Compare commits

..

117 Commits

Author SHA1 Message Date
GassiGiuseppe
856c693650 Added possibility to whitelist relationships 2025-10-12 12:26:26 +02:00
GassiGiuseppe
e9d30b3cea add divide method to create hold out dataset 2025-10-11 16:49:36 +02:00
GassiGiuseppe
ee12f53f12 Added EOS token 2025-10-07 22:47:59 +02:00
GassiGiuseppe
a04f4c7cb7 changes to shorten the dataset 2025-10-07 15:49:25 +02:00
GassiGiuseppe
a93e61b8c1 Update ETL 2025-10-07 00:54:00 +02:00
GassiGiuseppe
0373460105 Movie filters updated 2025-10-06 10:57:50 +02:00
GassiGiuseppe
7307916891 update sql_endpoint to work with the new pipeline 2025-10-05 14:58:03 +02:00
GassiGiuseppe
acb43fc899 new faster pipeline 2025-10-05 14:57:45 +02:00
GassiGiuseppe
255d801a80 updated the mask rdf_mask_task.
however since the model will build the mask itself, it is deprecated
2025-10-05 14:56:33 +02:00
GassiGiuseppe
2bd24ec278 Created legacy folder for old pipeline
this pipeline still works but is slower then the new,
some ot its method can be used later
2025-10-05 14:54:32 +02:00
GassiGiuseppe
69fba7c3e9 new utility to generate a csv debug file of the output of the pipeline 2025-10-04 21:33:09 +02:00
GassiGiuseppe
64e355e80c Added regex to delete new lines and * from ObjectURI 2025-09-30 15:00:07 +02:00
GassiGiuseppe
007f1e9554 minor updates 2025-09-29 18:53:33 +02:00
GassiGiuseppe
c319398ca0 little update to UML pipeline 2025-09-29 17:03:31 +02:00
GassiGiuseppe
255d8a072d First implementation of the cleaning pipeline UML 2025-09-29 16:59:52 +02:00
GassiGiuseppe
8167c9d435 Added Toy Dataset entry point into the Pipeline class
Before it was forced into the sql_endpoint,
now all the pipeline can be managed in the Pipeline class
2025-09-29 16:03:49 +02:00
GassiGiuseppe
bd72ad3571 Added file to execute the complete cleaning pipeline 2025-09-29 15:21:26 +02:00
GassiGiuseppe
6ddb7de9da Added sqlAlchemy to requirements 2025-09-29 15:19:19 +02:00
GassiGiuseppe
650b37c586 Added vscode setting to execute jupyternotebook from root dir 2025-09-26 11:24:34 +02:00
GassiGiuseppe
e521b0704e deleted TODO in path_splitter_tree, as it was already resolved 2025-09-25 19:19:11 +02:00
Christian Risi
0a698e9837 Added schema to extract from DB for BPE 2025-09-25 19:09:52 +02:00
GassiGiuseppe
9440a562f2 Merge branch 'dev.etl' of https://repositories.communitynotfound.work/PoliBa-DeepLearning/NanoSocrates into dev.etl 2025-09-25 18:33:51 +02:00
Christian Risi
5eda131aac Fixed creation query to be unique even with movieID in RDFs 2025-09-25 17:58:09 +02:00
GassiGiuseppe
57884eaf2e CSV support added to path_splitter_tree
Also resolved a minor bug to print also leaf nodes
2025-09-25 17:57:46 +02:00
Christian Risi
4548a683c2 Fixed DB 2025-09-25 17:57:45 +02:00
GassiGiuseppe
3eec49ffa5 WIP: added test file: clean_relationship.jupyter
to create a first cleaning pipeline
2025-09-25 16:28:24 +02:00
Christian Risi
0bc7f4b227 Fixed Typos 2025-09-25 12:37:52 +02:00
Christian Risi
f28952b0a2 Added todo 2025-09-25 12:00:26 +02:00
Christian Risi
0b626a8e09 Modified query to take all data 2025-09-25 11:53:12 +02:00
Christian Risi
b254098532 Added views to count for subjects and objects 2025-09-25 11:40:44 +02:00
Christian Risi
ee88ffe4cf Added View to filter over relationship counts 2025-09-25 11:32:03 +02:00
Christian Risi
70b4bd8645 Added Complex query 2025-09-25 11:31:34 +02:00
Christian Risi
6316d2bfc4 Added queries to take data from SQL for dataset 2025-09-25 11:27:19 +02:00
Christian Risi
87ca748f45 Updated DB to reflect new changes 2025-09-24 19:29:57 +02:00
Christian Risi
4315d70109 Merged abbreviation_datawarehouse into datawarehouse 2025-09-24 19:29:43 +02:00
Christian Risi
9a5d633b5e Fixed Typos 2025-09-24 19:29:07 +02:00
Christian Risi
a6760cd52d Updated SQL Queries to support parsing in DB 2025-09-24 19:28:55 +02:00
GassiGiuseppe
a7eb92227d Moved all db queries file in their own folder 2025-09-24 16:44:55 +02:00
GassiGiuseppe
9f221e31cd Merge branch 'dev.etl' of https://repositories.communitynotfound.work/PoliBa-DeepLearning/NanoSocrates into dev.etl 2025-09-24 16:32:52 +02:00
GassiGiuseppe
47197194d5 WIP abbrevietion_datawarehouse to creat an abbreviation system 2025-09-24 16:32:09 +02:00
Christian Risi
0cdbf6f624 Added query to retrieve a dirty dataset from SQLite DB 2025-09-24 16:15:47 +02:00
Christian Risi
3e30489f86 Updated Queries for DB 2025-09-24 14:44:53 +02:00
Christian Risi
8a22e453e4 Fixed csv 2025-09-24 14:44:25 +02:00
Christian Risi
7feb4eb857 Fixed URI generation 2025-09-24 14:44:07 +02:00
Christian Risi
70af19d356 Removed unused imports and added trailing slashes 2025-09-24 14:04:48 +02:00
Christian Risi
a4b44ab2ee Fixed Typos 2025-09-24 14:04:27 +02:00
Christian Risi
74b6b609dd Fixed typos 2025-09-24 13:59:19 +02:00
Christian Risi
59796c37cb Added script to take dbpedia uris 2025-09-24 13:49:29 +02:00
Christian Risi
f696f5950b Added uri-abbreviations 2025-09-24 13:48:53 +02:00
Christian Risi
605b496da7 Added barebone UML diagram for a Cleaning Pipeline 2025-09-23 19:49:01 +02:00
Christian Risi
7d693964dd Added new directories to tree structure 2025-09-23 19:47:56 +02:00
Christian Risi
25f401b577 Fixed bug for parsing and added CLI functionalities 2025-09-23 17:58:08 +02:00
Christian Risi
14c5ade230 Added CLI functionalities 2025-09-23 17:57:38 +02:00
4c9c51f902 Added barebone to have a splitter 2025-09-23 15:34:53 +02:00
GassiGiuseppe
63c1a4a160 added little snippet to rebuild db from db_creation.sql 2025-09-22 17:52:23 +02:00
GassiGiuseppe
51114af853 DataRetrivial deleted since it does the same thing as datawarehouse.py 2025-09-22 17:51:35 +02:00
GassiGiuseppe
3a6dca0681 Infos about Dataset contruction from csv moved
from python file to markdown
2025-09-22 17:39:44 +02:00
GassiGiuseppe
346098d2b7 Added query.sql , file with the query used to populate the Dataset 2025-09-22 17:21:32 +02:00
GassiGiuseppe
64f9b41378 Built datawarehouse.py which populate the dataset 2025-09-22 17:17:22 +02:00
GassiGiuseppe
ac1ed42c49 Folder DataCleaning renamed to DatasetMerging since it doesn't clean nothing
and instead Build the dataset
2025-09-22 17:11:49 +02:00
GassiGiuseppe
edd01a2c83 Dataset updated, the new one is built with the new method
( 50 new rows found ... upon 13 milion )
2025-09-22 16:57:06 +02:00
GassiGiuseppe
5aa9e3fcf3 Added in DBPEDIA the query to get Film \ wiki page ID
plus some editing
2025-09-22 15:42:57 +02:00
GassiGiuseppe
0970cabf92 reverse.csv grammar correction of the header
it seemed to have missplaced the header also in the middle of the csv
2025-09-22 13:47:20 +02:00
GassiGiuseppe
a26d92750f Update movie-pageid.csv : grammar correction of the header 2025-09-22 12:59:35 +02:00
GassiGiuseppe
34c4782232 Dataset.db update. it seems to be correct 2025-09-20 23:33:56 +02:00
GassiGiuseppe
c5439533e6 DataRetrivial update, without df 2025-09-20 23:32:08 +02:00
GassiGiuseppe
8819b8e87f DataRetrivial populate the db from csv 2025-09-20 19:56:24 +02:00
Christian Risi
1076dc8aa6 Run /Scripts/DataCleaning/SQL_Queries/db_creation.sql 2025-09-20 16:39:16 +02:00
Christian Risi
3d15e03b09 Renamed file to fix spelling 2025-09-20 16:38:38 +02:00
Christian Risi
0ee2ec6fcd Spelling corrections 2025-09-20 16:37:57 +02:00
Christian Risi
95cfa5486c Added instructions to create databse schema 2025-09-20 16:30:08 +02:00
GassiGiuseppe
0d30e90ee0 Created file for the db DatawareHouse
Also decided firsts schema models into DBMerger
2025-09-20 15:53:32 +02:00
GassiGiuseppe
faaba17a98 Merge branch 'dev' of https://repositories.communitynotfound.work/PoliBa-DeepLearning/NanoSocrates into dev 2025-09-20 14:34:25 +02:00
Christian Risi
854e5f1d98 Updated file to gather data from wikipedia 2025-09-20 14:32:30 +02:00
GassiGiuseppe
242d7f674f wikipedia summary file uploaded
Dataset composed of PageId and wikipedia Summary
2025-09-20 14:32:25 +02:00
Christian Risi
de8c2afceb Added reconciliation 2025-09-19 22:22:09 +02:00
Christian Risi
f89dffff75 Created script to gather wikipedia abstracts 2025-09-19 19:01:38 +02:00
GassiGiuseppe
e39bad8348 Added Troubleshooting section to README
where are corrected some potential issue with git and big files
2025-09-19 13:39:56 +02:00
GassiGiuseppe
7a1a221017 update of the database of movie-pageid
which has subject has film uri and object wikipage id
2025-09-19 13:37:56 +02:00
Christian Risi
fafe6ae0f9 Modified tree structure with more TMP directories 2025-09-19 12:46:31 +02:00
Christian Risi
e32444df75 Updated fetchdata to be used in terminal
Changes:
  - now you can use it as if it were a cli command

Missing:
  - documentation
2025-09-19 12:35:15 +02:00
Christian Risi
b74b7ac4f0 Added new directories to make experiments and updated .gitignore
Changes:
  - Added /Scripts/Experiments/Queries to keep track
      of important queries, once set
  - Added /Scripts/Experiments/Tmp to run quick experiments
      when still unsure while explorating datasets
2025-09-19 08:43:54 +02:00
Christian Risi
22134391d9 Added Scripts/Experiment directory
This directory is to place files to make experiments
2025-09-19 08:41:46 +02:00
Christian Risi
82c9023849 Ignoring Scripts/Experiments files and always tracking .gitkeep files 2025-09-19 08:39:47 +02:00
Christian Risi
00b87e01ea Moved fetchdata.py to reflect working tree
old - ${Proj}/Scripts/fetchdata.py
new - ${Proj}/Scripts/DataGathering/fetchdata.py
2025-09-19 08:37:04 +02:00
Christian Risi
ce3d4bf6c5 Renamed dir from Script to Scripts 2025-09-19 08:31:00 +02:00
GassiGiuseppe
c415b175a0 added reverse.csv with the reletion incoming to films 2025-09-18 20:26:51 +02:00
GassiGiuseppe
ec81ea7930 Added file to gather wikipedia abstract from url 2025-09-18 20:26:11 +02:00
GassiGiuseppe
4bb03f86b3 Added file to study the most frequent relationship into a csv triplet 2025-09-18 20:25:25 +02:00
GassiGiuseppe
e5f201f3db DEVELOPMENT file makrdown created 2025-09-18 20:24:54 +02:00
GassiGiuseppe
1c715dc569 Typo correction in the markdown 2025-09-18 20:24:11 +02:00
GassiGiuseppe
6686b47328 Added SQL to obtain wikipedia url with movies 2025-09-18 20:23:10 +02:00
GassiGiuseppe
9a5a7d84fd Merge branch 'dev' of https://repositories.communitynotfound.work/PoliBa-DeepLearning/NanoSocrates into dev 2025-09-18 19:20:26 +02:00
GassiGiuseppe
9678ece9c0 Requirements changed
added Pandas and some other
2025-09-18 19:07:38 +02:00
Christian Risi
67bcd732b5 Updated movies 2025-09-18 18:36:52 +02:00
Christian Risi
1a4f900500 Updated git attributes 2025-09-18 18:36:42 +02:00
Christian Risi
ca8729b67c Merge branch 'dev' of https://repositories.communitynotfound.work/PoliBa-DeepLearning/NanoSocrates into dev 2025-09-18 18:36:30 +02:00
GassiGiuseppe
9dbffc52ed Added dataset of movies and their wikipedia's page link 2025-09-18 18:16:51 +02:00
Christian Risi
b7f504942a Created Dataset 2025-09-18 17:24:08 +02:00
Christian Risi
7f0c5ce8d3 Updated File for fetching 2025-09-18 17:23:56 +02:00
Christian Risi
9838e287a4 Updated file 2025-09-18 12:03:09 +02:00
Christian Risi
ca6143ea3c Updated Query histories 2025-09-18 11:46:32 +02:00
Christian Risi
16e7ab4d9f Modified Datasets 2025-09-17 17:30:51 +02:00
Christian Risi
28723ab662 Merge branch 'dev' of https://repositories.communitynotfound.work/PoliBa-DeepLearning/NanoSocrates into dev 2025-09-17 17:06:16 +02:00
Christian Risi
3e59efcf33 Generated datasets 2025-09-17 17:06:14 +02:00
Christian Risi
7c04309cc1 Added script to fetch data from DBPedia 2025-09-17 17:05:27 +02:00
Christian Risi
db87295890 Added history of queries 2025-09-17 17:04:58 +02:00
GassiGiuseppe
61568200a8 README update with setup chapter
where are scripted the command to manage conda and pip
2025-09-17 16:50:50 +02:00
Christian Risi
8df2736b97 Added environments 2025-09-17 16:16:58 +02:00
Christian Risi
eb5b7f629a Conda env 2025-09-17 15:53:17 +02:00
Christian Risi
79232b391e First SparQL query 2025-09-17 14:26:37 +02:00
Christian Risi
72eb937b47 Fixed Markdown violations 2025-09-17 12:51:14 +02:00
Christian Risi
cececa14ce Merge branch 'dev' of https://repositories.communitynotfound.work/PoliBa-DeepLearning/NanoSocrates into dev 2025-09-17 12:48:34 +02:00
Christian Risi
2487d44abd Added SparQL 2025-09-17 12:48:33 +02:00
GassiGiuseppe
553b86cac2 Resources file updated with Byte-Pair Encoding
a technique we will use to tokenize the engress' words
2025-09-17 12:06:01 +02:00
Christian Risi
12bd781fd3 Added workspace recommendations 2025-09-17 11:38:23 +02:00
Christian Risi
463f4907b8 Added Resources documentation 2025-09-17 11:36:02 +02:00
57 changed files with 6213 additions and 2 deletions

1
.gitattributes vendored
View File

@ -1,2 +1,3 @@
Exam/Deep_Learning_2025_VIII.pdf filter=lfs diff=lfs merge=lfs -text
Assets/** filter=lfs diff=lfs merge=lfs -text
Assets/Dataset/1-hop/dataset.csv filter=lfs diff=lfs merge=lfs -text

