7 +0,0 @@
from .Utils import *
from .Classes import *
from . import Utils
from . import Classes

View File

@@ -1,70 +0,0 @@
import evaluate
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
class Evaluator():
def __init__(self) -> None:
# txt based evaluator
self.__rouge = evaluate.load("rouge")
self.__rouge_types = ["rougeLsum", "rouge1", "rouge2"] #rougeLsum will work bad because it expect that each sentence are divided with /n
self._bleu = evaluate.load("bleu")
self._meteor = evaluate.load("meteor")
# token based evaluator
self.__acc_m = evaluate.load("accuracy")
self.__prec_m = evaluate.load("precision")
self.__rec_m = evaluate.load("recall")
self.__f1_m = evaluate.load("f1")
def rdf2txt_rouge_evaluation(self, preds: list[str], refs: list[str]):
results = self.__rouge.compute(
predictions=preds, references=refs,
rouge_types=self.__rouge_types,
use_stemmer=True,
use_aggregator=True #F1
)
return {k: float(results[k]) for k in self.__rouge_types}
def rdf2txt_bleu_evaluation(self, preds: list[str], refs: list[str]) -> float:
# sacreBLEU via evaluate; expects references as list-of-lists
# each prediction can be evaluated against a list of references, hence [[ref]]
results = self._bleu.compute(predictions=preds, references=[[r] for r in refs])
return float(results["bleu"]) # (native sacreBLEU scale)
def rdf2txt_meteor_evaluation(self, preds: list[str], refs: list[str]) -> float:
# as bleu
res = self._meteor.compute(predictions=preds, references=[[r] for r in refs])
return float(res["meteor"])
def __my_accuracy(self,preds: list[list[int]], refs: list[list[int]]):
# it is done on token sequence not single token
total = len(preds)
correct = 0
for p, r in zip(preds, refs):
correct += int(p == r)
return correct / total
def __accuracy(self, preds, refs):
return accuracy_score(preds,refs)
def __clean_batch_by_pad(self, preds: list[list[int]], refs: list[list[int]]):
output_preds = []
output_refs = []
#TODO
pad_token: int = 7000 # percolate
for pred, ref in zip(preds,refs):
try:
i = ref.index(pad_token) # first time pad token appears
except ValueError:
i = len(ref)
output_preds.append(pred[:i])
output_refs.append(ref[:i])
return output_preds,output_refs
def __precision_recall(self, preds: list[list[int]], refs: list[list[int]]):
#TODO
p, r, f1, _ = precision_recall_fscore_support(
preds, refs, average="binary", zero_division=0
) #### watch later
return {"precision": float(p), "recall": float(r), "f1": float(f1)}

View File

@@ -1,5 +0,0 @@
from .get_default_device import get_default_device
__all__ = [
"get_default_device"
]

View File

@@ -1,17 +0,0 @@
import torch
def get_default_device() -> torch.device:
# Cuda or ROCm
if torch.cuda.is_available():
return torch.device("cuda")
# Intel GPUs
if torch.xpu.is_available():
return torch.device("xpu")
# Apple GPUs
if torch.backends.mps.is_available():
return torch.device("mps")
return torch.device("cpu")

View File

@@ -1,7 +0,0 @@
from .Utils import *
from .Utils import get_default_device
__all__ = [
"get_default_device"
]

View File

@@ -1,43 +0,0 @@
import torch
class LogitsCollector:
def __init__(self, pad_token: int, end_token: int, tokenizer) -> None:
self.__pad_token = pad_token # used to skip PAD
self.__end_token = end_token # used to stop at END
self.__tokenizer = tokenizer # exposes .decode(list[int]) -> str
self.__steps: list[torch.Tensor] = [] # list of per-step logits [B,V]
def reset(self) -> None:
self.__steps.clear() # clear history
def add(self, logits_step: torch.Tensor) -> None:
if logits_step.dim() == 3: # handle [B,1,V]
logits_step = logits_step[:, -1, :] # -> [B,V]
self.__steps.append(logits_step.detach()) # store raw logits (detached)
def tokens(self) -> list[list[int]]:
if not self.__steps:
return []
stack = torch.stack(self.__steps, dim=0) # [T,B,V]
probs = torch.softmax(stack, dim=-1) # softmax over vocab -> [T,B,V]
ids = probs.argmax(dim=-1).transpose(0, 1) # greedy ids -> [B,T]
out: list[list[int]] = []
for row in ids.tolist():
seq: list[int] = []
for tok in row:
# if tok == self.__end_token: # stop on END
# break
if tok == self.__pad_token: # skip PAD
continue
seq.append(tok)
out.append(seq)
return out
def print_decoded(self) -> None:
for i, seq in enumerate(self.tokens()):
try:
# text = text + self.__end_token
text = self.__tokenizer.decode(seq) # decode tokens to string
except Exception:
text = str(seq) # fallback to ids
print(f"[{i}] {text}") # simple print

View File

@@ -1,20 +0,0 @@
import os
from pathlib import Path
class Log:
def __init__(self, path):
self.path = path
header = ["epoch","avg_txt","avg_enc","avg_dec","txt_loss","masking_loss","prediction_loss"]
if Path(path).is_file():
return
with open(self.path, "w", encoding="utf-8", newline="") as f:
f.write(",".join(header) + "\n")
def write(self, loss: list[float]):
line = ",".join(str(float(x)) for x in loss) + "\n"
with open(self.path, "a", encoding="utf-8", newline="") as f:
f.write(line)
f.flush()
os.fsync(f.fileno()) # extra durability per write # suggested against sudden crashes since it will be done

View File

@@ -1,19 +0,0 @@
import torch
class DeToken(torch.nn.Module):
def __init__(self, embedding_size: int, vocabulary_size: int) -> None:
super().__init__()
self.__linear = torch.nn.Linear(embedding_size, vocabulary_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# 1) Go from latent space to vocabularu space
x = self.__linear(x)
# 2) Go to logits
# x = torch.softmax(x, 2)
return x

View File

@@ -1,115 +0,0 @@
from typing import Optional
import torch
import torch.nn as nn
from .FeedForwardNetwork import FeedForwardNetwork
from .TorchMultiHeadAttention import TorchMultiHeadAttention as MultiHeadAttention
from ..Utils.attention_mask import get_causal_attention_mask, get_prefix_causal_mask_from_padding_mask
# B, L(T), E_D
class Decoder(nn.Module):
def __init__(
self,
embedding_dimension: int,
feed_forward_hidden_layer_dimension: int,
number_of_attention_heads: int,
) -> None:
self.__attention_heads = number_of_attention_heads
super().__init__()
self.__masked_attention = MultiHeadAttention(
embedding_dimension, number_of_attention_heads, dropout=0.1
)
self.__layer_norm_1 = nn.LayerNorm(embedding_dimension)
self.__cross_attention = MultiHeadAttention(
embedding_dimension, number_of_attention_heads, dropout=0.1
)
self.__layer_norm_2 = nn.LayerNorm(embedding_dimension)
self.__dropout = nn.Dropout(0.1)
self.__feed_forward_network = FeedForwardNetwork(
embedding_dimension, feed_forward_hidden_layer_dimension
)
self.__layer_norm_3 = nn.LayerNorm(embedding_dimension)
def forward(
self,
args: tuple[
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
Optional[bool]
]
): # -> list[torch.Tensor]: # k_x = v_x . While x_q = x
# WARNING: args is needed to have sequential
if len(args) < 6:
args = args + (False)
x, k_x, v_x, src_padding_mask, tgt_padding_mask, decoder_only = args
# build of attention mask
# TODO: create a prefix causal mask if needed
if decoder_only:
attention_mask = get_prefix_causal_mask_from_padding_mask(x.size(1),src_padding_mask,self.__attention_heads) # the correct is tgt however ...
else:
attention_mask = get_causal_attention_mask(x.size(1))
# 1) Masked Attention
MASKED_ATTENTION = self.__masked_attention(
x, x, x, key_padding_mask=tgt_padding_mask, attention_mask=attention_mask
)
# 2) Dropout
DROPPED_MASKED_ATTENTION = self.__dropout(MASKED_ATTENTION)
del MASKED_ATTENTION
# 3) Residual Connection
x = x + DROPPED_MASKED_ATTENTION
del DROPPED_MASKED_ATTENTION
# 4) Layer Normalization
x = self.__layer_norm_1(x)
if not decoder_only:
# 5) Encoderdecoder (cross) attention
CROSS_ATTENTION = self.__cross_attention(
x, k_x, v_x, key_padding_mask=src_padding_mask
)
# 6) Dropout
DROPPED_CROSS_ATTENTION = self.__dropout(CROSS_ATTENTION)
del CROSS_ATTENTION
# 7) Residual Connection
x = x + DROPPED_CROSS_ATTENTION
del DROPPED_CROSS_ATTENTION
# 8) Layer Normalization
x = self.__layer_norm_2(x)
# 9) Position-wise feed-forward
FEED_FORWARD = self.__feed_forward_network(x)
# 10) Dropout
DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
del FEED_FORWARD
# 11) Residual Connection
x = x + DROPPED_FEED_FORWARD
del DROPPED_FEED_FORWARD
# 12) Layer Normalization
x = self.__layer_norm_3(x)
return (x, k_x, v_x, src_padding_mask, tgt_padding_mask, decoder_only)
# use eval to disable dropout ecc

View File

@@ -1,73 +0,0 @@
import torch
import torch.nn as nn
from Project_Model.Libs.Transformer.Classes.FeedForwardNetwork import FeedForwardNetwork
from Project_Model.Libs.Transformer.Classes.TorchMultiHeadAttention import (
TorchMultiHeadAttention as MultiHeadAttention,
)
class Encoder(
nn.Module
): # in this way we expose the primitive of nn.Module for training purpose
def __init__(
self,
embedding_dimension: int,
feed_forward_hidden_layer_dimension: int,
number_of_attention_heads: int,
) -> None:
super().__init__()
self.__attention = MultiHeadAttention(
embedding_dimension, number_of_attention_heads, dropout=0.1
)
self.__layer_norm_1 = nn.LayerNorm(
embedding_dimension
) # norm of first "Add and Normalize"
self.__feed_forward = FeedForwardNetwork(
embedding_dimension, feed_forward_hidden_layer_dimension
)
self.__layer_norm_2 = nn.LayerNorm(
embedding_dimension
) # norm of second "Add and Normalize"
self.__dropout = nn.Dropout(0.1) # ...
def forward(self, args: tuple[torch.Tensor, torch.Tensor]):
# WARNING: args is needed to have sequential
x, padding_mask = args
# -> ATTENTION -> dropout -> add and normalize -> FF -> dropout -> add and normalize ->
# Attention with Residual Connection [ input + self-attention]
# 1) Multi Head Attention
ATTENTION = self.__attention(x, x, x, key_padding_mask=padding_mask)
# 2) Dropout
DROPPED_ATTENTION = self.__dropout(ATTENTION)
del ATTENTION
# 3) Residual Connection
x = x + DROPPED_ATTENTION
del DROPPED_ATTENTION
# 4) Layer Normalization
x = self.__layer_norm_1(x)
# 5) Feed Forward
FEED_FORWARD = self.__feed_forward(x)
# 6) Dropout
DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
del FEED_FORWARD
# 7) Residual Connection
x = x + DROPPED_FEED_FORWARD
del DROPPED_FEED_FORWARD
# 8) Layer Normalization
x = self.__layer_norm_2(x)
return (x, padding_mask)
# use eval to disable dropout ecc

View File

@@ -1,43 +0,0 @@
# it is position wise!
# https://stackoverflow.com/questions/74979359/how-is-position-wise-feed-forward-neural-network-implemented-for-transformers
# Why do we need a fixed size
# https://ai.stackexchange.com/questions/37624/why-do-transformers-have-a-fixed-input-length
import torch.nn as nn
class FeedForwardNetwork(nn.Module):
def __init__(self, embedding_size: int, feed_forward_hidden_layer_dimension: int):
super().__init__()
self.__fully_connected_1 = nn.Linear(
embedding_size, feed_forward_hidden_layer_dimension
) # expand in higher dimension
self.__relu = nn.ReLU()
self.__dropout = nn.Dropout(
0.1
) # during training we drop something, with eval it got deactivated
self.__fully_connected_2 = nn.Linear(
feed_forward_hidden_layer_dimension, embedding_size
) # return into the model dimension
def forward(self, x):
# -> NN1 -> RELU -> (Droput during training) -> NN2 ->
# 1) Linear Layer
x = self.__fully_connected_1(x)
# 2) ReLU
x = self.__relu(x)
# 3) Dropout
x = self.__dropout(x)
# 4) Linear Layer
x = self.__fully_connected_2(x)
return x