6
.gitignore vendored
View File

@ -189,7 +189,8 @@ ipython_config.py
.LSOverride
# Icon must end with two \r
Icon
Icon
# Thumbnails
._*
@ -251,3 +252,6 @@ $RECYCLE.BIN/
# .nfs files are created when an open file is removed but is still being accessed
.nfs*
# ---> Custom
**/Tmp/**
!**/.gitkeep

14
.vscode/extensions.json vendored Normal file
View File

@ -0,0 +1,14 @@
{
"recommendations": [
"bierner.github-markdown-preview",
"bierner.markdown-checkbox",
"bierner.markdown-emoji",
"bierner.markdown-footnotes",
"bierner.markdown-mermaid",
"bierner.markdown-preview-github-styles",
"bierner.markdown-yaml-preamble",
"davidanson.vscode-markdownlint",
"kejun.markdown-alert",
"yzhang.markdown-all-in-one"
]
}

24
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,24 @@
{
// Always treat the project root as the working dir for Jupyter
"jupyter.notebookFileRoot": "${workspaceFolder}",
// When you click "Run Python File in Terminal", DON'T cd into the file's folder
"python.terminal.executeInFileDir": false,
// Start new integrated terminals at the project root
"terminal.integrated.cwd": "${workspaceFolder}",
// Ensure Python can import from the project root no matter which file you run
// (so `src/` is on sys.path). Linux shown here; add osx/windows if needed.
"terminal.integrated.env.linux": {
"PYTHONPATH": "${workspaceFolder}"
},
// Make pytest run from the root without needing a pytest.ini
"python.testing.pytestEnabled": true,
"python.testing.cwd": "${workspaceFolder}",
"python.testing.pytestArgs": ["src/test"],
// Help Pylance resolve imports like `from src...` without red squiggles
"python.analysis.extraPaths": ["${workspaceFolder}"]
}

BIN
Assets/Dataset/1-hop/dataset.csv (Stored with Git LFS) Normal file

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:331d8ef4e99c5200f1323e7149bd8aade39dc17ee5778b553bb32c593ff601cf
3 size 2443211793

BIN
Assets/Dataset/1-hop/movie-pageid.csv (Stored with Git LFS) Normal file

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:88e387ed1338bdfd34ded22f3f8bebb2be5127857bf36fcffc266b35c534587c
3 size 10148507

BIN
Assets/Dataset/1-hop/movies.csv (Stored with Git LFS) Normal file

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:8d81c8801ea79bd46747769a288cd0c507b3b94b2fb4bbb9605e282776ca5efb
3 size 8808636

BIN
Assets/Dataset/1-hop/reverse.csv (Stored with Git LFS) Normal file

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:b4878aed66c382e73982b19fa02129d5b3c3e3e8690c28e4dd662257e1d9b119
3 size 32343972

BIN
Assets/Dataset/1-hop/uri-abbreviations.csv (Stored with Git LFS) Normal file

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:c1fcb1ad61a69145145c45c639ab42b36ffc63caa0ef9832eb81491197883ff4
3 size 8086

BIN
Assets/Dataset/1-hop/wikipedia-movie.csv (Stored with Git LFS) Normal file

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:1730dc111c0290b16d094a4b6a6577d966978d97ee9ef4202e86148cc9d8e8e8
3 size 17445736

BIN
Assets/Dataset/1-hop/wikipedia-summary.csv (Stored with Git LFS) Normal file

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:ef7b680257f16b193a9b4ea2914564b58c676955809e6b9d58058adaab7855c1
3 size 73089553

BIN
Assets/Dataset/DatawareHouse/dataset.db (Stored with Git LFS) Normal file

Binary file not shown.

View File

View File

@ -1,3 +1,28 @@
# NanoSocrates
This is the work project for the DeepLearning exam of 16th September 2025
This is the work project for the DeepLearning exam of 16th September 2025
## Index
- [Resources](./docs/RESOURCES.md)
## Setup
Create and activate you Conda enviroment with:
conda env create -f environment.yaml
conda activate deep_learning
Now install dependencies on pip:
pip install -r requirements.txt
## TroubleShooting
Sometimes when uploading really large batch of data, git can stop the uploads thanks to the timeout.
The solution is to locally change its settings:
git config lfs.dialtimeout 3600
git config lfs.activitytimeout 3600
for clearance check the link: https://stackoverflow.com/questions/58961697/i-o-timeout-when-pushing-to-a-git-reporsitory

View File

@ -0,0 +1,30 @@
-- To pass to Pandas
SELECT *
FROM RDFs
INNER JOIN Subjects USING (SubjectID)
INNER JOIN Relationships USING (RelationshipID)
INNER JOIN Objects USING (ObjectID);
-- To pass to Pandas for abstracts
SELECT *
FROM RDFs
INNER JOIN WikipediaAbstracts USING (MovieID);
-- To pass to Pandas for abbreviations
SELECT *
FROM Abbreviations;
-- More complex to have clean dataset
-- More complex to have clean dataset
SELECT MovieID, GROUP_CONCAT('<SOT>' || '<SUB>' || SubjectURI || '<REL>' || RelationshipURI || '<OBJ>' || ObjectURI || '<EOT>', '') as RDF_String, Abstract
FROM RDFs
INNER JOIN SubjectsCountInRDFs USING (SubjectID)
INNER JOIN RelationshipsCountInRDFs USING(RelationshipID)
INNER JOIN ObjectsCountInRDFs USING (ObjectID)
INNER JOIN ParsedSubjects USING (SubjectID)
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
INNER JOIN WikipediaAbstracts USING (MovieID)
-- insert WHERE here
-- WHERE SubjectID = 134626
GROUP BY MovieID;

View File

@ -0,0 +1,174 @@
CREATE TABLE IF NOT EXISTS Movies (
MovieID INTEGER PRIMARY KEY AUTOINCREMENT,
MovieURI TEXT UNIQUE NOT NULL
);
CREATE TABLE IF NOT EXISTS WikiPageIDs (
MovieID INTEGER PRIMARY KEY,
PageID INTEGER UNIQUE NOT NULL,
FOREIGN KEY(MovieID) REFERENCES Movies(MovieID)
);
CREATE TABLE IF NOT EXISTS WikipediaAbstracts (
MovieID INTEGER PRIMARY KEY,
Abstract TEXT NOT NULL,
FOREIGN KEY(MovieID) REFERENCES Movies(MovieID)
);
CREATE TABLE IF NOT EXISTS Origins (
OriginID INTEGER PRIMARY KEY AUTOINCREMENT,
OriginName TEXT UNIQUE NOT NULL
);
CREATE TABLE IF NOT EXISTS Subjects (
SubjectID INTEGER PRIMARY KEY AUTOINCREMENT,
SubjectURI TEXT UNIQUE NOT NULL,
OriginID BIGINT NOT NULL,
FOREIGN KEY(OriginID) REFERENCES Origins(OriginID)
);
CREATE TABLE IF NOT EXISTS Relationships (
RelationshipID INTEGER PRIMARY KEY AUTOINCREMENT,
RelationshipURI TEXT UNIQUE NOT NULL
);
CREATE TABLE IF NOT EXISTS Objects (
ObjectID INTEGER PRIMARY KEY AUTOINCREMENT,
ObjectURI TEXT UNIQUE NOT NULL,
OriginID BIGINT NOT NULL,
FOREIGN KEY(OriginID) REFERENCES Origins(OriginID)
);
CREATE TABLE IF NOT EXISTS RDFs (
RDF_ID INTEGER PRIMARY KEY AUTOINCREMENT,
MovieID INTEGER NOT NULL,
SubjectID INTEGER NOT NULL,
RelationshipID INTEGER NOT NULL,
ObjectID INTEGER NOT NULL,
UNIQUE(MovieID, SubjectID, RelationshipID, ObjectID),
FOREIGN KEY(MovieID) REFERENCES Movies(MovieID),
FOREIGN KEY(SubjectID) REFERENCES Subjects(SubjectID),
FOREIGN KEY(RelationshipID) REFERENCES Relationships(RelationshipID),
FOREIGN KEY(ObjectID) REFERENCES Objects(ObjectID)
);
CREATE INDEX IF NOT EXISTS idx_rdf_movie_id ON RDFs(MovieID);
CREATE INDEX IF NOT EXISTS idx_rdf_subject_id ON RDFs(SubjectID);
CREATE INDEX IF NOT EXISTS idx_rdf_relationship_id ON RDFs(RelationshipID);
CREATE INDEX IF NOT EXISTS idx_rdf_object_id ON RDFs(ObjectID);
CREATE TABLE IF NOT EXISTS Abbreviations (
AbbreviationID INTEGER PRIMARY KEY AUTOINCREMENT,
URI TEXT UNIQUE NOT NULL,
Abbreviation TEXT UNIQUE NOT NULL
);
CREATE TABLE IF NOT EXISTS Subjects_Abbreviations (
SubjectID INTEGER NOT NULL,
AbbreviationID INTEGER NOT NULL,
PRIMARY KEY(SubjectID, AbbreviationID),
FOREIGN KEY(SubjectID) REFERENCES Subjects(SubjectID),
FOREIGN KEY(AbbreviationID) REFERENCES Abbreviations(AbbreviationID)
);
CREATE TABLE IF NOT EXISTS Relationships_Abbreviations (
RelationshipID INTEGER NOT NULL,
AbbreviationID INTEGER NOT NULL,
PRIMARY KEY(RelationshipID, AbbreviationID),
FOREIGN KEY(RelationshipID) REFERENCES Relationships(RelationshipID),
FOREIGN KEY(AbbreviationID) REFERENCES Abbreviations(AbbreviationID)
);
CREATE TABLE IF NOT EXISTS Objects_Abbreviations (
ObjectID INTEGER NOT NULL,
AbbreviationID INTEGER NOT NULL,
PRIMARY KEY(ObjectID, AbbreviationID),
FOREIGN KEY(ObjectID) REFERENCES Objects(ObjectID),
FOREIGN KEY(AbbreviationID) REFERENCES Abbreviations(AbbreviationID)
);
CREATE INDEX IF NOT EXISTS idx_sub_abbr_sub_id ON Subjects_Abbreviations(SubjectID);
CREATE INDEX IF NOT EXISTS idx_sub_abbr_abbr_id ON Subjects_Abbreviations(AbbreviationID);
CREATE INDEX IF NOT EXISTS idx_rel_abbr_rel_id ON Relationships_Abbreviations(RelationshipID);
CREATE INDEX IF NOT EXISTS idx_rel_abbr_abbr_id ON Relationships_Abbreviations(AbbreviationID);
CREATE INDEX IF NOT EXISTS idx_obj_abbr_obj_id ON Objects_Abbreviations(ObjectID);
CREATE INDEX IF NOT EXISTS idx_obj_abbr_abbr_id ON Objects_Abbreviations(AbbreviationID);
-- Views
-- Subjects
CREATE VIEW IF NOT EXISTS ParsedSubjects
AS
SELECT
SubjectID,
CASE WHEN Abbreviation IS NULL
THEN SubjectURI
ELSE Abbreviation || ':' || replace(SubjectURI, URI, '') END
AS SubjectURI
FROM Subjects
LEFT JOIN Subjects_Abbreviations USING (SubjectID)
LEFT JOIN Abbreviations USING (AbbreviationID);
-- Relationships
CREATE VIEW IF NOT EXISTS ParsedRelationships
AS
SELECT
RelationshipID,
CASE WHEN Abbreviation IS NULL
THEN RelationshipURI
ELSE Abbreviation || ':' || replace(RelationshipURI, URI, '') END
AS RelationshipURI
FROM Relationships
LEFT JOIN Relationships_Abbreviations USING (RelationshipID)
LEFT JOIN Abbreviations USING (AbbreviationID);
-- Objects
CREATE VIEW IF NOT EXISTS ParsedObjects
AS
SELECT
ObjectID,
CASE WHEN Abbreviation IS NULL
THEN ObjectURI
ELSE Abbreviation || ':' || replace(ObjectURI, URI, '') END
AS ObjectURI
FROM Objects
LEFT JOIN Objects_Abbreviations USING (ObjectID)
LEFT JOIN Abbreviations USING (AbbreviationID);
-- Subject Count
CREATE VIEW IF NOT EXISTS SubjectsCountInRDFs
AS
SELECT SubjectID, count(SubjectID) as Sub_Count
FROM RDFs
GROUP BY SubjectID;
-- Relationship Count
CREATE VIEW IF NOT EXISTS RelationshipsCountInRDFs
AS
SELECT RelationshipID, count(RelationshipID) as Rel_Count
FROM RDFs
GROUP BY RelationshipID;
-- Object Count
CREATE VIEW IF NOT EXISTS ObjectsCountInRDFs
AS
SELECT ObjectID, count(ObjectID) as Obj_Count
FROM RDFs
GROUP BY ObjectID;

View File

@ -0,0 +1,55 @@
-- Insert MovieURI into Movies ; MovieID is auto incremental
INSERT INTO Movies (MovieURI) VALUES (?);
-- Get MovieID where MovieURI equal given value
SELECT MovieID FROM Movies WHERE MovieURI = ?;
-- SetPageId
INSERT INTO WikiPageIDs (MovieID, PageID) VALUES (?,?);
-- Get MovieId by PageID ... ( to create WikipediaAbstract)
SELECT MovieID FROM WikiPageIDs WHERE PageID = ?;
-- SetAbstract ...
INSERT INTO WikipediaAbstracts (MovieID, Abstract) VALUES (?,?);
-- SetOrigin
---
INSERT INTO Origins (OriginName) VALUES ("dataset.csv"),("reverse.csv");
-- GetOrigin
SELECT OriginID FROM Origins WHERE OriginName = ?;
-- Subject, Relationship, Object, RDF
INSERT INTO Subjects (SubjectURI, OriginID) VALUES (?,?);
INSERT INTO Relationships (RelationshipURI) VALUES (?);
INSERT INTO Objects (ObjectURI, OriginID) VALUES (?,?);
SELECT SubjectID FROM Subjects WHERE SubjectURI = ?;
SELECT RelationshipID FROM Relationships WHERE RelationshipURI = ?;
SELECT ObjectID FROM Objects WHERE ObjectURI = ?;
INSERT INTO RDFs (MovieID, SubjectID, RelationshipID, ObjectID) VALUES (?,?,?,?);
-- Prefixes
INSERT INTO Abbreviations(URI, Abbreviation) VALUES (?,?);
INSERT INTO Objects_Abbreviations(ObjectID, AbbreviationID) VALUES (?,?);
INSERT INTO Relationships_Abbreviations(RelationshipID, AbbreviationID) VALUES (?,?);
INSERT INTO Subjects_Abbreviations(SubjectID, AbbreviationID) VALUES (?,?);
-- Please be sure it is a URI before running this query
-- and take at least until the domain and the first path part
SELECT AbbreviationID FROM Abbreviations WHERE URI LIKE ?;
-- Query to retrieve data
SELECT MovieID, GROUP_CONCAT('<SOT>' || '<SUB>' || SubjectURI || '<REL>' || RelationshipURI || '<OBJ>' || ObjectURI || '<EOT>', '') as RDF_String, Abstract
FROM RDFs
INNER JOIN ParsedSubjects USING (SubjectID)
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
INNER JOIN WikipediaAbstracts USING (MovieID)
-- insert WHERE here
GROUP BY MovieID;