View File

@@ -1,111 +0,0 @@
from ..Utils.task_type import TaskType
from .Decoder import Decoder
from .Encoder import Encoder
from ....Libs.Embedder import NanoSocratesEmbedder
import torch
class NanoSocratesCore(torch.nn.Module):
def __init__(
self,
sentence_length: int,
vocab_size: int,
embedding_size: int = 256,
feed_forward_multiplier: int = 4,
num_encoder_layers: int = 2,
num_decoder_layers: int = 2,
num_attention_heads: int = 4,
) -> None:
feed_forward_dim = embedding_size * feed_forward_multiplier
self.__sentence_length = sentence_length
self.__encoder_sequence = torch.nn.Sequential(
*[
Encoder(embedding_size, feed_forward_dim, num_attention_heads)
for _ in range(num_encoder_layers)
]
)
# * unpack the list so that each encoder has its own weights
self.__decoder_sequence = torch.nn.Sequential(
*[
Decoder(embedding_size, feed_forward_dim, num_attention_heads)
for _ in range(num_decoder_layers)
]
)
self.__linear = torch.nn.Linear(embedding_size, vocab_size)
self.__input_embeder = NanoSocratesEmbedder(vocab_size, embedding_size)
self.__output_embedder = NanoSocratesEmbedder(vocab_size, embedding_size)
def forward(
self,
encoder_input: list[list[int]],
decoder_input: list[list[int]],
encoder_padding_mask: list[list[int]],
):
if len(encoder_padding_mask) != len(encoder_input):
raise Exception("Mismatch in received_dimensions")
# TODO: check for tensor in input to embedder
# 1) Embed User-Input for encoders
ENCODER_INPUT = self.__input_embeder(encoder_input)
# 2) Encode User-Input
ENCODER_OUTPUT, _ = self.__encoder_sequence(ENCODER_INPUT, encoder_padding_mask)
del ENCODER_INPUT
exit_loop = False
decoder_token_list = decoder_input[:]
decoder_phase = 0
LOGITS_HISTORY: list[torch.Tensor] = []
# 3) Autoregressive Output
while not exit_loop:
# 3.0) Increment Counter
decoder_phase += 1
# 3.1) Embed Decoder Input
decoder_input = self.__output_embedder(decoder_token_list)
# 3.2) Decode Decoder Input
DECODER_OUTPUT, _, _, _ = self.__decoder_sequence(
decoder_input, ENCODER_OUTPUT, ENCODER_OUTPUT
)
# 3.3) Go back to Token space
# TODO: change name
LOGITS = self.__linear(DECODER_OUTPUT)
del DECODER_OUTPUT
# 3.4) Transform in probabilities
# TODO: change name
TOKEN_PROBABILITIES = torch.softmax(LOGITS, dim=-1)
del LOGITS
LOGITS_HISTORY.append(TOKEN_PROBABILITIES)
# 3.5) Take most probable tokens
TOKEN_IDS = torch.argmax(TOKEN_PROBABILITIES, -1)
# TODO: check for dimensions and for efficiency
DECODER_TOKEN_TENSOR = torch.tensor(decoder_token_list)
DECODER_TOKEN_TENSOR[:, decoder_phase] = TOKEN_IDS
decoder_token_list = DECODER_TOKEN_TENSOR.tolist()
del TOKEN_IDS
del DECODER_TOKEN_TENSOR
# 3.6) Check if we generated all tokens
if decoder_phase == self.__sentence_length - 1:
exit_loop = True
return LOGITS_HISTORY

View File

@@ -1,218 +0,0 @@
import math
import random
import sys
class SpannedMasker:
def __init__(
self,
max_vocabulary: int,
forbidden_tokens: set[int],
change_token_probability: float = 0.15,
average_span: int = 2,
seed: int = random.randint(0, sys.maxsize),
) -> None:
if change_token_probability < 0 or change_token_probability > 1:
raise ValueError("received a value that is not between 0 or 1")
self.__change_token_probability = change_token_probability
self.__average_span = average_span
self.__rng = random.Random(seed)
self.__max_vocabulary = max_vocabulary
self.__forbidden_tokens = forbidden_tokens
def reseed(self, seed:int):
self.__rng = random.Random(seed)
def mask_sequence(
self,
token_sequence: list[int],
) -> tuple[list[int], list[int]]:
MASK = self.__create_mask(token_sequence, self.__forbidden_tokens)
MASKED = self.__create_masked_input(token_sequence, MASK, self.__max_vocabulary)
TARGET = self.__create_target(token_sequence, MASK, self.__max_vocabulary)
return (MASKED, TARGET)
def __number_of_spans(self, legal_token_number: int):
EXPECTED_NUM_OF_CORRUPTED_TOKENS = self.__number_of_corrupted_tokens(legal_token_number)
return math.ceil(EXPECTED_NUM_OF_CORRUPTED_TOKENS / self.__average_span)
def __number_of_corrupted_tokens(self, legal_token_number: int):
EXPECTED_NUM_OF_CORRUPTED_TOKENS = math.ceil(
legal_token_number * self.__change_token_probability
)
return EXPECTED_NUM_OF_CORRUPTED_TOKENS
def __create_mask(self, sequence: list[int], forbidden_tokens: set[int]) -> list[bool]:
SEQ_LEN = len(sequence)
LEGAL_TOKENS = self.__count_legal_tokens(sequence, forbidden_tokens)
NUM_OF_CORRUPTIONS = self.__number_of_corrupted_tokens(LEGAL_TOKENS)
NUM_OF_SPANS = self.__number_of_spans(LEGAL_TOKENS)
MASK = [False] * SEQ_LEN
mask_index = 0
number_of_spans = 0
exit_loop = False
while not exit_loop:
TOKEN = sequence[mask_index]
MASKED = MASK[mask_index]
SHOULD_MASK = self.__random_mask()
skip = False
if self.__is_illegal_token(TOKEN, forbidden_tokens):
skip = True
if MASKED:
skip = True
if not SHOULD_MASK:
skip = True
if skip:
mask_index = (mask_index + 1) % SEQ_LEN
continue
CANDIDATE_SPAN = self.__random_span(
self.__average_span
)
REMAINING_MASK = SEQ_LEN - (mask_index + 1)
SPAN_LENGTH = min(CANDIDATE_SPAN, REMAINING_MASK)
for _ in range(0, SPAN_LENGTH):
INNER_TOKEN = sequence[mask_index]
if self.__is_illegal_token(INNER_TOKEN, forbidden_tokens):
continue
MASK[mask_index] = True
mask_index += 1
number_of_spans += 1
mask_index += 1
if number_of_spans == NUM_OF_SPANS:
exit_loop = True
continue
if mask_index >= SEQ_LEN - 1:
exit_loop = True
continue
return MASK
def __create_masked_input(self, sequence: list[int], mask: list[bool], max_voc: int) -> list[int]:
OUT: list[int] = []
mask_token_id = max_voc + 1
index = 0
while index < len(sequence):
TOKEN = sequence[index]
MASKED = mask[index]
if not MASKED:
OUT.append(
TOKEN
)
index += 1
continue
MASK_TOKEN = mask_token_id
OUT.append(
MASK_TOKEN
)
while mask[index]:
index += 1
mask_token_id += 1
return OUT
def __create_target(self, sequence: list[int], mask: list[bool], max_voc: int) -> list[int]:
OUT: list[int] = []
mask_token_id = max_voc + 1
index = 0
while index < len(sequence):
TOKEN = sequence[index]
MASKED = mask[index]
if MASKED:
OUT.append(
TOKEN
)
index += 1
continue
MASK_TOKEN = mask_token_id
OUT.append(
MASK_TOKEN
)
while index < len(mask) and not mask[index]:
index += 1
mask_token_id += 1
return OUT
def __is_illegal_token(self, token: int, illegal_voc: set[int]) -> bool:
if token in illegal_voc:
return True
return False
def __count_legal_tokens(self, sequence: list[int], illegal_voc: set[int]) -> int:
legal_count = 0
for token in sequence:
if self.__is_illegal_token(token, illegal_voc):
continue
legal_count += 1
return legal_count
def __random_mask(self) -> bool:
if self.__random_probability() > self.__change_token_probability:
return False
return True
def __random_probability(self) -> float:
return self.__rng.random()
def __random_token(self, max_vocabulary: int) -> int:
return self.__rng.randint(0, max_vocabulary)
def __random_int_range(self, min: int, max: int) -> int:
return self.__rng.randint(min, max)
def __random_span(self, average: int) -> int:
candidate_span = self.__rng.gauss(mu=average)
candidate_span = max(1, candidate_span)
candidate_span = round(candidate_span)
return candidate_span