View File

@ -0,0 +1,186 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "b9081b7c",
"metadata": {},
"outputs": [],
"source": [
"# This file deletes in the pipeline the unwanted relationship by different rules\n",
"import pandas as pd\n",
"import sqlite3\n",
"import numpy as np\n",
"\n",
"\n",
"CONN = sqlite3.connect('../../Assets/Dataset/Tmp/dataset2.db')\n",
"\n",
"def get_RDF() -> pd.DataFrame:\n",
" \"\"\"\n",
" QUERY = \"SELECT * FROM RDFs \" \\\n",
" \"INNER JOIN Subjects USING (SubjectID) \" \\\n",
" \"INNER JOIN Relationships USING (RelationshipID) \" \\\n",
" \"INNER JOIN Objects USING (ObjectID);\"\n",
" RDF = pd.read_sql_query(QUERY, CONN)\n",
" RDF = RDF[[\"SubjectURI\", \"RelationshipURI\", \"ObjectURI\"]]\n",
" RDF = RDF.dropna()\n",
" \"\"\"\n",
" Subjects = pd.read_sql_query('SELECT * FROM Subjects;', CONN)\n",
" Objects = pd.read_sql_query('SELECT * FROM Objects;', CONN)\n",
" Relationships = pd.read_sql_query('SELECT * FROM Relationships;', CONN)\n",
" RDF = pd.read_sql_query('SELECT * FROM RDFs;', CONN)\n",
"\n",
" # drop '' values \n",
" Subjects = Subjects.replace('', np.nan)# .dropna()\n",
" Relationships = Relationships.replace('', np.nan)# .dropna()\n",
" Objects = Objects.replace('', np.nan)# .dropna()\n",
"\n",
" # join RDF with its components\n",
" RDF = RDF.merge(Subjects, left_on=\"SubjectID\", right_on=\"SubjectID\")\n",
" RDF = RDF.merge(Objects, left_on=\"ObjectID\", right_on=\"ObjectID\")\n",
" RDF = RDF.merge(Relationships, left_on=\"RelationshipID\", right_on=\"RelationshipID\")\n",
" RDF = RDF[[\"SubjectURI\", \"RelationshipURI\", \"ObjectURI\", \"MovieID\"]]\n",
" return RDF\n",
"\n",
"\n",
"#def delete_relationship_by_uri(RDF: pd.DataFrame, )\n",
"\n",
"def delete_relationship_by_uri(RDF: pd.DataFrame, uri: str) -> pd.DataFrame:\n",
" return RDF[RDF[\"RelationshipURI\"]!= uri]\n",
"\n",
"\n",
"\n",
"RDF = get_RDF()\n",
"# RDF = RDF.dropna()\n",
"# print(RDF)\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "644690bb",
"metadata": {},
"outputs": [],
"source": [
"def filter_by_frequence_relationship_uri(RDF: pd.DataFrame, count_treshold) -> pd.DataFrame:\n",
" counts = RDF[\"RelationshipURI\"].value_counts() \n",
" RDF[\"RelationshipFreq\"] = RDF[\"RelationshipURI\"].map(counts)\n",
" RDF = RDF[RDF[\"RelationshipFreq\"] >= count_treshold]\n",
" # counts is a series as key: relationship, value: count\n",
" # counts = counts[counts > count_treshold]\n",
" # relationships = counts.index\n",
" # RDF = RDF[RDF[\"RelationshipURI\"].isin(relationships)]\n",
" # RDF = RDF.groupby(\"RelationshipURI\").filter(lambda x: len(x) >= count_treshold)\n",
" return RDF\n",
"\n",
"RDF = filter_by_frequence_relationship_uri(RDF, 1)\n",
"# print(new_RDF)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "34525be6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" SubjectURI \\\n",
"0 http://dbpedia.org/resource/Nights_of_Cabiria \n",
"1 http://dbpedia.org/resource/California_Science... \n",
"2 http://dbpedia.org/resource/China_Captain \n",
"3 http://dbpedia.org/resource/Caravan_of_Courage... \n",
"4 http://dbpedia.org/resource/WHIH_Newsfront \n",
"... ... \n",
"12725500 http://dbpedia.org/resource/I_Will_Follow_(film) \n",
"12725501 http://dbpedia.org/resource/I_Will_Follow_(film) \n",
"12725502 http://dbpedia.org/resource/I_Witnessed_Genoci... \n",
"12725503 http://dbpedia.org/resource/I_Woke_Up_Early_th... \n",
"12725504 http://dbpedia.org/resource/I_Won't_Play \n",
"\n",
" RelationshipURI \\\n",
"0 http://www.w3.org/2002/07/owl#differentFrom \n",
"1 http://www.w3.org/2002/07/owl#differentFrom \n",
"2 http://www.w3.org/2002/07/owl#differentFrom \n",
"3 http://www.w3.org/2002/07/owl#differentFrom \n",
"4 http://www.w3.org/2000/01/rdf-schema#seeAlso \n",
"... ... \n",
"12725500 http://dbpedia.org/ontology/producer \n",
"12725501 http://dbpedia.org/ontology/producer \n",
"12725502 http://dbpedia.org/ontology/producer \n",
"12725503 http://dbpedia.org/ontology/producer \n",
"12725504 http://dbpedia.org/ontology/producer \n",
"\n",
" ObjectURI MovieID \\\n",
"0 http://dbpedia.org/resource/Cabiria 26 \n",
"1 http://dbpedia.org/resource/California_Academy... 185 \n",
"2 http://dbpedia.org/resource/Captain_China 614 \n",
"3 http://dbpedia.org/resource/Caravan_of_Courage... 740 \n",
"4 http://dbpedia.org/resource/Captain_America:_C... 594 \n",
"... ... ... \n",
"12725500 http://dbpedia.org/resource/Ava_DuVernay 145854 \n",
"12725501 http://dbpedia.org/resource/Molly_Mayeux 145854 \n",
"12725502 http://dbpedia.org/resource/Headlines_Today 145861 \n",
"12725503 http://dbpedia.org/resource/Billy_Zane 145862 \n",
"12725504 http://dbpedia.org/resource/Gordon_Hollingshead 145864 \n",
"\n",
" RelationshipFreq MovieFreq \n",
"0 2132 216 \n",
"1 2132 264 \n",
"2 2132 66 \n",
"3 2132 131 \n",
"4 1653 133 \n",
"... ... ... \n",
"12725500 80077 95 \n",
"12725501 80077 95 \n",
"12725502 80077 41 \n",
"12725503 80077 98 \n",
"12725504 80077 91 \n",
"\n",
"[12725505 rows x 6 columns]\n"
]
}
],
"source": [
"def filter_by_frequence_movie_id(RDF: pd.DataFrame, min_treshold, max_treshold) -> pd.DataFrame:\n",
" counts = RDF[\"MovieID\"].value_counts() \n",
" RDF[\"MovieFreq\"] = RDF[\"MovieID\"].map(counts)\n",
" RDF = RDF[RDF[\"MovieFreq\"] >= min_treshold]\n",
" RDF = RDF[RDF[\"MovieFreq\"] < max_treshold]\n",
" # counts is a series as key: relationship, value: count\n",
" # counts = counts[counts > count_treshold]\n",
" # relationships = counts.index\n",
" # RDF = RDF[RDF[\"RelationshipURI\"].isin(relationships)]\n",
" # RDF = RDF.groupby(\"RelationshipURI\").filter(lambda x: len(x) >= count_treshold)\n",
" return RDF\n",
"\n",
"RDF = filter_by_frequence_movie_id(RDF, 1, 1500)\n",
"print(RDF)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,21 @@
from Scripts.Libs.Utils.dataframe_interaction import get_raw_from_dataframe
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
import pandas as pd
class BPE_corpus():
def __init__(self, output_path :str):
self.output_handler = open(output_path, "w")
def close(self):
# add corpus end before closing
self.output_handler.write(SpecialToken.CORPUS_END.value)
self.output_handler.close()
def write_from_str(self, output: str):
if output == '':
return
self.output_handler.write(output)
def write_from_df(self, df: pd.DataFrame):
self.write_from_str(get_raw_from_dataframe(df))

View File

@ -0,0 +1,21 @@
import pandas as pd
class Debug_csv():
def __init__(self, output_path:str):
self.output = open(output_path, "w")
# then the first row as header
header = ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
self.output.write(",".join(header) + "\n")
def close(self):
self.output.close()
def write(self, RDF: pd.DataFrame):
"""
Args:
RDF (pd.DataFrame): ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
"""
RDF.to_csv(self.output, index=False, header=False)

View File

@ -0,0 +1,26 @@
import pandas as pd
class RDF_completation_task_dataset():
"""
Write the CSV for the fourth task, which is "Predicting subsequent triples based on a given context".
Each RDF is saved as str
CSV Composition: ["MovieID","RDF"]
"""
def __init__(self, output_path:str):
self.output = open(output_path, "w")
# then the first row as header
header = ["MovieID","RDF"]
self.output.write(",".join(header) + "\n")
def close(self):
self.output.close()
def write(self, RDF: pd.DataFrame):
"""
Args:
RDF (pd.DataFrame): ["MovieID","RDF"]
"""
RDF.to_csv(self.output, index=False, header=False)

View File

@ -0,0 +1,58 @@
import pandas as pd
# do not worry about circular dependencies, this class will never call something else
from Scripts.DataCleaning.legacy.filter import PipelineApplier
class RDF_mask_task_dataset():
"""
Write the CSV for the third task, which is "Predicting a masked component within an RDF triple".
The CSV is like: for each RDF there will be 3 rows, where every time one of the componments is missing.
CSV Composition: ["MovieID","IncompleteRDF","Missing","RDF"]
"""
def __init__(self, output_path:str):
# this methods will only be used by this class, but they belong in a lower level
self._build_triple = PipelineApplier.build_triple
self._build_incomplete_triple = PipelineApplier.build_incomplete_triple
self.output = open(output_path, "w")
# then the first row as header
header = ["MovieID","IncompleteRDF","Missing","RDF"]
self.output.write(",".join(header) + "\n")
def close(self):
self.output.close()
def write(self, RDF: pd.DataFrame):
rdf_complete = self._build_triple(RDF)
rdf_without_subject = self._build_incomplete_triple(RDF.drop(columns=["SubjectURI"]))
rdf_without_relationship = self._build_incomplete_triple(RDF.drop(columns=["RelationshipURI"]))
rdf_without_object = self._build_incomplete_triple(RDF.drop(columns=["ObjectURI"]))
####
df_subject = pd.DataFrame({
"MovieID": RDF["MovieID"],
"IncompleteRDF": rdf_without_subject,
"Missing": RDF["SubjectURI"],
"RDF": rdf_complete,
})
df_relationship = pd.DataFrame({
"MovieID": RDF["MovieID"],
"IncompleteRDF": rdf_without_relationship,
"Missing": RDF["RelationshipURI"],
"RDF": rdf_complete,
})
df_object = pd.DataFrame({
"MovieID": RDF["MovieID"],
"IncompleteRDF": rdf_without_object,
"Missing": RDF["ObjectURI"],
"RDF": rdf_complete,
})
output_df = pd.concat([df_subject, df_relationship, df_object], ignore_index=True)
output_df.to_csv(self.output, index=False, header=False)

View File

@ -0,0 +1,26 @@
import pandas as pd
class RDF_text_task_dataset():
"""
Write the CSV for the firsts two tasks, which are "Generating structured RDF triples from natural language text" and reverse.
In the CVS the RDFs will be saved toghether as a string.
CSV Composition: ["MovieID","RDFs","Abstract"]
"""
def __init__(self, output_path:str):
self.output = open(output_path, "w")
# then the first row as header
header = ["MovieID","RDFs","Abstract"]
self.output.write(",".join(header) + "\n")
def close(self):
self.output.close()
def write(self, RDF: pd.DataFrame):
"""
Args:
RDF (pd.DataFrame): ["MovieID","Triple","Abstract"]
"""
RDF.to_csv(self.output, index=False, header=False)

View File

@ -0,0 +1,77 @@
import argparse
import sys
class ProgramArgs:
def __init__(self, file: str, output: str, treshold: int):
self.file = file
self.output = output
self.treshold = treshold
def get_args(args: list[str]) -> ProgramArgs:
PARSER = argparse.ArgumentParser()
PARSER.add_argument("--input-file", "-i", required=True, type=str)
PARSER.add_argument("--output-file", "-o", required=True, type=str)
PARSER.add_argument("--treshold", "-t", type=int, default=1)
parsed_args, _ = PARSER.parse_known_args(args)
# print(parsed_args.input_file)
return ProgramArgs(parsed_args.input_file,parsed_args.output_file, parsed_args.treshold) # type ignore
def print_dbpedia(file: str, out: str):
FILE = open(file, "r", encoding="utf-8")
OUT = open(out, mode="w", encoding="utf-8")
DOMAIN_PART = "dbpedia"
already_parsed : set[str] = set()
for row in FILE:
sections = row.split("/")
sections = list(filter(lambda item: item != "", sections))
# print(sections)
if len(sections) < 3:
continue
URI = "/".join(sections[1:3])
URI = "//".join([sections[0], URI])
if URI in already_parsed:
continue
DOMAIN = sections[1]
SUBDOMAINS = DOMAIN.split(".")
TYPE = sections[2][0]
if DOMAIN_PART not in SUBDOMAINS:
continue
already_parsed.add(URI)
SUB_ID = SUBDOMAINS[0]
if len(SUB_ID) > 3:
SUB_ID = SUB_ID[:3]
OUT.write(f"\"{URI}/\", \"{SUB_ID}-db{TYPE}\"\n")
FILE.close()
OUT.close()
if __name__ == "__main__":
ARGS = get_args(sys.argv)
# ARGS = get_debug_args()
print_dbpedia(ARGS.file, ARGS.output)

View File

@ -0,0 +1,29 @@
import pandas as pd
def split_csv_by_percent(csv_path, train=70, val=15, test=15, seed=42):
# 1) Read and shuffle rows with a fixed seed for reproducibility
df = pd.read_csv(csv_path).sample(frac=1, random_state=seed).reset_index(drop=True)
# 2) Turn the three inputs into proportions relative to their sum
total = train + val + test # eheh you got it there :p
n = len(df)
n_train = int(n * train / total) # floor to keep indices integral
n_val = int(n * val / total)
# 3) Give the remainder to test to ensure every row is assigned
# (this naturally absorbs any rounding loss)
train_df = df.iloc[:n_train].reset_index(drop=True)
val_df = df.iloc[n_train:n_train + n_val].reset_index(drop=True)
test_df = df.iloc[n_train + n_val:].reset_index(drop=True)
return train_df, val_df, test_df
# usage:
DATASET = "Assets/Dataset/Tmp/rdf_text.csv"
TRAIN = "Assets/Dataset/Tmp/hold_out/train.csv"
TEST = "Assets/Dataset/Tmp/hold_out/test.csv"
EVALUATION = "Assets/Dataset/Tmp/hold_out/evaluation.csv"
train_df, val_df, test_df = split_csv_by_percent(DATASET, train=80, val=10, test=10, seed=42)
train_df.to_csv(TRAIN)
val_df.to_csv(EVALUATION)
test_df.to_csv(TEST)