View File

@@ -1,77 +0,0 @@
import random
import sys
class TokenMasker:
def __init__(
self,
change_token_probability: float = 0.15,
mask_token_probability: float = 0.8,
random_token_prob: float = 0.1,
seed: int = random.randint(0, sys.maxsize),
) -> None:
if change_token_probability < 0 or change_token_probability > 1:
raise ValueError("received a value that is not between 0 or 1")
if mask_token_probability < 0 or mask_token_probability > 1:
raise ValueError("received a value that is not between 0 or 1")
if random_token_prob < 0 or random_token_prob > 1:
raise ValueError("received a value that is not between 0 or 1")
if mask_token_probability + random_token_prob > 1:
raise ValueError("The sum of probabilities is over 1")
self.__change_token_probability = change_token_probability
self.__mask_token_probability = mask_token_probability
self.__random_token_prob = random_token_prob
self.__rng = random.Random(seed)
def mask_sequence(
self, token_sequence: list[int], max_vocabulary: int, mask_id: int
) -> list[int]:
if mask_id <= max_vocabulary:
raise ValueError("mask_id is a value of vocabulary")
MASKED_SEQUENCE: list[int] = []
for token in token_sequence:
if token > max_vocabulary:
MASKED_SEQUENCE.append(token)
continue
MASKED_TOKEN = self.__mask(token, max_vocabulary, mask_id)
MASKED_SEQUENCE.append(MASKED_TOKEN)
return MASKED_SEQUENCE
def __mask(self, token: int, max_vocabulary: int, mask_id: int) -> int:
if self.__random_probability() > self.__change_token_probability:
return token
MASK_TOKEN_TRESH = self.__mask_token_probability
RANDOM_TOKEN_TRESH = MASK_TOKEN_TRESH + self.__random_token_prob
CHANCE_PROBABILITY = self.__random_probability()
# It's over both probabilities, return same token
if CHANCE_PROBABILITY > RANDOM_TOKEN_TRESH:
return token
# It's over masking treshold, but lower than random
# return random token
if CHANCE_PROBABILITY > MASK_TOKEN_TRESH:
return self.__random_token(max_vocabulary)
# It's below masking treshold, mask token
return mask_id
def __random_probability(self) -> float:
return self.__rng.random()
def __random_token(self, max_vocabulary: int) -> int:
return self.__rng.randint(0, max_vocabulary)

View File

@@ -1,47 +0,0 @@
import torch
import torch.nn as nn
from typing import Optional
class TorchMultiHeadAttention(nn.Module):
def __init__(
self,
embedding_dimension: int,
number_of_attention_heads: int,
dropout: float = 0.0
):
super().__init__()
self.attention = torch.nn.MultiheadAttention(
embedding_dimension,
num_heads=number_of_attention_heads,
dropout=dropout,
batch_first=True,
)
def forward(
self,
x_q: torch.Tensor,
x_k: torch.Tensor,
x_v: torch.Tensor,
key_padding_mask=None,
attention_mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
# x * Wq -> Q
# x * Wk -> K
# x * Wv -> V
# REMEMBER: tochAttention uses Batch internally to build the 3 dimension attention mask given the 2 dimension
y, _ = self.attention(
x_q, x_k, x_v, attn_mask=attention_mask, key_padding_mask=key_padding_mask,
need_weights=False
)
return y
# batch_first=False (default storico)
# Formato: (L, N, E)
# L = lunghezza della sequenza (time/posizioni)
# N = batch size
# E = dimensione d_model (embed)
# batch_first=True
# Formato: (N, L, E) (più naturale per molti modelli)

View File

@@ -1,47 +0,0 @@
from typing import override
import torch
# custom LR from attention is all you need
class WarmupLR(torch.optim.lr_scheduler.LRScheduler):
def __init__(
self,
optimizer: torch.optim.Optimizer,
warmup_steps: int,
embedding_size: int,
warming_multiplier: float = -1.5,
decaying_multiplier: float = -0.5,
multiplicative_factor: float = 1.0,
last_epoch: int = -1,
) -> None:
self.__warmup_steps = warmup_steps
self.__embedding_size = embedding_size
self.__warming_multiplier = warming_multiplier
self.__decaying_multiplier = decaying_multiplier
self.__multiplicative_factor = multiplicative_factor
super().__init__(optimizer, last_epoch)
def __scale_at(self, step: int) -> float:
step = max(step, 1)
return (
self.__multiplicative_factor
* (self.__embedding_size**self.__decaying_multiplier)
* min(
step**self.__decaying_multiplier,
step * (self.__warmup_steps**self.__warming_multiplier),
)
)
@override
def get_lr(self) -> list[float]:
torch.optim.lr_scheduler._warn_get_lr_called_within_step(self)
step = max(self.last_epoch, 1)
scale = self.__scale_at(step)
return [base_lr * scale for base_lr in self.base_lrs]
def _get_closed_form_lr(self):
step = max(self.last_epoch, 1)
scale = self.__scale_at(step)
return [base_lr * scale for base_lr in self.base_lrs]

View File

@@ -1,18 +0,0 @@
from .Decoder import Decoder
from .Encoder import Encoder
from .FeedForwardNetwork import FeedForwardNetwork
# from .MultiHeadAttention import MultiheadAttention
from .TorchMultiHeadAttention import TorchMultiHeadAttention
from .SpannedMasker import SpannedMasker
from .DeToken import DeToken
from .WarmupLR import WarmupLR
__all__ = [
"Decoder",
"Encoder",
"FeedForwardNetwork",
"TorchMultiHeadAttention",
"SpannedMasker",
"DeToken",
"WarmupLR"
]

View File

@@ -1,33 +0,0 @@
import torch
import Project_Model.Libs.Embedder as Embedder
from ..Classes import DeToken
class NanoSocraDecoder(torch.nn.Module):
def __init__(
self,
decoder_embedder: Embedder.NanoSocratesEmbedder,
decoder_layers: torch.nn.Sequential,
detokener: DeToken
) -> None:
super().__init__()
self.__decoder_embedder = decoder_embedder
self.__decoder = decoder_layers
self.__detokener = detokener
def forward(self, args: tuple[torch.Tensor,torch.Tensor, torch.Tensor]):
decoder_embedder_input, prefix_mask, tgt_padding = args
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_tensor, decoder_tensor, decoder_tensor, prefix_mask, tgt_padding, True)
)
logits: torch.Tensor = self.__detokener(decoder_output)
return logits

View File

@@ -1,29 +0,0 @@
import torch
import Project_Model.Libs.Embedder as Embedder
from ..Classes import DeToken
class NanoSocratEncoder(torch.nn.Module):
def __init__(
self,
encoder_embedder: Embedder.NanoSocratesEmbedder,
encoder_layers: torch.nn.Sequential,
detokener: DeToken
) -> None:
super().__init__()
self.__encoder_embedder = encoder_embedder
self.__encoder = encoder_layers
self.__detokener = detokener
def forward(self, args: tuple[torch.Tensor, torch.Tensor]):
encoder_embedder_input, src_padding = args
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
logits: torch.Tensor = self.__detokener(encoder_output)
return logits

View File

@@ -1,219 +0,0 @@
import torch
import Project_Model.Libs.Embedder as Embedder
from ..Classes import Encoder, Decoder, DeToken
from ..Utils import get_decoder_input
from Project_Model.Libs.Batch import TaskType
class NanoSocratesCore(torch.nn.Module):
def __init__(
self,
vocabulary_size: int,
sentence_max_length: int,
sos: int,
pad: int,
eos: int,
continuerdf: int,
latent_space: int = 256,
feed_forward_multiplier: int = 4,
attention_heads: int = 4,
layer_number: int = 2,
) -> None:
super().__init__()
self.__sos = sos
self.__pad = pad
self.__eos = eos
self.__continuerdf = continuerdf
self.__sentence_len = sentence_max_length
feed_forward_latent_space = latent_space * feed_forward_multiplier
self.__encoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
self.__decoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
TMP_ENCODERS = [
Encoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
TMP_DECODERS = [
Decoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
self.__encoder = torch.nn.Sequential(*TMP_ENCODERS)
self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
self.__detokener = DeToken(latent_space, vocabulary_size)
self.__encoder_detokener = DeToken(latent_space, vocabulary_size)
def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
encoder_embedder_input, src_padding, decoder_embedder_input, tgt_padding = args
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_tensor, encoder_output, encoder_output, src_padding, tgt_padding, False)
)
logits: torch.Tensor = self.__detokener(decoder_output)
return logits
def inference(self, input: tuple[torch.Tensor, torch.Tensor], task_type: TaskType) -> torch.Tensor:
if task_type == TaskType.MASKING:
return self.__masking(input)
if task_type == TaskType.COMPLETATION:
return self.__continue_rdf(input)
return self.__text_generation(input)
def __text_generation(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
x, padding = args
encoder_tensor = self.__encoder_embedder(x)
BATCH: int
if len(x.shape) > 2:
BATCH, SEQ_LEN, _ = x.shape
else:
_, SEQ_LEN = x.shape
BATCH = 1
encoder_output, _ = self.__encoder((encoder_tensor, padding))
decoder_in = get_decoder_input(BATCH, self.__sos, self.__pad, SEQ_LEN)
decoder_in_pad_mask = decoder_in.eq(self.__pad)
continue_generating = True
token_idx = 0
while continue_generating:
decoder_in_x = self.__decoder_embedder(decoder_in)
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_in_x, encoder_output, encoder_output, padding, decoder_in_pad_mask, False)
)
logits: torch.Tensor = self.__detokener(decoder_output)
logits = torch.softmax(logits, 2)
tokens = torch.argmax(logits, 2)
if token_idx < self.__sentence_len - 1:
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
decoder_in_pad_mask = decoder_in.eq(self.__pad)
if token_idx == self.__sentence_len - 1:
continue_generating = False
continue
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
continue_generating = False
continue
token_idx += 1
return decoder_in
def __masking(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
x, padding = args
encoder_tensor = self.__encoder_embedder(x)
x, _ = self.__encoder((encoder_tensor, padding))
logits: torch.Tensor = self.__encoder_detokener(x)
del x
logits = torch.softmax(logits, 2)
tokens = torch.argmax(logits, 2)
return tokens
def __continue_rdf(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
decoder_in, _ = args
decoder_in_prefix_mask = decoder_in.eq(self.__pad)
decoder_in_pad_mask = decoder_in.eq(self.__pad)
continue_generating = True
token_idx: int= int((decoder_in[0] == self.__continuerdf).nonzero()[0].item()) + 1
while continue_generating:
decoder_x = self.__decoder_embedder(decoder_in)
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_x, decoder_in, decoder_in, decoder_in_prefix_mask, decoder_in_pad_mask, True)
)
logits: torch.Tensor = self.__detokener(decoder_output)
logits = torch.softmax(logits, 2)
tokens = torch.argmax(logits, 2)
if token_idx < self.__sentence_len - 1:
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
decoder_in_pad_mask = decoder_in.eq(self.__pad)
if token_idx == self.__sentence_len - 1:
continue_generating = False
continue
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
continue_generating = False
continue
token_idx += 1
return decoder_in
def take_pieces(self):
return (
(self.__encoder_embedder, self.__encoder, self.__encoder_detokener),
(self.__decoder_embedder, self.__decoder, self.__detokener)
)
def load_pieces(
self,
encoder_embedder: Embedder.NanoSocratesEmbedder,
decoder_embedder: Embedder.NanoSocratesEmbedder,
encoder: torch.nn.Sequential,
decoder: torch.nn.Sequential,
encoder_detokener: DeToken,
decoder_detokener: DeToken
):
self.__encoder_embedder = encoder_embedder
self.__decoder_embedder = decoder_embedder
self.__encoder = encoder
self.__decoder = decoder
self.__encoder_detokener = encoder_detokener
self.__detokener = decoder_detokener

View File

@@ -1,63 +0,0 @@
import torch
import Project_Model.Libs.Embedder as Embedder
from ..Classes import Encoder, Decoder, DeToken
class TrainingModel(torch.nn.Module):
def __init__(
self,
vocabulary_size: int,
latent_space: int = 256,
feed_forward_multiplier: int = 4,
attention_heads: int = 4,
layer_number: int = 2,
) -> None:
super().__init__()
feed_forward_latent_space = latent_space * feed_forward_multiplier
self.__encoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
self.__decoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
TMP_ENCODERS = [
Encoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
TMP_DECODERS = [
Decoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
self.__encoder = torch.nn.Sequential(*TMP_ENCODERS)
self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
self.__detokener = DeToken(latent_space, vocabulary_size)
self.__encoder_detokener = DeToken(latent_space, vocabulary_size)
def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
encoder_embedder_input, src_padding, decoder_embedder_input, tgt_padding = args
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_tensor, encoder_output, encoder_output, src_padding, tgt_padding, False)
)
logits: torch.Tensor = self.__detokener(decoder_output)
return logits
def take_pieces(self):
return (
(self.__encoder_embedder, self.__encoder, self.__encoder_detokener),
(self.__decoder_embedder, self.__decoder, self.__detokener)
)

View File

@@ -1,11 +0,0 @@
from .TrainingModel import TrainingModel
from .NanoSocratEncoder import NanoSocratEncoder
from .NanoSocraDecoder import NanoSocraDecoder
from .NanoSocrates import NanoSocratesCore
__all__ = [
"TrainingModel",
"NanoSocratEncoder",
"NanoSocraDecoder",
"NanoSocratesCore"
]

View File

@@ -1,22 +0,0 @@
from .attention_mask import get_causal_attention_mask,get_causal_attention_mask_batched
from .task_type import TaskType
from .post_tokenization import truncate_sequence, pad_sequence, normalize_sequence, create_padding_mask
from .inference_masking import inference_masking
from .truncate_rdf_list import truncate_rdf_list
from .decode_out import tensor2token
from .decoder_input import get_decoder_input
__all__ = [
"TaskType",
"get_causal_attention_mask",
"get_causal_attention_mask_batched",
"truncate_sequence",
"pad_sequence",
"create_padding_mask",
"normalize_sequence",
"inference_masking",
"truncate_rdf_list",
"tensor2token",
"get_decoder_input"
]