View File

@ -0,0 +1,381 @@
# This file deletes in the pipeline the unwanted relationship by different rules
# -----------------------------------------------------------------------------
# SQL-FIRST VERSION
# -----------------------------------------------------------------------------
# In the original (pandas) version this module:
# - stored frequency filters in DataFrames,
# - filtered/cleaned DataFrames in-memory,
# - added special tokens via string ops,
# - rebuilt one row per movie using groupby/aggregation.
#
# In this rewrite:
# - Every transformation RETURNS a SQLAlchemy `Select` object instead of a DataFrame.
# - Your pipeline can pass this `Select` (a "dataview") from one stage to the next,
# composing more SQL lazily. Nothing is executed until you call `session.execute(...)`.
# - Frequency filters are represented as SUBSELECTS, applied with `WHERE IN (subquery)`.
#
# Notes:
# - We keep the same CLASS and METHOD NAMES to preserve call sites.
# - Method comments/docstrings from your original file are carried over and updated
# to reflect Select-based behavior and return types.
# - We drop pandas/numpy/sqlite3 imports because filtering is pushed into SQL.
# - `GROUP_CONCAT` is used for the rebuild phase (SQLite-compatible). For other DBs,
# swap with an equivalent string-agg function.
# -----------------------------------------------------------------------------
from __future__ import annotations
from typing import Optional
from sqlalchemy import select, func, literal
from sqlalchemy.sql import Select
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
class PipelineApplier():
"""
SQL-first pipeline applier.
In the pandas version, frequency filters were stored as DataFrames (self.MOVIE_FILTER / self.REL_FILTER)
and every method worked with/returned pandas.DataFrame. In this SQLAlchemy rewrite:
- self.MOVIE_FILTER and self.REL_FILTER become *subselects* (Select objects) that yield a single
column each (MovieID or RelationshipURI). These subselects can be applied via `WHERE IN (subquery)`.
- Every method that previously returned a DataFrame now returns a *Select* that represents the same
logical transformation, but pushed into the database engine.
- Comments and docstrings are updated to reflect SQL semantics while preserving your original intent.
"""
def __init__(self):
# In the pandas version these were DataFrames storing allowed keys.
# Here they are Select objects (single-column subselects) or None.
# Expected column names:
# - self.MOVIE_FILTER: "MovieID"
# - self.REL_FILTER: "RelationshipURI"
self.MOVIE_FILTER: Optional[Select] = None
self.REL_FILTER: Optional[Select] = None
# -------------------------------------------------------------------------
# Relationship deletion
# -------------------------------------------------------------------------
def delete_relationship_by_str(self, RDF: Select, uri: str) -> Select:
"""
Return a Select where rows having the given relationship URI are removed.
Original signature (pandas):
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame
Updated behavior:
- RDF is a Select with columns: MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
- We apply a WHERE clause: RelationshipURI != <uri>
- Returns a Select you can continue composing.
Args:
RDF (Select): a selectable representing the RDF joined view
uri (str): RelationshipURI to exclude
Returns:
Select: filtered selectable (no execution yet)
"""
sc = RDF.selected_columns
return RDF.where(sc.RelationshipURI != literal(uri))
# -------------------------------------------------------------------------
# Frequency filter: MOVIE
# -------------------------------------------------------------------------
def generate_frequency_movie_filter(self, MOVIE_COUNT: Select, min_treshold: int, max_treshold: int):
"""
You MUST call this before filtering by movie frequency [filter_by_frequency_movie_id()],
since this method creates such filter.
Original behavior:
- Input MOVIE_COUNT as DataFrame ["MovieID","Count"]
- Keep rows where Count in [min_treshold, max_treshold)
- Store the filtered keys in self.MOVIE_FILTER
Updated behavior (SQL):
- MOVIE_COUNT is a Select that yields ["MovieID","Count"].
- We build and store a *subselect* of allowed MovieID (single column) to be used by WHERE IN.
- No query is executed here; we only create a new Select.
Args:
MOVIE_COUNT (Select): yields columns MovieID, Count
min_treshold (int):
max_treshold (int):
"""
sc = MOVIE_COUNT.selected_columns
filtered = MOVIE_COUNT.where(sc.Count >= min_treshold).where(sc.Count < max_treshold)
# Keep only the key column so it can be used in an IN (subquery)
self.MOVIE_FILTER = select(filtered.selected_columns.MovieID)
# -------------------------------------------------------------------------
# Frequency filter: RELATIONSHIP
# -------------------------------------------------------------------------
def generate_frequency_relationship_filter(self, REL_COUNT: Select, min_treshold: int, max_treshold: int):
"""
Original behavior:
- Input REL_COUNT as DataFrame ["RelationshipURI","Count"]
- Keep rows where Count in [min_treshold, max_treshold)
- Store the filtered keys in self.REL_FILTER
Updated behavior (SQL):
- REL_COUNT is a Select that yields ["RelationshipURI","Count"].
- We build and store a *subselect* of allowed RelationshipURI (single column) to be used by WHERE IN.
- No query is executed here; we only create a new Select.
Args:
REL_COUNT (Select): yields columns RelationshipURI, Count
min_treshold (int):
max_treshold (int):
"""
sc = REL_COUNT.selected_columns
filtered = REL_COUNT.where(sc.Count >= min_treshold).where(sc.Count < max_treshold)
self.REL_FILTER = select(filtered.selected_columns.RelationshipURI)
# -------------------------------------------------------------------------
# Apply frequency filters
# -------------------------------------------------------------------------
def filter_by_frequency_movie_id(self, RDF: Select) -> Select:
"""
Original behavior (pandas):
RDF = RDF[RDF["MovieID"].isin(self.MOVIE_FILTER["MovieID"])]
Updated behavior (SQL):
- If self.MOVIE_FILTER is present, apply: WHERE MovieID IN ( <subselect> )
- Otherwise, return RDF unchanged.
Args:
RDF (Select): current dataset
Returns:
Select: filtered dataset (or unchanged if no filter exists)
"""
if self.MOVIE_FILTER is None:
return RDF
sc = RDF.selected_columns
return RDF.where(sc.MovieID.in_(self.MOVIE_FILTER))
def filter_by_frequency_relationship(self, RDF: Select) -> Select:
"""
Original behavior (pandas):
RDF = RDF[RDF["RelationshipURI"].isin(self.REL_FILTER["RelationshipURI"])]
Updated behavior (SQL):
- If self.REL_FILTER is present, apply: WHERE RelationshipURI IN ( <subselect> )
- Otherwise, return RDF unchanged.
Args:
RDF (Select): current dataset
Returns:
Select: filtered dataset (or unchanged if no filter exists)
"""
if self.REL_FILTER is None:
return RDF
sc = RDF.selected_columns
return RDF.where(sc.RelationshipURI.in_(self.REL_FILTER))
# -------------------------------------------------------------------------
# Token prefixing (SubjectURI/RelationshipURI/ObjectURI)
# -------------------------------------------------------------------------
def rdf_add_special_token(self, RDF: Select) -> Select:
"""
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI,
OBJ to ObjectURI, REL to RelationshipURI. Check
Scripts/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
It only adds the special token of the three elements of the RDF; no other special token.
Original behavior (pandas):
- String concatenation with columns in a DataFrame.
- Returned a new DataFrame.
Updated behavior (SQL):
- Build projected columns using SQL string concatenation.
- Return a new Select with the same output column names:
["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"].
Args:
RDF (Select): current dataset
Returns:
Select: projected dataset with tokenized SubjectURI/RelationshipURI/ObjectURI
"""
sc = RDF.selected_columns
subj_tok = literal(SpecialToken.SUBJECT.value) + sc.SubjectURI
rel_tok = literal(SpecialToken.RELATIONSHIP.value) + sc.RelationshipURI
obj_tok = literal(SpecialToken.OBJECT.value) + sc.ObjectURI
return RDF.with_only_columns(
sc.MovieID.label("MovieID"),
subj_tok.label("SubjectURI"),
rel_tok.label("RelationshipURI"),
obj_tok.label("ObjectURI"),
sc.Abstract.label("Abstract"),
)
# -------------------------------------------------------------------------
# NA/empty drop on key columns (SubjectURI, RelationshipURI, ObjectURI)
# -------------------------------------------------------------------------
def drop_na_from_dataset(self, RDF: Select) -> Select:
"""
Dataset has SubjectURI, RelationshipURI, ObjectURI. We want to drop rows
where any of these is empty or NULL.
Original behavior (pandas):
- Replace '' with NaN and dropna on the three columns.
Updated behavior (SQL):
- Apply WHERE clauses checking for NOT NULL and not empty string.
Args:
RDF (Select): current dataset
Returns:
Select: dataset filtered to non-empty SubjectURI/RelationshipURI/ObjectURI
"""
sc = RDF.selected_columns
return RDF.where(
(sc.SubjectURI.is_not(None)) & (sc.SubjectURI != "") &
(sc.RelationshipURI.is_not(None)) & (sc.RelationshipURI != "") &
(sc.ObjectURI.is_not(None)) & (sc.ObjectURI != "")
)
# -------------------------------------------------------------------------
# Rebuild by movie (one row per movie)
# -------------------------------------------------------------------------
def rebuild_by_movie(self, RDF: Select) -> Select:
"""
To execute this method you have to have iterated by movie_id conceptually,
because as design we want at the end one row for each movie.
Original behavior (pandas):
- Build per-row "Triple" as SubjectURI + RelationshipURI + ObjectURI,
wrapped with START_TRIPLE/END_TRIPLE.
- Group by ["MovieID", "Abstract"] and join ("".join) all Triple strings into one.
- Prefix the whole list with START_TRIPLE_LIST and Abstract with ABSTRACT.
- Return DataFrame [["MovieID","Triple","Abstract"]].
Updated behavior (SQL):
- Build per-row Triple using SQL string concatenation and constants.
- Use GROUP_CONCAT (empty separator) to aggregate per-movie.
- Prefix with START_TRIPLE_LIST and ABSTRACT in SQL.
- Return a Select with columns: ["MovieID","Triple","Abstract"].
Args:
RDF (Select): current dataset with columns
MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
Returns:
Select: aggregated dataset with one row per movie
"""
sc = RDF.selected_columns
# Per-row triple with START/END_TRIPLE tokens
row_triple = (
literal(SpecialToken.START_TRIPLE.value) +
(sc.SubjectURI + sc.RelationshipURI + sc.ObjectURI) +
literal(SpecialToken.END_TRIPLE.value)
).label("Triple")
# Prefixed abstract
abstract_tok = (literal(SpecialToken.ABSTRACT.value) + sc.Abstract).label("Abstract")
# Subquery of per-row triples / abstracts
row_view = RDF.with_only_columns(
sc.MovieID.label("MovieID"),
row_triple,
abstract_tok,
).subquery()
# Concatenate all triples for each movie (SQLite syntax; adjust for other DBs)
triple_concat = (
literal(SpecialToken.START_TRIPLE_LIST.value) +
func.group_concat(row_view.c.Triple, literal(""))
).label("Triple")
return (
select(
row_view.c.MovieID.label("MovieID"),
triple_concat,
row_view.c.Abstract.label("Abstract"),
)
.group_by(row_view.c.MovieID, row_view.c.Abstract)
)
# -------------------------------------------------------------------------
# Build triple(s) projection
# -------------------------------------------------------------------------
@staticmethod
def build_triple(RDF: Select) -> Select:
"""
Obtains joined RDF triple in one element, together with START and END special tokens.
Original behavior (pandas):
- Returned a Series/DataFrame column "Triple" built from three string columns.
Updated behavior (SQL):
- Returns a Select with a single column "Triple" built in SQL.
Args:
RDF (Select): at least columns ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
Select: a projection containing one column named "Triple"
"""
sc = RDF.selected_columns
triple = (
literal(SpecialToken.START_TRIPLE.value) +
(sc.SubjectURI + sc.RelationshipURI + sc.ObjectURI) +
literal(SpecialToken.END_TRIPLE.value)
).label("Triple")
return RDF.with_only_columns(triple)
@staticmethod
def build_incomplete_triple(RDF: Select) -> Select:
"""
Method helper used for the third task: "Predicting a masked component within an RDF triple".
Obtains joined RDF triple in one element, together with START and END special tokens.
The MISSING element will be replaced by the special token <MASK>.
Original behavior (pandas):
- Created a Series "Triple" using fallback values for missing columns.
Updated behavior (SQL):
- Uses COALESCE to replace NULLs with <MASK> directly in SQL.
- Returns a Select with a single column "Triple".
Args:
RDF (Select): 2 of the following columns present ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
Select: projection with column "Triple"
"""
sc = RDF.selected_columns
mask = literal(SpecialToken.MASK.value)
triple = (
literal(SpecialToken.START_TRIPLE.value) +
(func.coalesce(sc.SubjectURI, mask) +
func.coalesce(sc.RelationshipURI, mask) +
func.coalesce(sc.ObjectURI, mask)) +
literal(SpecialToken.END_TRIPLE.value)
).label("Triple")
return RDF.with_only_columns(triple)
@staticmethod
def build_for_mask_task(RDF_incomplete: Select, MISSING) -> None:
"""
Currently not used.
Original intention:
Given two DataFrames (one incomplete RDF and another with just the missing component),
apply special tokens accordingly.
Updated note:
This stub remains for API parity. If needed in the future, it can be implemented
as a Select-building helper that merges/COALESCEs columns from different selects.
"""
return None

View File

@ -0,0 +1,148 @@
# This file deletes in the pipeline the unwanted relationship by different rules
import pandas as pd
import sqlite3 # kept for compatibility
import numpy as np
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class PipelineApplier:
def __init__(self):
# Fast internal caches for O(1) membership checks
self._MOVIE_FILTER_SET = set()
self._REL_FILTER_SET = set()
# ------------------------------
# Filters
# ------------------------------
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame:
# Vectorized boolean mask
return RDF.loc[RDF["RelationshipURI"] != uri]
def generate_frequency_movie_filter(self, MOVIE_COUNT: pd.DataFrame, min_threshold: int, max_threshold: int):
"""
You MUST call this before filter the dataset by movie frequency [filter_by_frequency_movie_id()],
since this method creates such filter.
Args:
MOVIE_COUNT (pd.DataFrame): ["MovieID","Count"]
"""
sel = (MOVIE_COUNT["Count"] >= min_threshold) & (MOVIE_COUNT["Count"] < max_threshold)
self._MOVIE_FILTER_SET = set(MOVIE_COUNT.loc[sel, "MovieID"].tolist())
def generate_frequency_relationship_filter(self, REL_COUNT: pd.DataFrame, min_threshold: int, max_threshold: int):
sel = (REL_COUNT["Count"] >= min_threshold) & (REL_COUNT["Count"] < max_threshold)
self._REL_FILTER_SET = set(REL_COUNT.loc[sel, "RelationshipURI"].tolist())
def filter_by_frequency_movie_id(self, RDF: pd.DataFrame) -> pd.DataFrame:
# Set-backed isin is the fastest path
return RDF.loc[RDF["MovieID"].isin(self._MOVIE_FILTER_SET)]
def filter_by_frequency_relationship(self, RDF: pd.DataFrame) -> pd.DataFrame:
return RDF.loc[RDF["RelationshipURI"].isin(self._REL_FILTER_SET)]
# ------------------------------
# Cleaning & preprocessing
# ------------------------------
def rdf_add_special_token(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""
Adds RDF special token to SubjectURI / RelationshipURI / ObjectURI.
Returns a new DataFrame (no inplace modification of the caller's object).
"""
subj = np.char.add(SpecialToken.SUBJECT.value, RDF["SubjectURI"].to_numpy(dtype=object))
rel = np.char.add(SpecialToken.RELATIONSHIP.value, RDF["RelationshipURI"].to_numpy(dtype=object))
obj = np.char.add(SpecialToken.OBJECT.value, RDF["ObjectURI"].to_numpy(dtype=object))
return RDF.assign(SubjectURI=subj, RelationshipURI=rel, ObjectURI=obj)
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""
Replace '' with NaN only on key columns, then drop rows missing any of them.
"""
cols = ["SubjectURI", "RelationshipURI", "ObjectURI"]
rdf = RDF.copy()
for c in cols:
m = rdf[c] == ""
if m.any():
rdf.loc[m, c] = np.nan
return rdf.dropna(subset=cols)
# ------------------------------
# Building triples
# ------------------------------
@staticmethod
def build_triple(RDF: pd.DataFrame):
"""
Obtains joined RDF triple in one element, together with START and END special token.
Returns:
pd.Series: RDF["Triple"] (just this column). Side-effect: sets RDF["Triple"].
"""
start = SpecialToken.START_TRIPLE.value
end = SpecialToken.END_TRIPLE.value
subj = RDF["SubjectURI"].to_numpy(dtype=object)
rel = RDF["RelationshipURI"].to_numpy(dtype=object)
obj = RDF["ObjectURI"].to_numpy(dtype=object)
arr = np.char.add(np.char.add(np.char.add(start, subj),
np.char.add(rel, obj)),
end)
RDF["Triple"] = pd.Series(arr, index=RDF.index, dtype=object, name="Triple")
return RDF["Triple"]
@staticmethod
def build_incomplete_triple(RDF: pd.DataFrame):
"""
Helper used for the third task: "Predicting a masked component within an RDF triple".
Accepts any subset of ["SubjectURI","RelationshipURI","ObjectURI"] (typically 2 of 3).
Missing components are replaced by <MASK>.
Returns:
pd.Series: RDF["Triple"] (just this column). Side-effect: sets RDF["Triple"].
"""
start = SpecialToken.START_TRIPLE.value
end = SpecialToken.END_TRIPLE.value
maskv = SpecialToken.MASK.value
n = len(RDF.index)
subj = RDF["SubjectURI"].to_numpy(dtype=object) if "SubjectURI" in RDF else np.full(n, maskv, dtype=object)
rel = RDF["RelationshipURI"].to_numpy(dtype=object) if "RelationshipURI" in RDF else np.full(n, maskv, dtype=object)
obj = RDF["ObjectURI"].to_numpy(dtype=object) if "ObjectURI" in RDF else np.full(n, maskv, dtype=object)
arr = np.char.add(np.char.add(np.char.add(start, subj),
np.char.add(rel, obj)),
end)
RDF["Triple"] = pd.Series(arr, index=RDF.index, dtype=object, name="Triple")
return RDF["Triple"]
def rebuild_by_movie(self, RDF: pd.DataFrame):
"""
Collapse triples + abstract into a single row per movie.
Returns: ["MovieID","Triple","Abstract"]
"""
# Build triples once (vectorized); method also sets RDF["Triple"]
triples = self.build_triple(RDF)
# Minimal frame for grouping (avoid carrying extra columns)
tmp = pd.DataFrame({
"MovieID": RDF["MovieID"].to_numpy(),
"Abstract": RDF["Abstract"].to_numpy(),
"Triple": triples.to_numpy(),
})
# Factorize high-cardinality keys to fast integer codes, group on codes,
# then map back to labels; sum concatenates strings for object dtype.
mid_codes, mid_uniques = pd.factorize(tmp["MovieID"], sort=False)
abs_codes, abs_uniques = pd.factorize(tmp["Abstract"], sort=False)
tmp["_mid"] = mid_codes
tmp["_abs"] = abs_codes
grouped = tmp.groupby(["_mid", "_abs"], sort=False, as_index=False)["Triple"].sum()
grouped["MovieID"] = grouped["_mid"].map(lambda i: mid_uniques[i])
grouped["Abstract"] = grouped["_abs"].map(lambda i: abs_uniques[i])
# Final tokens
grouped["Triple"] = SpecialToken.START_TRIPLE_LIST.value + grouped["Triple"]
grouped["Abstract"] = SpecialToken.ABSTRACT.value + grouped["Abstract"]
return grouped[["MovieID", "Triple", "Abstract"]]