View File

@@ -1,30 +0,0 @@
import torch
def get_causal_attention_mask(seq_len: int) -> torch.Tensor:
return torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool), diagonal=1)
# there is no need for this since MultiHeadAttention of torch does this internally
def get_causal_attention_mask_batched(seq_len: int, batch_size: int ) -> torch.Tensor:
base_mask = get_causal_attention_mask(seq_len)
return base_mask.unsqueeze(0).expand(batch_size, -1, -1) # add another dimension at the beginning, big as batch_size
# the result is that z,x,y where x,y are repeated along z
def get_causal_attention_mask_with_prefix(seq_len, prefix):
mask = torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool), diagonal=1)
mask[:,:prefix] = False
return mask
def get_prefix_causal_mask_from_padding_mask(seq_len:int, prefix_mask, att_heads:int=1):
expanded_padding_mask = prefix_mask.unsqueeze(-1).repeat(1, 1, seq_len) # B,T,T
expanded_padding_mask = expanded_padding_mask.permute(0,2,1) # B,T,T
mask = torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool), diagonal=1) # T,T
tri_batched = mask.unsqueeze(0) # 1,T,T will broadcast over B
prefix_causal_mask = expanded_padding_mask & tri_batched
prefix_causal_mask = prefix_causal_mask.repeat_interleave(att_heads, dim=0) # B*H,T,T
return prefix_causal_mask
#def get_prefix_causal_mask():
# continue_rdf =

View File

@@ -1,27 +0,0 @@
from typing import Generator
import torch
def tensor2token(tensor: torch.Tensor, end_token: int) -> Generator[list[int]]:
if len(tensor.shape) < 1 or len(tensor.shape) > 2:
raise ValueError("Shape is not correct")
if len(tensor.shape) == 1:
token_list: list[int] = tensor.tolist()
token_list.append(end_token)
yield token_list
return
batch_len: int
batch_len, _ = tensor.shape
for i in range(batch_len):
smaller_tensor = tensor[i, :]
token_list: list[int] = smaller_tensor.tolist()
token_list.append(end_token)
yield token_list

View File

@@ -1,14 +0,0 @@
import torch
from ..Utils import normalize_sequence
# from Project_Model.Libs.Embedder import NanoSocratesEmbedder as Embedder
def get_decoder_input(batch_size, sos_token,pad_token, seq_len):
single_decoder_input, _ = normalize_sequence([sos_token],seq_len,pad_token, end_token=0, add_ending=False)
tensor_decoder_input = torch.tensor(single_decoder_input[:])
# embedded_decoder_intput = embedder(tensor_decoder_input)
batch_decoder_input = tensor_decoder_input.unsqueeze(0).repeat(batch_size, 1)
return batch_decoder_input

View File

@@ -1,13 +0,0 @@
def inference_masking(sequence: list[int], mask_token: int, max_vocabulary: int) -> list[int]:
current_mask_token = max_vocabulary + 1
for i in range(0, len(sequence)):
if sequence[i] != mask_token:
continue
sequence[i] = current_mask_token
current_mask_token += 1
return sequence

View File

@@ -1,60 +0,0 @@
def truncate_sequence(
sequence: list[int], truncate_at: int, end_token: int, add_ending: bool
) -> list[int]:
if len(sequence) < truncate_at - 1:
if add_ending:
sequence.append(end_token)
return sequence
if len(sequence) < truncate_at:
if add_ending:
sequence[-1] = end_token
return sequence
TRUNCATED_SEQUENCE = sequence[:truncate_at]
if add_ending:
TRUNCATED_SEQUENCE[-1] = end_token
return TRUNCATED_SEQUENCE
def pad_sequence(sequence: list[int], pad_until: int, pad_token: int) -> list[int]:
if not (len(sequence) < pad_until):
return sequence
NUM_OF_PADDINGS = pad_until - len(sequence)
PADDINGS = [pad_token] * NUM_OF_PADDINGS
PADDED_SEQUENCE = sequence[:]
PADDED_SEQUENCE.extend(PADDINGS)
return PADDED_SEQUENCE
def create_padding_mask(sequence: list[int], pad_token: int) -> list[bool]:
PADDING_MASK = [False] * len(sequence)
for i in range(0, len(sequence)):
if sequence[i] != pad_token:
continue
PADDING_MASK[i] = True
return PADDING_MASK
def normalize_sequence(
sequence: list[int],
max_length: int,
pad_token: int,
end_token: int,
add_ending: bool = True
) -> tuple[list[int], list[bool]]:
new_sequence = truncate_sequence(sequence, max_length, end_token, add_ending)
new_sequence = pad_sequence(new_sequence, max_length, pad_token)
PADDING_MASK = create_padding_mask(new_sequence, pad_token)
return (new_sequence, PADDING_MASK)

View File

@@ -1,7 +0,0 @@
from enum import Enum, auto
class TaskType(Enum):
TEXT2RDF = auto()
RDF2TEXT = auto()
MASK = auto()
COMPLETATION = auto()

View File

@@ -1,64 +0,0 @@
from collections import deque
import random
import sys
def truncate_rdf_list(
sequence: list[int],
truncation_probability: float,
continue_triple_token: int,
end_of_triple_token: int,
seed: int = random.randint(0, sys.maxsize),
) -> tuple[list[int], list[int]]:
if truncation_probability < 0 or truncation_probability > 1:
raise ValueError("A probability must be between 0 and 1")
RNG = random.Random(seed)
END_OF_TRIPLES: deque[int] = deque()
for i in range(0, len(sequence)):
TOKEN = sequence[i]
if TOKEN != end_of_triple_token:
continue
END_OF_TRIPLES.append(i + 1)
TRIPLES_TOKENS: list[int] = []
start_of_triple = 0
exit_loop = False
while not exit_loop:
EOT = END_OF_TRIPLES.popleft()
TRIPLE = sequence[start_of_triple:EOT]
TRIPLES_TOKENS.extend(TRIPLE)
start_of_triple = EOT
if RNG.random() < truncation_probability:
exit_loop = True
if len(END_OF_TRIPLES) == 1:
exit_loop = True
TRIPLES_TOKENS.append(
continue_triple_token
)
while len(END_OF_TRIPLES) > 0:
EOT = END_OF_TRIPLES.popleft()
TRIPLE = sequence[start_of_triple:EOT]
TRIPLES_TOKENS.extend(TRIPLE)
start_of_triple = EOT
return (TRIPLES_TOKENS, TRIPLES_TOKENS)

View File

@@ -1,9 +0,0 @@
from .Classes import *
from .Enums import *
from .Utils import *
from .Models import *
from . import Classes
from . import Enums
from . import Utils
from . import Models

View File

@@ -1,6 +0,0 @@
from enum import Enum, auto
class ModelType(Enum):
ENCODER_ONLY = auto()
DECODER_ONLY = auto()

View File

@@ -1,14 +0,0 @@
from .model_utils import decompose_nano_socrates, create_standalone_model, train2inference
from .ModelType import ModelType
from .decode_batch import decode_batch
from .metrics import precision, recall, accuracy, f1, meteor, bleu, rouge, average, rdf2txt, txt2rdf, rdf_completion_1, rdf_completion_2, remove_padding, balance_paddings
__all__ = [
"ModelType",
"decompose_nano_socrates",
"create_standalone_model",
"decode_batch",
"train2inference",
"precision", "recall", "accuracy", "f1", "meteor", "bleu", "rouge", "average",
"rdf2txt", "txt2rdf", "rdf_completion_1", "rdf_completion_2", "remove_padding", "balance_paddings"
]

View File

@@ -1,16 +0,0 @@
import torch
import Project_Model.Libs.BPE as BPE
def decode_batch(batch: torch.Tensor, tokenizer: BPE.TokeNanoCore ,uknonw_token: int) -> list[str]:
strings = []
BATCH, _ = batch.shape
for i in range(0, BATCH):
tokens: list[int] = batch.tolist()[i]
tokens = list(map(lambda x: uknonw_token if x > tokenizer.vocabulary_size else x, tokens))
strings.append(tokenizer.decode(tokens))
return strings

View File

@@ -1,100 +0,0 @@
import evaluate as eval
BLEU = eval.load("bleu")
ROUGE = eval.load("rouge")
METEOR = eval.load("meteor")
def precision(ref: list[int], pred: list[int]):
metric = eval.load("precision")
return metric.compute(predictions=pred, references=ref, average="weighted", zero_division=0)
def recall(ref: list[int], pred: list[int]):
metric = eval.load("recall")
return metric.compute(predictions=pred, references=ref, average="weighted", zero_division=0)
def accuracy(ref: list[int], pred: list[int]):
metric = eval.load("accuracy")
return metric.compute(predictions=pred, references=ref)
def meteor(ref: list[str], pred: list[str]):
metric = METEOR
return metric.compute(predictions=pred, references=ref)
def bleu(ref: list[str], pred: list[str]):
metric = BLEU
return metric.compute(predictions=pred, references=ref)
def rouge(ref: list[str], pred: list[str]):
metric = ROUGE
return metric.compute(predictions=pred, references=ref)
def f1(precision: float, recall: float):
divisor = max((precision + recall), 1E-5)
return (2 * recall * precision) / divisor
def average(array: list[float]):
return sum(array) / len(array)
def rdf2txt(ref: list[str], pred: list[str]):
b_m = bleu(ref, pred)
r_m = rouge(ref, pred)
m_m = meteor(ref, pred)
return (b_m, r_m, m_m)
def txt2rdf(ref: list[int], pred: list[int]):
p_m = precision(ref, pred)
r_m = recall(ref, pred)
return (p_m, r_m)
def rdf_completion_1(ref: list[int], pred: list[int]):
a_m = accuracy(ref, pred)
return a_m
def rdf_completion_2(ref: list[int], pred: list[int]):
p_m = precision(ref, pred)
r_m = recall(ref, pred)
return (p_m, r_m)
def remove_padding(seq: list[int], pad_token: int, end_token: int):
clean_seq = list(filter(lambda x: x != pad_token, seq))
if clean_seq[-1] == end_token:
return clean_seq
clean_seq.append(
end_token
)
return clean_seq
def balance_paddings(seq_1: list[int], seq_2: list[int], pad_token: int):
SEQ_1_LEN = len(seq_1)
SEQ_2_LEN = len(seq_2)
if SEQ_1_LEN > SEQ_2_LEN:
PAD = [pad_token] * (SEQ_1_LEN - SEQ_2_LEN)
seq_2.extend(PAD)
if SEQ_2_LEN > SEQ_1_LEN:
seq_2 = seq_2[:SEQ_1_LEN]
return (seq_1, seq_2)

View File

@@ -1,72 +0,0 @@
import torch
from Project_Model.Libs.Embedder import NanoSocratesEmbedder
from Project_Model.Libs.Transformer import TrainingModel,NanoSocratesCore, NanoSocraDecoder, NanoSocratEncoder, DeToken, Encoder, Decoder
from .ModelType import ModelType
def decompose_nano_socrates(
model: TrainingModel | NanoSocratesCore , vocabulary_size: int, embedding_size: int
) -> tuple[TrainingModel | NanoSocratesCore, NanoSocratEncoder, NanoSocraDecoder]:
encoder_pieces, decoder_pieces = model.take_pieces()
encoder_embedder, encoder, encoder_detokener = encoder_pieces
decoder_embedder, decoder, decoder_detokener = decoder_pieces
return (
model,
NanoSocratEncoder(encoder_embedder, encoder, encoder_detokener),
NanoSocraDecoder(decoder_embedder, decoder, decoder_detokener),
)
def train2inference(
train_model: TrainingModel,
inference_model: NanoSocratesCore
) -> NanoSocratesCore:
encoder_pieces, decoder_pieces = train_model.take_pieces()
enc_emb, encoder, enc_det = encoder_pieces
dec_emb, decoder, dec_det = decoder_pieces
inference_model.load_pieces(
enc_emb,
dec_emb,
encoder,
decoder,
enc_det,
dec_det
)
return inference_model
def create_standalone_model(
model_type: ModelType,
vocabulary_size: int,
latent_space: int = 256,
feed_forward_multiplier: int = 4,
attention_heads: int = 4,
layer_number: int = 2,
) -> NanoSocratEncoder | NanoSocraDecoder:
feed_forward_latent_space = latent_space * feed_forward_multiplier
embedder = NanoSocratesEmbedder(vocabulary_size, latent_space)
detokener = DeToken(latent_space, vocabulary_size)
if model_type == ModelType.ENCODER_ONLY:
TMP_ENCODERS = [
Encoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
encoder = torch.nn.Sequential(*TMP_ENCODERS)
return NanoSocratEncoder(embedder, encoder, detokener)
TMP_DECODERS = [
Decoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
decoder = torch.nn.Sequential(*TMP_DECODERS)
return NanoSocraDecoder(embedder, decoder, detokener)

View File

@@ -1,5 +1 @@
from . import BPE
from . import Embedder
from . import Transformer
from . import TorchShims
from . import TransformerUtils