View File

@ -0,0 +1,191 @@
# This file deletes in the pipeline the unwanted relationship by different rules
import pandas as pd
import sqlite3
import numpy as np
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class PipelineApplier():
def __init__(self):
self.MOVIE_FILTER = pd.DataFrame()
self.REL_FILTER = pd.DataFrame()
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame:
return RDF[RDF["RelationshipURI"]!= uri]
def generate_list_relationship_filter(self, filter_list: list[str]) -> None:
"""Store RelationshipURI filters as a set """
self.relationship_filter_list: set[str] = set(filter_list)
def delete_relationship_by_list_filter(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""Remove rows whose RelationshipURI is in the stored filter. Generate it first callig the generate_list_relationship_filter"""
return RDF[~RDF["RelationshipURI"].isin(self.relationship_filter_list)]
# def filter_movie_by_rel_uri_frequence()
def generate_frequency_movie_filter(self, MOVIE_COUNT: pd.DataFrame ,min_treshold: int, max_treshold: int):
"""
You MUST call this before filter the dataset by movie frequence [filter_by_frequence_movie_id()],
since this method creates such filter
Args:
MOVIE_COUNT (pd.DataFrame): ["MovieID","Count"]
min_treshold (int):
max_treshold (int):
"""
MOVIE_COUNT = MOVIE_COUNT[MOVIE_COUNT["Count"] >= min_treshold]
MOVIE_COUNT = MOVIE_COUNT[MOVIE_COUNT["Count"] < max_treshold]
self.MOVIE_FILTER = MOVIE_COUNT #["MovieID"]
def generate_frequency_relationship_filter(self, REL_COUNT: pd.DataFrame ,min_treshold: int, max_treshold: int):
REL_COUNT = REL_COUNT[REL_COUNT["Count"] >= min_treshold]
REL_COUNT = REL_COUNT[REL_COUNT["Count"] < max_treshold]
self.REL_FILTER = REL_COUNT #["RelationshipURI"]
def filter_by_frequency_movie_id(self, RDF: pd.DataFrame) -> pd.DataFrame:
RDF = RDF[RDF["MovieID"].isin(self.MOVIE_FILTER["MovieID"])]
return RDF
def filter_by_frequency_relationship(self, RDF: pd.DataFrame) -> pd.DataFrame:
RDF = RDF[RDF["RelationshipURI"].isin(self.REL_FILTER["RelationshipURI"])]
return RDF
def rdf_add_special_token(self, RDF: pd.DataFrame):
"""
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI, OBJ to ObjectURI, REL to RelationshipURI.
Check Scrits/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
It only adds the special token of the three element of the RDF, no other special token.
Args:
RDF (pd.DataFrame):
Returns:
pd.DataFrame: ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
"""
# if the filter runned before sliced the RDF and created a View, here the problem is resolved
# for more context: SettingWithCopyWarning
RDF = RDF.copy()
# at the beginning of SubjectURI RelationshipURI ObjectURI, add their special token
RDF["SubjectURI"] = SpecialToken.SUBJECT.value + RDF["SubjectURI"]
RDF["ObjectURI"] = SpecialToken.OBJECT.value + RDF["ObjectURI"]
RDF["RelationshipURI"] = SpecialToken.RELATIONSHIP.value + RDF["RelationshipURI"]
return RDF
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
# dataset has SubjectURI RelationshipURI ObjectURI
# want to drop the '' in them
# Replace empty strings with NaN
RDF = RDF.replace('', np.nan)
# Drop rows where any of the key columns are NaN
RDF = RDF.dropna(subset=["SubjectURI", "RelationshipURI", "ObjectURI"])
return RDF
def rebuild_by_movie(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""_summary_
Args:
RDF (pd.DataFrame): ["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
Returns:
pd.DataFrame: ["MovieID","Triple","Abstract"]
"""
# to execute this method you have to have itereted by movie_id
# because as design we want at the end one row for each movie
# MovieID and abstract can be given as input for a more generic method
# movie_id = RDF["MovieID"].iloc(0)
# abstract = RDF["Abstract"].iloc(0)
# first let's combine each row creating column triple as join of rdf
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
# special token
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
# combine rows into one
# MovieID and Abstract are unique for each other 1 <-> 1
RDF = RDF.groupby(["MovieID", "Abstract"])["Triple"].apply("".join).reset_index()
# add special token for: start of triple, end of triple and start of abstract
RDF["Triple"] = SpecialToken.START_TRIPLE_LIST.value + RDF["Triple"]
RDF["Abstract"] = SpecialToken.ABSTRACT.value + RDF["Abstract"]
return RDF[["MovieID","Triple","Abstract"]]
def group_by_movie_from_triple(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""
Args:
RDF (pd.DataFrame): ["MovieID","Triple","Abstract"]
Returns:
pd.DataFrame: ["MovieID","Triple","Abstract"]
"""
# combine rows into one
# MovieID and Abstract are unique for each other 1 <-> 1
RDF = RDF.groupby(["MovieID", "Abstract"])["Triple"].apply("".join).reset_index()
# add special token for: start of triple, end of triple and start of abstract
RDF["Triple"] = SpecialToken.START_TRIPLE_LIST.value + RDF["Triple"]
RDF["Abstract"] = SpecialToken.ABSTRACT.value + RDF["Abstract"]
return RDF[["MovieID","Triple","Abstract"]]
@staticmethod
def build_triple(RDF: pd.DataFrame):
"""
Obtains joined RDF triple in one element, togheter with START and END special token
Args:
RDF (pd.DataFrame): at least ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
pd.DataFrame: RDF["Triple"] (just this column)
"""
# let's combine each row creating column triple as join of rdf
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
# special token
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
return RDF["Triple"]
@staticmethod
def build_incomplete_triple(RDF: pd.DataFrame):
"""
Method helper used for the third task: "Predicting a masked component within an RDF triple".
Obtains joined RDF triple in one element, togheter with START and END special token.
The MISSING element will be replaced by the special token <MASK>
Args:
RDF (pd.DataFrame): 2 of the following ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
RDF["Triple"]: pd.Series (just this column, NOT A DATAFRAME)
"""
# let's create a new column "Triple" with the joined RDF
# the following creates a column of MASK token of the lenght of the dataframe,
# it is not needed since we expect to have a dataframe of just one column, but its more robust (AND SLOW)
MISSING = pd.Series([SpecialToken.MASK.value] * len(RDF), index=RDF.index)
RDF["Triple"] = (
RDF.get("SubjectURI", MISSING) +
RDF.get("RelationshipURI", MISSING) +
RDF.get("ObjectURI", MISSING))
# special token
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
return RDF["Triple"]
@staticmethod
def build_for_mask_task(RDF_incomplete: pd.DataFrame, MISSING: pd.DataFrame) -> pd.DataFrame:
# currently not used
"""
Method helper used for the third task: "Predicting a masked component within an RDF triple".
Given two Dataframe, the first containing the incompleted RDF and the other only the missing componment,
this methods applies the special token
Args:
RDF (pd.DataFrame): _description_
Returns:
pd.DataFrame: _description_
"""
# take an example dataframe as ["SubjectURI",""]
# as input two dataframe, one with 2 column
return None
def regex_on_objects(self, RDF: pd.DataFrame) -> pd.DataFrame:
RDF["ObjectURI"] = (RDF["ObjectURI"].astype("string")
.str.replace(r"\r?\n+", ", ", regex=True) # newlines -> ", "
.str.replace(r"\*", "", regex=True)) # delete all asterisks
return RDF

View File

@ -0,0 +1,145 @@
import re
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
from Scripts.DataCleaning.legacy.filter import PipelineApplier
# tasks dataset builder
from Scripts.DataCleaning.data_output_models.rdf_mask_task import RDF_mask_task_dataset
from Scripts.DataCleaning.data_output_models.bpe_corpus import BPE_corpus
from Scripts.DataCleaning.data_output_models.rdf_text_tasks import RDF_text_task_dataset
from Scripts.DataCleaning.data_output_models.rdf_completation_task import RDF_completation_task_dataset
from Scripts.DataCleaning.data_output_models.debug_csv import Debug_csv
import pandas as pd
class Pipeline():
def __init__(self):
self.sql_endpoint = SqlEndpoint()
# classes to manage taskes' datasets
self.task_rdf_mask = RDF_mask_task_dataset("./Assets/Dataset/Tmp/rdf_mask.csv")
self.task_bpe_corpus = BPE_corpus("./Assets/Dataset/Tmp/corpus.txt")
self.task_rdf_text = RDF_text_task_dataset("./Assets/Dataset/Tmp/rdf_text.csv")
self.task_rdf_completation = RDF_completation_task_dataset("./Assets/Dataset/Tmp/rdf_completation.csv")
# prepare the filter
# the filter applier needs to know the frequence of Movies and Relationship among all the Dataset
self.filter_applier = PipelineApplier()
MOVIE_COUNT = self.sql_endpoint.get_movies_id_count()
REL_COUNT = self.sql_endpoint.get_relationship_count()
self.filter_applier.generate_frequency_movie_filter(MOVIE_COUNT,50,3000)
self.filter_applier.generate_frequency_relationship_filter(REL_COUNT, 50, 2395627) # from 2718 to 3069
# prepare the filter on the relationshipURI you want to delete:
relationship_uri_banned_list = [
"dbp-dbp:wikiPageUsesTemplate","w3:2000/01/rdf-schema#label","dbp-dbo:abstract",
"dbp-dbo:wikiPageID","dbp-dbo:wikiPageRevisionID", "dbp-dbo:wikiPageDisambiguates",
"w3:2002/07/owl#sameAs","dbp-dbp:image","dbp-dbo:wikiPageLength", "w3:2000/01/rdf-schema#comment",
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type",
"dbp-dbp:id","dbp-dbp:totalWidth", "w3:ns/prov#wasDerivedFrom", "dbp-dbp:n", "dbp-dbp:alt",
"dbp-dbo:soundRecording"
]
self.filter_applier.generate_list_relationship_filter(relationship_uri_banned_list)
def execute_task_bpe_corpus(self):
for RDF in self._get_cleaned_movie_rows():
RDF = self.filter_applier.rebuild_by_movie(RDF)
RDF = RDF[["Triple","Abstract"]]
self.task_bpe_corpus.write_from_df(RDF)
self._end_file_handler()
def execute_task_rdf_mask(self):
for RDF in self._get_cleaned_movie_rows():
self.task_rdf_mask.write(RDF)
self._end_file_handler()
def execute_tasks_rdf_text(self):
for RDF in self._get_cleaned_movie_rows():
RDF = self.filter_applier.rebuild_by_movie(RDF)
self.task_rdf_text.write(RDF)
self._end_file_handler()
def execute_task_rdf_completation(self):
for RDF in self._get_cleaned_movie_rows():
RDF["Triple"] = self.filter_applier.build_triple(RDF)
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
self._end_file_handler()
def execute_all_task(self):
for RDF in self._get_cleaned_movie_rows():
self.task_rdf_mask.write(RDF)
RDF["Triple"] = self.filter_applier.build_triple(RDF)
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
RDF = self.filter_applier.group_by_movie_from_triple(RDF[["MovieID","Triple","Abstract"]])
self.task_rdf_text.write(RDF)
self.task_bpe_corpus.write_from_df(RDF[["Triple","Abstract"]])
self._end_file_handler()
def _end_file_handler(self):
self.task_bpe_corpus.close()
self.task_rdf_mask.close()
self.task_rdf_text.close()
self.task_rdf_completation.close()
def _get_cleaned_movie_rows(self):
for RDF in self.sql_endpoint.get_abbreviated_dataset_by_movie_id():
RDF = self.filter_applier.drop_na_from_dataset(RDF)
RDF = self.filter_applier.filter_by_frequency_movie_id(RDF)
RDF = self.filter_applier.filter_by_frequency_relationship(RDF)
# other filter
#
RDF = self.filter_applier.delete_relationship_by_list_filter(RDF)
# regex on ObjectURI
RDF = self.filter_applier.regex_on_objects(RDF)
if RDF.empty:
continue
RDF = self.filter_applier.rdf_add_special_token(RDF) # WARNING, THIS MUST BE DONE AFTER FILTER BY FREQUENCE
yield RDF
def use_toy_dataset(self):
# CHOOSEN MOVIE:
# The Dark Knight : 117248
# Inception : 147074
# The Avengers : 113621
# Cast Away : 1123
# The Departed : 117586
# American Psycho : 90177
# Avatar : 71587
# Django Unchained : 138952
# Spirited Away : 144137
# Knives Out : 148025
movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
self.sql_endpoint.movie_ids = movie_list
def generate_csv_debug_file(self, debug_path:str):
debug_csv = Debug_csv(debug_path)
for RDF in self._get_cleaned_movie_rows():
debug_csv.write(RDF)
debug_csv.close()
# there are a lot of settings to manage
# you only need to change settings:
# in the init for file paths, frequency filter limit, banned reletionshipURI
# in the use_toy_dataset , to change the toy dataset
# in _get_cleaned_movie_rows: to change how the pipeline behave
pipeline = Pipeline()
pipeline.use_toy_dataset()
# pipeline.execute_task_bpe_corpus()
# pipeline.execute_task_rdf_mask()
# pipeline.execute_tasks_rdf_text()
# pipeline.execute_task_rdf_completation()
# pipeline.execute_all_task()
pipeline.generate_csv_debug_file("Assets/Dataset/Tmp/debug.csv")

View File

@ -0,0 +1,161 @@
import argparse
import csv
import sys
from typing import Self
class ProgramArgs:
def __init__(self, file: str, csv_uri_header: str, output: str, treshold: int):
"""
Args:
file (str):
csv_header (str): The name of the column of the csv file from which the program will get the URIs
output (str):
treshold (int):
"""
self.file = file
self.csv_uri_header = csv_uri_header
self.output = output
self.treshold = treshold
class Node:
def __init__(
self,
name: str,
quantity: int = 0,
):
self.name = name
self.quantity = quantity
self.children: dict[str, Node] = {}
@property
def is_leaf(self):
return len(self.children) == 0
def append_child(self, child: list[str]):
# print(child)
KEY = child[0]
if not self.children.get(KEY):
# if the key has no value, it means we are traversing this branch for the first time
# create another node for the key
self.children[KEY] = Node(KEY, 0)
# take the node for the key
CHILD = self.children[KEY]
self.quantity += 1
# if the child list to enter has only one element, which is KEY, no more node will be created
if len(child) == 1:
return
new_children = child[1:]
CHILD.append_child(new_children)
def __str__(self):
return f"{self.name}/ - {self.quantity}"
def get_args(args: list[str]) -> ProgramArgs:
PARSER = argparse.ArgumentParser()
PARSER.add_argument("--input-file", "-i", required=True, type=str)
PARSER.add_argument("--header-name", "-c", required=True, type=str) # c stands for column
PARSER.add_argument("--output-file", "-o", required=True, type=str)
PARSER.add_argument("--treshold", "-t", type=int, default=1)
parsed_args, _ = PARSER.parse_known_args(args)
# print(parsed_args.input_file)
return ProgramArgs(parsed_args.input_file, parsed_args.header_name ,parsed_args.output_file, parsed_args.treshold) # type ignore
def get_debug_args() -> ProgramArgs:
# -i ./Assets/Dataset/1-hop/movies.csv -c subject -o Assets/Dataset/Tmp/prova.csv -t 1
FILE = "./Assets/Dataset/1-hop/movies.csv"
CSV_HEADER = "subject"
OUTPUT = "./Assets/Dataset/Tmp/prova.csv"
TRESHOLD = 1
return ProgramArgs(
FILE,
CSV_HEADER,
OUTPUT,
TRESHOLD
)
def tree_like(file: str, csv_uri_header:str, out: str):
INDENTATION = " "
properties: dict[str, Node] = {}
properties["pure"] = Node("pure", 0)
properties["URI"] = Node("uri", 0)
FILE = open(file, "r", encoding="utf-8")
# It is needed the header-name
for row in csv.DictReader(FILE):
uri_element = row[csv_uri_header]
sections = uri_element.split("/")
sections = list(filter(lambda item: item != "", sections))
# print(sections)
if sections[0] != "http:" and sections[0] != "https:":
properties["pure"].append_child(sections)
continue
properties["URI"].append_child(sections)
FILE.close()
stack: list[tuple[Node, int]] = []
for _, item in properties.items():
stack.append((item, 0))
OUT = open(out, mode="w", encoding="utf-8")
while len(stack) > 0:
LAST_ITEM = stack.pop()
NODE: Node = LAST_ITEM[0]
DEPTH: int = LAST_ITEM[1]
INDENT: str = INDENTATION * DEPTH
# Leaf node have quantity 0, so if i want them to appear the threshold have to be 0
# if NODE.quantity < ARGS.treshold:
if ARGS.treshold > NODE.quantity:
continue
OUT.write(f"{INDENT}- {NODE}\n")
if NODE.is_leaf:
continue
CHILDREN = []
for _, child in NODE.children.items():
CHILDREN.append((child, DEPTH + 1))
stack.extend(CHILDREN)
OUT.close()
if __name__ == "__main__":
ARGS = get_args(sys.argv)
# ARGS = get_debug_args()
tree_like(ARGS.file,ARGS.csv_uri_header, ARGS.output)

View File

@ -0,0 +1,86 @@
# This file deletes in the pipeline the unwanted relationship by different rules
import pandas as pd
import sqlite3
import numpy as np
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class PipelineApplier():
def __init__(self):
pass
def rdf_add_special_token(self, RDF: pd.DataFrame):
"""
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI, OBJ to ObjectURI, REL to RelationshipURI.
Check Scrits/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
It only adds the special token of the three element of the RDF, no other special token.
Args:
RDF (pd.DataFrame):
Returns:
pd.DataFrame: ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
"""
# if the filter runned before sliced the RDF and created a View, here the problem is resolved
# for more context: SettingWithCopyWarning
RDF = RDF.copy()
# at the beginning of SubjectURI RelationshipURI ObjectURI, add their special token
RDF["SubjectURI"] = SpecialToken.SUBJECT.value + RDF["SubjectURI"]
RDF["ObjectURI"] = SpecialToken.OBJECT.value + RDF["ObjectURI"]
RDF["RelationshipURI"] = SpecialToken.RELATIONSHIP.value + RDF["RelationshipURI"]
return RDF
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
RDF = RDF.replace('', np.nan)
# Drop rows where any of the key columns are NaN
RDF = RDF.dropna(subset=["SubjectURI", "RelationshipURI", "ObjectURI"])
return RDF
def rebuild_by_movie(self, RDF: pd.DataFrame) -> pd.DataFrame:
"""
Args:
RDF (pd.DataFrame): ["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
Returns:
pd.DataFrame: ["MovieID","Triple","Abstract"]
"""
# to execute this method you have to have itereted by movie_id
# because as design we want at the end one row for each movie
# MovieID and abstract can be given as input for a more generic method
# first let's combine each row creating column triple as join of rdf
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
# special token
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
# combine rows into one
# MovieID and Abstract are unique for each other 1 <-> 1
RDF = RDF.groupby(["MovieID", "Abstract"])["Triple"].apply("".join).reset_index()
# add special token for: start of triple, end of triple and start of abstract
RDF["Triple"] = SpecialToken.START_TRIPLE_LIST.value + RDF["Triple"]+SpecialToken.END_OF_SENTENCE.value
RDF["Abstract"] = SpecialToken.ABSTRACT.value + RDF["Abstract"] + SpecialToken.END_OF_SENTENCE.value
return RDF[["MovieID","Triple","Abstract"]]
@staticmethod
def build_triple(RDF: pd.DataFrame):
"""
Obtains joined RDF triple in one element, togheter with START and END special token
Args:
RDF (pd.DataFrame): at least ["SubjectURI", "RelationshipURI", "ObjectURI"]
Returns:
pd.DataFrame: RDF["Triple"] (just this column)
"""
# let's combine each row creating column triple as join of rdf
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
# special token
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
return RDF["Triple"]
def regex_on_objects(self, RDF: pd.DataFrame) -> pd.DataFrame:
RDF["ObjectURI"] = (RDF["ObjectURI"].astype("string")
.str.replace(r"\r?\n+", ", ", regex=True) # newlines -> ", "
.str.replace(r"\*", "", regex=True)) # delete all asterisks
return RDF

View File

@ -0,0 +1,103 @@
import pandas as pd
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class MovieFilter:
def __init__(self) -> None:
self.sql_endpoint = SqlEndpoint()
# first obtain all movie_id
movie_query = "SELECT MovieID FROM Movies"
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(movie_query)
def frequency_filter(self, min_treshold:int, max_treshold:int):
movie_list_placeholder = ",".join(["?"] * len(self.MOVIE_FILTER))
filter_query = f"""
SELECT MovieID
FROM RDFs
WHERE MovieID IN ({movie_list_placeholder})
GROUP BY MovieID
HAVING COUNT(*) BETWEEN {min_treshold} AND {max_treshold};
"""
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, tuple(self.MOVIE_FILTER["MovieID"].to_list()))
def get_movie_id(self):
return self.MOVIE_FILTER
def relation_filter(self, parsed_rel_uri: str, min_treshold:int, max_treshold:int):
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
filter_query = f"""
SELECT MovieID
FROM RDFs
JOIN ParsedRelationships ON ParsedRelationships.RelationshipID = RDFs.RelationshipID
WHERE MovieID IN ({movie_list_placeholder})
GROUP BY MovieID
HAVING SUM(CASE WHEN ParsedRelationships.RelationshipURI = '{parsed_rel_uri}' THEN 1 ELSE 0 END)
BETWEEN {min_treshold} AND {max_treshold};
"""
params = tuple(movie_ids) # + (parsed_rel_uri, min_treshold, max_treshold)
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)
def filter_by_director(self):
director_list = ['dbp-dbo:director','dbp-dbp:director']
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
filter_query = f"""
SELECT DISTINCT RDFs.MovieID
FROM RDFs
JOIN ParsedRelationships USING (RelationshipID)
WHERE RDFs.MovieID IN ({movie_list_placeholder})
AND ParsedRelationships.RelationshipURI IN {tuple(director_list)};
"""
params = tuple(movie_ids)
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)
def filter_by_english_movies(self):
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
relationship = ["dbp-dbp:language"]
objects_list = ["English", "dbp-dbr:English_language"]
filter_query = f"""
SELECT DISTINCT RDFs.MovieID
FROM RDFs
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
WHERE RDFs.MovieID IN ({movie_list_placeholder})
AND ParsedRelationships.RelationshipURI IN ('{relationship[0]}')
AND ParsedObjects.ObjectURI in {tuple(objects_list)};
"""
other_query = f"""
SELECT RDFs.MovieID
FROM RDFs
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
WHERE RDFs.MovieID IN ({movie_list_placeholder})
AND ParsedRelationships.RelationshipURI IN ('{relationship[0]}')
GROUP BY RDFs.MovieID
HAVING
SUM(CASE WHEN ParsedObjects.ObjectURI IN {tuple(objects_list)} THEN 1 ELSE 0 END) >= 1
AND
SUM(CASE WHEN ParsedObjects.ObjectURI NOT IN {tuple(objects_list)} THEN 1 ELSE 0 END) = 0;
"""
params = tuple(movie_ids)
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(other_query, params)
# movie_filter = MovieFilter()
# movie_filter.frequency_filter(5,10)

View File

@ -0,0 +1,155 @@
from movie_filter import MovieFilter
from relationship_filter import RelationshipFilter
from rdf_filter import RdfFilter
from cleaner import PipelineApplier
from Scripts.DataCleaning.data_output_models.bpe_corpus import BPE_corpus
from Scripts.DataCleaning.data_output_models.rdf_text_tasks import RDF_text_task_dataset
from Scripts.DataCleaning.data_output_models.rdf_completation_task import RDF_completation_task_dataset
from Scripts.DataCleaning.data_output_models.debug_csv import Debug_csv
import pandas as pd
RELATIONSHIP_FILTER_LIST = [
"dbp-dbp:wikiPageUsesTemplate","w3:2000/01/rdf-schema#label","dbp-dbo:abstract",
"dbp-dbo:wikiPageID","dbp-dbo:wikiPageRevisionID", "dbp-dbo:wikiPageDisambiguates",
"w3:2002/07/owl#sameAs","dbp-dbp:image","dbp-dbo:wikiPageLength", "w3:2000/01/rdf-schema#comment",
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type",
"dbp-dbp:id","dbp-dbp:totalWidth", "w3:ns/prov#wasDerivedFrom", "dbp-dbp:n", "dbp-dbp:alt",
"dbp-dbo:soundRecording", "dbp-dbp:align", "dbp-dbp:format",
"dbp-dbp:filename", "dbp-dbp:wikt", "foaf:isPrimaryTopicOf", "dbp-dbp:quote", "foaf:homepage",
"dbp-dbp:wordnet_type", "dbp-dbp:length","dbp-dbp:caption", "dbp-dbo:imdbId", "dbp-dbp:border", "dbp-dbp:note",
"dbp-dbp:postalCodeType", "dbp-dbp:extraColumn", "foaf:homepage", "dbp-dbp:bgcolor","dbp-dbp:prevTitle",
"dbp-dbp:imageUpright", "dbp-dbp:url", "dbp-dbp:italicTitle", "dbp-dbp:imageSize", "dbp-dbp:text",
"dbp-dbp:captionAlign", "dbp-dbp:headerAlign", "dbp-dbp:height", "dbp-dbp:link", "dbp-dbo:wikiPageInterLanguageLink",
"w3:2003/01/geo/wgs84_pos#lat", "w3:2003/01/geo/wgs84_pos#long", "http://www.georss.org/georss/point",
"dbp-dbp:bgcolor", "dbp-dbp:mc", "dbp-dbp:rev3score", "dbp-dbp:rev4score", "dbp-dbp:imageAlt",
"dbp-dbp:b", "dbp-dbp:s", "dbp-dbp:c", "dbp-dbp:d", "dbp-dbp:m", "dbp-dbp:v", "dbp-dbp:mw", "dbp-dbp:fontsize",
"dbp-dbp:salign", "dbp-dbp:q", "dbp-dbp:portal", "dbp-dbp:dSearch", "dbp-dbp:header", "w3:2003/01/geo/wgs84_pos#geometry",
"dbp-dbp:shortsummary", "dbp-dbp:fixAttempted", "dbp-dbo:developer", "dbp-dbp:no", "dbp-dbp:ref", "dbp-dbp:infoa"
"dbp-dbp:infob", "dbp-dbp:1a", "dbp-dbp:1p", "dbp-dbp:2a", "dbp-dbp:2p", "http://rdvocab.info/RDARelationshipsWEMI/manifestationOfWork",
"dbp-dbp:isbn", "dbp-dbp:titleWidth", "dbp-dbp:prodcode", "dbp-dbp:page", "w3:2004/02/skos/core#closeMatch",
"dbp-dbp:colwidth", "dbp-dbp:imagesize", "dbp-dbp:rr", "dbp-dbp:date", "dbp-dbp:type", "dbp-dbp:list",
"dbp-dbp:listEpisodes", "dbp-dbp:footerAlign", "dbp-dbp:float", "dbp-dbp:bot", "dbp-dbp:p", "dbp-dbp:l", "dbp-dbp:t", "dbp-dbp:j",
"dbp-dbp:1y", "dbp-dbp:2y", "dbp-dbp:1pp", "dbp-dbp:vgs", "dbp-dbp:3a", "dbp-dbp:3p", "dbp-dbp:3y", "dbp-dbp:4a", "dbp-dbp:4y",
"dbp-dbp:website"
]
RELATIONSHIP_WHITE_LIST = [
"dbp-dbp:director","dbp-dbo:starring", "dbp-dbo:writer", "dbp-dbp:name", "dbp-dbp:genre", "purl:dc/terms/subject"
]
"""
SELECT DISTINCT field3
FROM debug
"""
class Pipeline():
def __init__(self) -> None:
self._movie_filter = MovieFilter()
self._relationship_filter = RelationshipFilter()
self._rdf_filter = RdfFilter()
self._pipeline = PipelineApplier()
self.task_bpe_corpus = BPE_corpus("./Assets/Dataset/Tmp/corpus.txt")
self.task_rdf_text = RDF_text_task_dataset("./Assets/Dataset/Tmp/rdf_text.csv")
self.task_rdf_completation = RDF_completation_task_dataset("./Assets/Dataset/Tmp/rdf_completation.csv")
self._movie_filter.frequency_filter(50,3000)
self._relationship_filter.frequency_filter(25, 2395627) # from 2718 to 3069
self._relationship_filter.delete_relationship_uri_by_list(RELATIONSHIP_FILTER_LIST)
def other_filter(self):
self._movie_filter.relation_filter("purl:dc/terms/subject",5,100)
self._movie_filter.filter_by_director()
self._movie_filter.filter_by_english_movies()
self._movie_filter.relation_filter("dbp-dbp:budget",1,100) # the most important film have relationship budget
self._movie_filter.relation_filter("dbp-dbp:released",1,100) # to cut to 2000 :(
def _get_cleaned_movie_rows(self):
movie_ids = self._movie_filter.get_movie_id()
rel_ids = self._relationship_filter.get_relationship_id()
# rel_ids = self._relationship_filter.get_relationship_id_from_white_list(RELATIONSHIP_WHITE_LIST)
for RDF in self._rdf_filter.yield_movie_abbreviated_rdfs(movie_ids,rel_ids):
RDF = self._pipeline.drop_na_from_dataset(RDF)
RDF = self._pipeline.regex_on_objects(RDF)
RDF = self._pipeline.rdf_add_special_token(RDF)
if RDF.empty:
continue
yield RDF
def execute_task_bpe_corpus(self):
for RDF in self._get_cleaned_movie_rows():
RDF = self._pipeline.rebuild_by_movie(RDF)
RDF = RDF[["Triple","Abstract"]]
self.task_bpe_corpus.write_from_df(RDF)
self._end_file_handler()
def execute_tasks_rdf_text(self):
for RDF in self._get_cleaned_movie_rows():
RDF = self._pipeline.rebuild_by_movie(RDF)
self.task_rdf_text.write(RDF)
self._end_file_handler()
def execute_task_rdf_completation(self):
for RDF in self._get_cleaned_movie_rows():
RDF["Triple"] = self._pipeline.build_triple(RDF)
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
self._end_file_handler()
def _end_file_handler(self):
self.task_bpe_corpus.close()
self.task_rdf_text.close()
self.task_rdf_completation.close()
def execute_all_task(self):
for RDF in self._get_cleaned_movie_rows():
completation_RDF = RDF.copy()
completation_RDF["Triple"] = self._pipeline.build_triple(completation_RDF)
self.task_rdf_completation.write(completation_RDF[["MovieID","Triple"]])
RDF = self._pipeline.rebuild_by_movie(RDF)
self.task_rdf_text.write(RDF)
self.task_bpe_corpus.write_from_df(RDF[["Triple","Abstract"]])
self._end_file_handler()
def use_toy_dataset(self):
# CHOOSEN MOVIE:
# The Dark Knight : 117248
# Inception : 147074
# The Avengers : 113621
# Cast Away : 1123
# The Departed : 117586
# American Psycho : 90177
# Avatar : 71587
# Django Unchained : 138952
# Spirited Away : 144137
# Knives Out : 148025
# [106465,106466,106467,106468,106469,106470,106471,106472,106473]
movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
self._movie_filter.MOVIE_FILTER = pd.DataFrame({"MovieID": movie_list})
def generate_csv_debug_file(self, debug_path:str):
debug_csv = Debug_csv(debug_path)
for RDF in self._get_cleaned_movie_rows():
debug_csv.write(RDF)
debug_csv.close()
pipe = Pipeline()
#pipe.use_toy_dataset()
pipe.other_filter()
# pipe.execute_all_task()
pipe.generate_csv_debug_file("Assets/Dataset/Tmp/debug.csv")