View File

@@ -1,92 +0,0 @@
from functools import reduce
from pathlib import Path
import pytest
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
VOCABULARY_PATH = Path("Assets/Model/toy_10/toy_dictionary.json")
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
SPECIAL_LIST = BPE.default_special_tokens()
class TestSpannedMasker:
def test_spanned_masking(self):
CORPUS_PATH = Path("Project_Model/Tests/spanner_file/mask.txt")
TEXT = CORPUS_PATH.read_text("utf-8")
CORRUPTION_PERCENTAGE = 0.15
TOLERANCE = 0.15
TOKENIZER = BPE.TokeNanoCore(VOCABULARY, SPECIAL_LIST)
VOCABULARY_SIZE = TOKENIZER.vocabulary_size
TOKENS = TOKENIZER.encode(TEXT)
LEGAL_TOKENS: set[int] = set(TOKENIZER.encode("<SUBJ><OBJ><PRED>"))
SPECIAL_TOKENS: set[int] = set(TOKENIZER.encode("".join(SPECIAL_LIST)))
ILLEGAL_TOKENS: set[int] = SPECIAL_TOKENS.difference(LEGAL_TOKENS)
MASKER = Transformer.SpannedMasker(VOCABULARY_SIZE,ILLEGAL_TOKENS,CORRUPTION_PERCENTAGE, 3)
SPECIAL_FORMATTER = TOKENIZER.encode("*<SOT>")[0]
END_FORMATTER = TOKENIZER.encode("<EOT>")[0]
OUTPUT, TARGET = MASKER.mask_sequence(TOKENS)
UNCORRUPTED_TOKENS = list(
filter(lambda token: token <= VOCABULARY_SIZE, OUTPUT)
)
CORRUPTED_TOKENS = list(filter(lambda token: token <= VOCABULARY_SIZE, TARGET))
TARGET.append(END_FORMATTER)
OUTPUT = list(
map(
lambda token: SPECIAL_FORMATTER if token > VOCABULARY_SIZE else token,
OUTPUT,
)
)
TARGET = list(
map(
lambda token: SPECIAL_FORMATTER if token > VOCABULARY_SIZE else token,
TARGET,
)
)
OUT_TEXT = TOKENIZER.decode(OUTPUT)
TAR_TEXT = TOKENIZER.decode(TARGET)
ACTUAL_CORRUPTION_PERCENTAGE = len(CORRUPTED_TOKENS) / len(TOKENS)
print(f"Original text:\n\n{TEXT}")
print(f"Inputs:\n\n{OUT_TEXT}")
print(f"Targets:\n\n{TAR_TEXT}")
print(f"Target Tokens:\n\n{OUTPUT}")
print(
"\n".join(
[
f"======================",
f"Original length: {len(TOKENS)}",
f"Uncorrupted Chars: {len(UNCORRUPTED_TOKENS)}",
f"Corrupted Chars: {len(CORRUPTED_TOKENS)}",
f"Percentage_corruption: {(len(CORRUPTED_TOKENS)/len(TOKENS))*100}%",
f"======================",
]
)
)
for token in TARGET[:len(TARGET) - 1]:
assert token not in ILLEGAL_TOKENS
assert ACTUAL_CORRUPTION_PERCENTAGE > CORRUPTION_PERCENTAGE - TOLERANCE
assert ACTUAL_CORRUPTION_PERCENTAGE < CORRUPTION_PERCENTAGE + TOLERANCE
if __name__ == "__main__":
TestSpannedMasker().test_spanned_masking()

View File

@@ -1 +0,0 @@
<SOT><SUBJ>dbp-dbr:How_It_Should_Have_Ended<PRED>dbp-dbp:title<OBJ>dbp-dbr:The_Dark_Knight<EOT><SOT><SUBJ>dbp-dbr:The_Dark_Knight<PRED>dbp-dbp:caption<OBJ>Theatrical release poster<EOT><SOT><SUBJ>dbp-dbr:The_Dark_Knight<PRED>dbp-dbp:director<OBJ>dbp-dbr:Christopher_Nolan<EOT><SOT><SUBJ>dbp-dbr:The_Dark_Knight<PRED>dbp-dbp:distributor<OBJ>Warner Bros. Pictures<EOT><SOT><SUBJ>dbp-dbr:The_Dark_Knight<PRED>dbp-dbp:producer<OBJ>Charles Roven<EOT><SOT><SUBJ>dbp-dbr:The_Dark_Knight<PRED>dbp-dbp:producer<OBJ>Christopher Nolan<EOT><SOT><SUBJ>dbp-dbr:The_Dark_Knight<PRED>dbp-dbp:producer<OBJ>Emma Thomas<EOT><SOT><SUBJ>dbp-dbr:The_Dark_Knight<PRED>dbp-dbp:starring<OBJ>Christian Bale<EOT>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 553 KiB

View File

@@ -1,162 +0,0 @@
{
"type": "excalidraw",
"version": 2,
"source": "https://marketplace.visualstudio.com/items?itemName=pomdtr.excalidraw-editor",
"elements": [
{
"id": "MR81S4quQLdw7ZYl2sbpi",
"type": "text",
"x": 309,
"y": 131,
"width": 649,
"height": 200,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a0",
"roundness": null,
"seed": 194891189,
"version": 243,
"versionNonce": 1614205979,
"isDeleted": false,
"boundElements": null,
"updated": 1759680941870,
"link": null,
"locked": false,
"text": "def truncate(seq: list[int], max_length: int, eos_id: int):\n\n if len(seq) < max_length:\n return seq\n\n seq[max_length - 1] = eos_id\n return seq[:max_length]\n ",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "def truncate(seq: list[int], max_length: int, eos_id: int):\n\n if len(seq) < max_length:\n return seq\n\n seq[max_length - 1] = eos_id\n return seq[:max_length]\n ",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "nzMSk0NIeEpMYeUQ1UvVw",
"type": "text",
"x": 309,
"y": 420.5,
"width": 594,
"height": 350,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a1",
"roundness": null,
"seed": 807602389,
"version": 533,
"versionNonce": 1455522939,
"isDeleted": false,
"boundElements": null,
"updated": 1759681067736,
"link": null,
"locked": false,
"text": "def pad(seq: list[int], max_length: int, pad_id: int):\n\n if len(seq) > max_length:\n raise Exception()\n\n if len(seq) == max_length:\n return seq\n \n SEQ_LEN = len(seq)\n PAD_LEN = max_length - SEQ_LEN\n PADDING = [pad_id] * PAD_LEN\n seq.extend(PADDING)\n return seq\n ",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "def pad(seq: list[int], max_length: int, pad_id: int):\n\n if len(seq) > max_length:\n raise Exception()\n\n if len(seq) == max_length:\n return seq\n \n SEQ_LEN = len(seq)\n PAD_LEN = max_length - SEQ_LEN\n PADDING = [pad_id] * PAD_LEN\n seq.extend(PADDING)\n return seq\n ",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "8ONOUf0ArJ5DMtxeM_fvG",
"type": "text",
"x": 299,
"y": 805.5,
"width": 473,
"height": 150,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a2",
"roundness": null,
"seed": 1323527029,
"version": 294,
"versionNonce": 567965627,
"isDeleted": false,
"boundElements": null,
"updated": 1759681345616,
"link": null,
"locked": false,
"text": "def mask(\n seq: list[int], \n max_bpe_voc_id: int\n mask_id: int,\n masking_probability: MaskingProbability\n)",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "def mask(\n seq: list[int], \n max_bpe_voc_id: int\n mask_id: int,\n masking_probability: MaskingProbability\n)",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "cpsIEF7OpTuNkcxiggRpa",
"type": "text",
"x": 997,
"y": 703,
"width": 330,
"height": 150,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a3",
"roundness": null,
"seed": 516363867,
"version": 192,
"versionNonce": 430327707,
"isDeleted": false,
"boundElements": null,
"updated": 1759681254424,
"link": null,
"locked": false,
"text": "class MaskingProbability:\n\n + change_token_prob: float\n + mask_token_prob: float\n + same_token_prob: float\n + random_token_prob: float",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class MaskingProbability:\n\n + change_token_prob: float\n + mask_token_prob: float\n + same_token_prob: float\n + random_token_prob: float",
"autoResize": true,
"lineHeight": 1.25
}
],
"appState": {
"gridSize": 20,
"gridStep": 5,
"gridModeEnabled": false,
"viewBackgroundColor": "#ffffff"
},
"files": {}
}

View File

@@ -1,21 +0,0 @@
import pandas as pd
class Debug_csv():
def __init__(self, output_path:str):
self.output = open(output_path, "w")
# then the first row as header
header = ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
self.output.write(",".join(header) + "\n")
def close(self):
self.output.close()
def write(self, RDF: pd.DataFrame):
"""
Args:
RDF (pd.DataFrame): ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
"""
RDF.to_csv(self.output, index=False, header=False)

Some files were not shown because too many files have changed in this diff Show More