View File

@ -0,0 +1,32 @@
import pandas as pd
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class RdfFilter:
def __init__(self) -> None:
self.sql_endpoint = SqlEndpoint()
# def delete_hyperum_when_movie(self):
# purl:linguistics/gold/hypernym
# is almost ever as "dbp-dbr:Movie" or "dbp-dbr:Film"
# banned triple
def yield_movie_abbreviated_rdfs(self, MOVIE_ID: pd.DataFrame, REL_ID: pd.DataFrame):
relationship_placeholder = ",".join(["?"] * len(REL_ID))
param = tuple(REL_ID["RelationshipID"].to_list())
QUERY = f"""
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
FROM RDFs
INNER JOIN ParsedSubjects USING (SubjectID)
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
INNER JOIN WikipediaAbstracts USING (MovieID)
WHERE MovieID = (?) AND RelationshipID IN ({relationship_placeholder});
"""
for movie_id in MOVIE_ID["MovieID"].to_list():
params = (movie_id,) + param
yield self.sql_endpoint.get_dataframe_from_query(QUERY, params=params)

View File

@ -0,0 +1,54 @@
import pandas as pd
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
class RelationshipFilter:
def __init__(self) -> None:
self.sql_endpoint = SqlEndpoint()
# first obtain all relationship_id
relationship_query = "SELECT RelationshipID FROM Relationships"
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(relationship_query)
def frequency_filter(self, min_treshold:int, max_treshold:int):
movie_list_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
filter_query = f"""
SELECT RelationshipID
FROM RDFs
WHERE RelationshipID IN ({movie_list_placeholder})
GROUP BY RelationshipID
HAVING COUNT(*) BETWEEN {min_treshold} AND {max_treshold};
"""
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()))
def get_relationship_id(self):
return self.RELATIONSHIP_FILTER
def get_relationship_id_from_white_list(self, relationship_list: list[str]):
ids_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
uri_placeholder = ",".join(["?"] * len(relationship_list))
filter_query = f"""
SELECT RelationshipID
FROM ParsedRelationships
WHERE RelationshipID IN ({ids_placeholder})
AND RelationshipURI IN ({uri_placeholder});
"""
params = tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()) + tuple(relationship_list)
return self.sql_endpoint.get_dataframe_from_query(filter_query, params)
def delete_relationship_uri_by_list(self, filter_list: list[str]):
ids_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
uri_placeholder = ",".join(["?"] * len(filter_list))
filter_query = f"""
SELECT RelationshipID
FROM ParsedRelationships
WHERE RelationshipID IN ({ids_placeholder})
AND RelationshipURI NOT IN ({uri_placeholder});
"""
params = tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()) + tuple(filter_list)
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)

View File

@ -0,0 +1,53 @@
import argparse
import sys
import pandas as pd
class ProgramArgs:
def __init__(
self, input_file: str, column: str, output_file: str, count: bool
) -> None:
self.input_file = input_file
self.column = column
self.output_file = output_file
self.count = count
def get_args(args: list[str]) -> ProgramArgs:
PARSER = argparse.ArgumentParser()
PARSER.add_argument("--input-file", "--input", "-i", required=True, type=str)
PARSER.add_argument("--output-file", "--output", "-o", required=True, type=str)
PARSER.add_argument("--column", "--col", required=True, type=str)
PARSER.add_argument(
"--count", "-c", action="store_const", const=True, default=False
)
parsed_args, _ = PARSER.parse_known_args(args)
return ProgramArgs(
parsed_args.input_file,
parsed_args.column,
parsed_args.output_file,
parsed_args.count,
) # type ignore
if __name__ == "__main__":
ARGS = get_args(sys.argv)
OUTPUT_FILE = open(ARGS.output_file, "w+", encoding="utf-8")
# Load the CSV
df = pd.read_csv(ARGS.input_file)
# Count occurrences of each unique last part
item_counts = df[ARGS.column].value_counts()
# Print the counts
for item, count in item_counts.items():
if ARGS.count:
OUTPUT_FILE.write(f"{item}: {count}\n")
else:
OUTPUT_FILE.write(f"{item}\n")

View File

@ -0,0 +1,146 @@
import argparse
from math import floor
import sys
from time import sleep
import SPARQLWrapper
class ProgramData:
def __init__(
self,
local_url,
query_url,
sparql_url,
output_type,
initial_offset,
timeout,
limit,
max_pages,
verbosity_level,
) -> None:
self.local_url = local_url
self.query_url = query_url
self.sparql_url = sparql_url
self.output_type = output_type
self.initial_offset = initial_offset
self.timeout = timeout
self.limit = limit
self.max_pages = max_pages
self.verbosity_level = verbosity_level
@property
def offset(self):
return self.limit
@property
def query(self):
with open(self.query_url, "r") as file:
return file.read()
DBPEDIA_URL = "https://dbpedia.org/sparql"
TYPE = SPARQLWrapper.CSV
TIMEOUT_SECONDS = 1.5
LIMIT = int(1E4)
INITIAL_OFFSET = 0
MAX_PAGES = int(1E9)
def gather_cli_args(args: list[str]) -> ProgramData:
# TODO: Add argument for type
PARSER = argparse.ArgumentParser("sparql data fetcher")
PARSER.add_argument("--file-path", "--file", "--output", "-o", required=True, type=str)
PARSER.add_argument("--query-file", "--query", "-q", required=True, type=str)
PARSER.add_argument("--url", type=str, default=DBPEDIA_URL)
PARSER.add_argument("--limit", type=int, default=LIMIT)
PARSER.add_argument("--timeout", type=float, default=TIMEOUT_SECONDS)
PARSER.add_argument("--offset", type=int, default=INITIAL_OFFSET)
PARSER.add_argument("--max-pages", type=int, default=MAX_PAGES)
PARSER.add_argument("--verbose", "-v", action="count", default=0)
parsed_args, _ = PARSER.parse_known_args(args)
return ProgramData(
parsed_args.file_path,
parsed_args.query_file,
parsed_args.url,
SPARQLWrapper.CSV,
parsed_args.offset,
parsed_args.timeout,
parsed_args.limit,
parsed_args.max_pages,
parsed_args.verbose
)
# type: ignore
def fetch_data(DATA: ProgramData):
# Take correction of page into account
page = int(floor(DATA.initial_offset / DATA.limit)) - 1
exit = False
while not exit:
print(f"Starting to get page {page}")
CURRENT_OFFSET = int(DATA.offset + (page * DATA.limit))
sparql = SPARQLWrapper.SPARQLWrapper(DATA.sparql_url)
sparql.setReturnFormat(TYPE)
CURRENT_PAGE_QUERY = "\n".join([
DATA.query,
f"LIMIT {LIMIT}",
f"OFFSET {CURRENT_OFFSET}"
])
print(f"\nCurrent Query:\n{CURRENT_PAGE_QUERY}\n")
sparql.setQuery(CURRENT_PAGE_QUERY)
try:
res = sparql.queryAndConvert()
text = ""
if type(res) == bytes:
initial_offset = 0
if page != 0:
initial_offset = 1
lines = res.decode("utf-8", "ignore").split("\n")
text = "\n".join(lines[initial_offset:])
if text == "":
exit = True
continue
with open(DATA.local_url, "a+", encoding="utf-8") as dataset:
print(f"Writing page {page} on {DATA.local_url}")
dataset.write(
text
)
except Exception as ex:
print(f"Something went wrong during page {page}:\n\t{ex}")
print(f"Sleeping for {TIMEOUT_SECONDS}")
page += 1
if page == MAX_PAGES - 1:
exit = True
sleep(TIMEOUT_SECONDS)
if __name__ == "__main__":
DATA = gather_cli_args(sys.argv)
fetch_data(DATA)

View File

@ -0,0 +1,154 @@
from pathlib import Path
import pandas as pd
import csv
import time
import requests
input_csv = "./Assets/Dataset/1-hop/movie-pageid.csv"
output_csv = "./Assets/Dataset/Tmp/wikipedia-summary.csv"
sess = requests.Session()
CHUNK = 20
# Function to get clean full text from Wikipedia PageID
def get_clean_text(pageIDS: list[str]):
parsing_time = 0
start_full = time.time()
API_URL = "https://en.wikipedia.org/w/api.php"
headers = {
"User-Agent": "CoolBot/0.0"
""
" (https://example.org/coolbot/; coolbot@example.org)"
}
ids = "|".join(pageIDS)
start_fetch = time.time()
res = sess.get(headers=headers, url=f"{API_URL}?action=query&pageids={ids}&prop=extracts&exintro=1&explaintext=1&format=json")
end_fetch = time.time()
fetch_time = end_fetch - start_fetch
print(f"Time elapsed FETCH: {fetch_time} seconds")
data = res.json()
abstracts = {}
# Make sure 'query' and the page exist
SKIPPED = 0
if "query" in data and "pages" in data["query"]:
for pageID in pageIDS:
if pageID in data["query"]["pages"]:
page = data["query"]["pages"][pageID]
extract: str = page.get("extract")
if extract:
print(f"Entry FOUND for pageID {pageID}")
start_parse = time.time()
extract = extract.strip()
extract = extract.replace("\n", "")
end_parse = time.time()
parsing_time = end_parse - start_parse
print(f"Time elapsed PARSE: {parsing_time} seconds")
abstracts[pageID] = extract
else:
SKIPPED += 1
print(f"Entry MISSING for pageID {pageID}")
else:
SKIPPED += 1
print(f"Page MISSING for pageID {pageID}")
print(f"Chunk done - Skipped {SKIPPED}")
end_full = time.time()
print(f"Time elapsed FULL: {end_full - start_full} seconds\n\tNO PARSE: {(end_full - start_full) - parsing_time} seconds")
return abstracts
def flush(movie_ids):
abstracts = get_clean_text(movie_ids)
start = time.time()
with open(output_csv, "a", newline="", encoding="utf-8") as f_out:
writer = csv.DictWriter(f_out, fieldnames=["subject", "text"])
for id, text in abstracts.items():
writer.writerow({"subject": id, "text": text})
end = time.time()
print(f"Time elapsed WRITE: {end - start} seconds")
def reconcile() -> int:
start = time.time()
input_file = open(input_csv, "r", newline="", encoding="utf-8")
output_file = open(output_csv, "r", newline="", encoding="utf-8")
next(input_file)
LAST_CHECKED = output_file.readlines()[-1].split(",")[0]
current_check = input_file.readline().split(",")[1]
index = 1
while current_check != LAST_CHECKED:
current_check = input_file.readline().split(",")[1].replace("\n", "")
index += 1
input_file.close()
output_file.close()
end = time.time()
print(f"Time elapsed RECONCILE: {end - start} seconds")
print(f"FOUND, we need to skip {index} lines")
return index
if not Path(output_csv).is_file():
# Initialize output CSV
with open(output_csv, "w", newline="", encoding="utf-8") as f_out:
writer = csv.DictWriter(f_out, fieldnames=["subject", "text"])
writer.writeheader()
SKIP = reconcile()
# Read CSV in RAM
with open(input_csv, "r", newline="", encoding="utf-8") as input:
# Skip already done
for i in range(0, SKIP):
next(input)
reader = csv.reader(input)
index = -1
movie_ids = []
for line in reader:
index += 1
if index == 0:
continue
# Save movies in map
movie_ids.append(line[1])
if index % CHUNK == 0:
# Flush movies
flush(movie_ids)
movie_ids = []

View File

@ -0,0 +1,26 @@
# HOW THE DATASET IS BUILT AND POPULATED
Note: the data are taken from CSV files in 1-hop
## CSV files composition
| CSV files | Original structure | Saved AS |
|--------------------|---------------------------------------|-------------------------------------|
| Wikipeda-summary | PageId / abstract | subject, text |
| Movies | Movie URI | "subject" |
| Dataset | Movie URI / Relationship / Object [RDF] | subject, relationship, object |
| Movies-PageId | Movie URI / PageId (wiki) | "subject", "object" |
| Reverse | Subject / Relationship / Movie URI | "subject", "relationship", "object" |
## Wanted tables schema
| Table | Columns |
|---------------|-------------------------------------------------------------------------|
| Movies | MovieID [PK], Movie URI |
| WikiPageIDs | MovieID [PK, FK], PageId [IDX] (wiki) *(Not important for now)* |
| Abstracts | MovieID [PK, FK], abstract |
| Subjects | SubjectID [PK], RDF Subject (from Dataset.csv or Reverse.csv), OriginID [FK] |
| Relationships | RelationshipID [PK], RDF Relationship (value only, not the actual relation) |
| Objects | ObjectID [PK], RDF Object, OriginID [FK] |
| Origins | OriginID [PK], Origin Name |
| RDFs | RDF_ID [PK], MovieID [FK], SubjectID [FK], RelationshipID [FK], ObjectID [FK] |

View File

@ -0,0 +1,633 @@
import sqlite3
import csv
#####################################################################
# This file builds DatawareHouse/dataset.db from 1-hop csv files #
# Its Schema in . /SQL_Queries/db_creation.sql #
# The sql query used to popualate id in . /SQL_Queries/query.sql #
#####################################################################
# sometimes you may need to build a new db file, here a little snippet for you
# sqlite3 ./Assets/Dataset/Tmp/dataset.db < ./Scripts/DataCleaning/SQL_Queries/db_creation.sql
# --- Global configuration ---
DB_NAME = "./Assets/Dataset/DatawareHouse/dataset.db"
MOVIES_CSV = "./Assets/Dataset/1-hop/movies.csv"
PAGEID_CSV = "./Assets/Dataset/1-hop/movie-pageid.csv"
SUMMARY_CSV = "./Assets/Dataset/1-hop/wikipedia-summary.csv"
DATASET_CSV = "./Assets/Dataset/1-hop/dataset.csv"
REVERSE_CSV = "./Assets/Dataset/1-hop/reverse.csv"
URI_CSV = "./Assets/Dataset/1-hop/uri-abbreviations.csv"
MOVIES_CSV_HANDLER = open(MOVIES_CSV, "r", newline="", encoding="utf-8")
PAGEID_CSV_HANDLER = open(PAGEID_CSV, "r", newline="", encoding="utf-8")
SUMMARY_CSV_HANDLER = open(SUMMARY_CSV, "r", newline="", encoding="utf-8")
DATASET_CSV_HANDLER = open(DATASET_CSV, "r", newline="", encoding="utf-8")
REVERSE_CSV_HANDLER = open(REVERSE_CSV, "r", newline="", encoding="utf-8")
URI_ABBR_CSV_HANDLER = open(URI_CSV, "r", newline="", encoding="utf-8")
CONN = sqlite3.connect(DB_NAME)
CURS = CONN.cursor()
# MARK: SQL Definitions
# Insert MovieURI
def insertOrigin(curs: sqlite3.Cursor) -> bool:
QUERY = "INSERT INTO Origins (OriginName) VALUES ('dataset.csv'),('reverse.csv');"
try:
curs.execute(QUERY)
return True
except sqlite3.IntegrityError:
return False
def selectOrigin(curs: sqlite3.Cursor, originName: str) -> int | None:
QUERY = "SELECT OriginID FROM Origins WHERE OriginName = ?;"
curs.execute(QUERY, [originName])
originId = curs.fetchone()
if not originId:
return None
# in this case the real id is the first element of the tuple
return originId[0]
def insertMovie(curs: sqlite3.Cursor, movieUri: str) -> bool:
QUERY = "INSERT INTO Movies (MovieURI) VALUES (?);"
try:
curs.execute(QUERY, [movieUri])
return True
except sqlite3.IntegrityError:
return False
def selectMovieId(curs: sqlite3.Cursor, movieUri: str) -> int | None:
QUERY = "SELECT MovieID FROM Movies WHERE MovieURI = ?;"
curs.execute(QUERY, [movieUri])
movieId = curs.fetchone()
if not movieId:
return None
# in this case the real id is the first element of the tuple
return movieId[0]
def insertWikiPageId(curs: sqlite3.Cursor, movieId: int, pageId: int) -> bool:
QUERY = "INSERT INTO WikiPageIDs (MovieID, PageID) VALUES (?,?);"
try:
curs.execute(QUERY, [movieId, pageId])
return True
except sqlite3.IntegrityError:
return False
def selectMovieIdFromWikiPageId(curs: sqlite3.Cursor, pageId: int) -> int | None:
QUERY = "SELECT MovieID FROM WikiPageIDs WHERE PageID = ?;"
curs.execute(QUERY, [pageId])
movieId = curs.fetchone()
if not movieId:
return None
# in this case the real id is the first element of the tuple
return movieId[0]
def insertWikiAbstract(curs: sqlite3.Cursor, movieId: int, abstract: str) -> bool:
QUERY = "INSERT INTO WikipediaAbstracts (MovieID, Abstract) VALUES (?,?);"
try:
curs.execute(QUERY, [movieId, abstract])
return True
except sqlite3.IntegrityError:
return False
def insertSubject(curs: sqlite3.Cursor, subjectURI: str, originID: int) -> bool:
QUERY = "INSERT INTO Subjects (SubjectURI, OriginID) VALUES (?,?);"
try:
curs.execute(QUERY, [subjectURI, originID])
return True
except sqlite3.IntegrityError:
return False
def insertRelationship(curs: sqlite3.Cursor, relationshipURI: str) -> bool:
QUERY = "INSERT INTO Relationships (RelationshipURI) VALUES (?);"
try:
curs.execute(QUERY, [relationshipURI])
return True
except sqlite3.IntegrityError:
return False
def insertObject(curs: sqlite3.Cursor, objectURI: str, originID: int) -> bool:
QUERY = "INSERT INTO objects (ObjectURI, OriginID) VALUES (?,?);"
try:
curs.execute(QUERY, [objectURI, originID])
return True
except sqlite3.IntegrityError:
return False
def selectSubjectId(curs: sqlite3.Cursor, subjectURI: str) -> int | None:
QUERY = "SELECT SubjectID FROM Subjects WHERE SubjectURI = ?;"
curs.execute(QUERY, [subjectURI])
subjectId = curs.fetchone()
if not subjectId:
return None
# in this case the real id is the first element of the tuple
return subjectId[0]
def selectRelationshipId(curs: sqlite3.Cursor, relationshipURI: str) -> int | None:
QUERY = "SELECT RelationshipID FROM Relationships WHERE RelationshipURI = ?;"
curs.execute(QUERY, [relationshipURI])
relationshipId = curs.fetchone()
if not relationshipId:
return None
# in this case the real id is the first element of the tuple
return relationshipId[0]
def selectObjectId(curs: sqlite3.Cursor, objectURI: str) -> int | None:
QUERY = "SELECT ObjectID FROM Objects WHERE ObjectURI = ?;"
curs.execute(QUERY, [objectURI])
objectId = curs.fetchone()
if not objectId:
return None
# in this case the real id is the first element of the tuple
return objectId[0]
def insertRDF(
curs: sqlite3.Cursor,
movieId: int,
subjectId: int,
relationshipId: int,
objectId: int,
) -> bool:
QUERY = "INSERT INTO RDFs (MovieID, SubjectID, RelationshipID, ObjectID) VALUES (?,?,?,?);"
try:
curs.execute(QUERY, [movieId, subjectId, relationshipId, objectId])
return True
except sqlite3.IntegrityError:
return False
# UGLY: correct method to add cursor
def insert_abbreviation(uri, abbreviation) -> bool:
QUERY = "INSERT INTO Abbreviations(URI, Abbreviation) VALUES (?,?);"
try:
CURS.execute(QUERY, [uri, abbreviation])
return True
except sqlite3.IntegrityError:
return False
# UGLY: correct method to add cursor
def insert_object_abbreviation(object_id, abbreviation_id) -> bool:
QUERY = "INSERT INTO Objects_Abbreviations(ObjectID, AbbreviationID) VALUES (?,?);"
try:
CURS.execute(QUERY, [object_id, abbreviation_id])
return True
except sqlite3.IntegrityError:
return False
# UGLY: correct method to add cursor
def insert_relationship_abbreviation(relationship_id, abbreviation_id) -> bool:
QUERY = "INSERT INTO Relationships_Abbreviations(RelationshipID, AbbreviationID) VALUES (?,?);"
try:
CURS.execute(QUERY, [relationship_id, abbreviation_id])
return True
except sqlite3.IntegrityError:
return False
# UGLY: correct method to add cursor
def insert_subject_abbreviation(subject_id, abbreviation_id) -> bool:
QUERY = (
"INSERT INTO Subjects_Abbreviations(SubjectID, AbbreviationID) VALUES (?,?);"
)
try:
CURS.execute(QUERY, [subject_id, abbreviation_id])
return True
except sqlite3.IntegrityError:
return False
# UGLY: correct method to add cursor
def select_abbreviation_id(uri) -> int | None:
QUERY = "SELECT AbbreviationID FROM Abbreviations WHERE URI LIKE ?;"
CURS.execute(QUERY, [uri])
abbreviation_id = CURS.fetchone()
if not abbreviation_id:
return None
# in this case the real id is the first element of the tuple
return abbreviation_id[0]
# MARK: Parsing
def parseMovies():
CSV_READER = csv.reader(MOVIES_CSV_HANDLER)
next(CSV_READER)
for row in CSV_READER:
MOVIE = row[0]
insertMovie(CURS, MOVIE)
def parseWikiPageId():
CSV_READER = csv.DictReader(PAGEID_CSV_HANDLER)
for row in CSV_READER:
MOVIE_URI = row["subject"]
WIKI_PAGE_ID = int(row["object"])
MOVIE_ID = selectMovieId(CURS, MOVIE_URI)
if MOVIE_ID is None:
print(f"The MovieUri: {MOVIE_URI} has not a MovieId ")
continue
insertWikiPageId(CURS, MOVIE_ID, WIKI_PAGE_ID)
def parseAbstract():
CSV_READER = csv.DictReader(SUMMARY_CSV_HANDLER)
for row in CSV_READER:
WIKI_PAGE_ID = int(row["subject"])
ABSTRACT = row["text"]
MOVIE_ID = selectMovieIdFromWikiPageId(CURS, WIKI_PAGE_ID)
if MOVIE_ID is None:
print(f"The WikiPageId: {WIKI_PAGE_ID} has not a MovieId ")
continue
insertWikiAbstract(CURS, MOVIE_ID, ABSTRACT)
def parseAbbreviations():
URI_CSV = csv.DictReader(URI_ABBR_CSV_HANDLER)
for row in URI_CSV:
URI = row["uri"]
ABBREVIATION = row["abbreviation"]
insert_abbreviation(URI, ABBREVIATION)
def parseRDF_Reverse():
REVERSE_CSV_READER = csv.DictReader(REVERSE_CSV_HANDLER)
REVERSE_ORIGIN_ID = selectOrigin(CURS, "reverse.csv")
if REVERSE_ORIGIN_ID is None:
return
total = 0
for row in REVERSE_CSV_READER:
SUBJECT = row["subject"]
RELATIONSHIP = row["relationship"]
OBJECT = row["object"]
print(f"RDF triplets:\n\t{SUBJECT} - {RELATIONSHIP} - {OBJECT}")
insertSubject(CURS, SUBJECT, REVERSE_ORIGIN_ID)
insertRelationship(CURS, RELATIONSHIP)
insertObject(CURS, OBJECT, REVERSE_ORIGIN_ID)
SUBJECT_ID = selectSubjectId(CURS, SUBJECT)
OBJECT_ID = selectObjectId(CURS, OBJECT)
RELATIONSHIP_ID = selectRelationshipId(CURS, RELATIONSHIP)
MOVIE_ID = selectMovieId(CURS, OBJECT)
skip = False
# guard
if SUBJECT_ID is None:
print(f"No SubjectId for {SUBJECT}")
skip = True
if OBJECT_ID is None:
print(f"No ObjectId for {OBJECT}")
skip = True
if RELATIONSHIP_ID is None:
print(f"No RelationshipId for {RELATIONSHIP}")
skip = True
if MOVIE_ID is None:
print(f"No MovieId for {OBJECT}")
skip = True
if skip:
continue
if insertRDF(CURS, MOVIE_ID, SUBJECT_ID, RELATIONSHIP_ID, OBJECT_ID): # type: ignore
total += 1
print(total)
def parseRDF_Dataset():
DATASET_CSV_READER = csv.DictReader(DATASET_CSV_HANDLER)
DATASET_ORIGIN_ID = selectOrigin(CURS, "dataset.csv")
if DATASET_ORIGIN_ID is None:
return
total = 0
rdf_idx = 0
for row in DATASET_CSV_READER:
SUBJECT = row["subject"]
RELATIONSHIP = row["relationship"]
OBJECT = row["object"]
rdf_idx += 1
if rdf_idx % 100000 == 0:
print(f"RDF number {rdf_idx}:\n\t{SUBJECT} - {RELATIONSHIP} - {OBJECT}")
insertSubject(CURS, SUBJECT, DATASET_ORIGIN_ID)
insertRelationship(CURS, RELATIONSHIP)
insertObject(CURS, OBJECT, DATASET_ORIGIN_ID)
SUBJECT_ID = selectSubjectId(CURS, SUBJECT)
OBJECT_ID = selectObjectId(CURS, OBJECT)
RELATIONSHIP_ID = selectRelationshipId(CURS, RELATIONSHIP)
MOVIE_ID = selectMovieId(CURS, SUBJECT)
skip = False
# guard
if SUBJECT_ID is None:
print(f"No SubjectId for {SUBJECT}")
skip = True
if OBJECT_ID is None:
print(f"No ObjectId for {OBJECT}")
skip = True
if RELATIONSHIP_ID is None:
print(f"No RelationshipId for {RELATIONSHIP}")
skip = True
if MOVIE_ID is None:
print(f"No MovieId for {SUBJECT}")
skip = True
if skip:
continue
if insertRDF(CURS, MOVIE_ID, SUBJECT_ID, RELATIONSHIP_ID, OBJECT_ID): # type: ignore
total += 1
print(total)
def parseAbbr_Reverse():
REVERSE_CSV_READER = csv.DictReader(REVERSE_CSV_HANDLER)
REVERSE_ORIGIN_ID = selectOrigin(CURS, "reverse.csv")
if REVERSE_ORIGIN_ID is None:
return
total = 0
for row in REVERSE_CSV_READER:
SUBJECT = row["subject"]
RELATIONSHIP = row["relationship"]
OBJECT = row["object"]
SUBJECT_ID = selectSubjectId(CURS, SUBJECT)
OBJECT_ID = selectObjectId(CURS, OBJECT)
RELATIONSHIP_ID = selectRelationshipId(CURS, RELATIONSHIP)
SUB_SECTIONS = SUBJECT.split("/")
REL_SECTIONS = RELATIONSHIP.split("/")
OBJ_SECTIONS = OBJECT.split("/")
SUB_ABBR_ID = None
REL_ABBR_ID = None
OBJ_ABBR_ID = None
skip = False
# guard
if SUBJECT_ID is None:
print(f"No SubjectId for {SUBJECT}")
skip = True
if OBJECT_ID is None:
print(f"No ObjectId for {OBJECT}")
skip = True
if RELATIONSHIP_ID is None:
print(f"No RelationshipId for {RELATIONSHIP}")
skip = True
if skip:
continue
if len(SUB_SECTIONS) > 4:
index = min(len(SUB_SECTIONS), 7)
while index > 3:
PATH = "/".join(SUB_SECTIONS[0:index]) + "%"
SUB_ABBR_ID = select_abbreviation_id(PATH)
if SUB_ABBR_ID is not None:
if insert_subject_abbreviation(SUBJECT_ID, SUB_ABBR_ID):
total += 1
index = 0
index -= 1
if len(REL_SECTIONS) > 4:
index = min(len(REL_SECTIONS), 7)
while index > 2:
PATH = "/".join(REL_SECTIONS[0:index]) + "%"
REL_ABBR_ID = select_abbreviation_id(PATH)
if REL_ABBR_ID is not None:
if insert_relationship_abbreviation(RELATIONSHIP_ID, REL_ABBR_ID):
total += 1
index = 0
index -= 1
if len(OBJ_SECTIONS) > 4:
index = min(len(OBJ_SECTIONS), 7)
while index > 3:
PATH = "/".join(OBJ_SECTIONS[0:index]) + "%"
OBJ_ABBR_ID = select_abbreviation_id(PATH)
if OBJ_ABBR_ID is not None:
if insert_object_abbreviation(OBJECT_ID, OBJ_ABBR_ID):
total += 1
index = 0
index -= 1
print(total)
def parseAbbr_Dataset():
DATASET_CSV_READER = csv.DictReader(DATASET_CSV_HANDLER)
DATASET_ORIGIN_ID = selectOrigin(CURS, "dataset.csv")
if DATASET_ORIGIN_ID is None:
return
total = 0
rdf_idx = 0
for row in DATASET_CSV_READER:
SUBJECT = row["subject"]
RELATIONSHIP = row["relationship"]
OBJECT = row["object"]
rdf_idx += 1
if rdf_idx % 100000 == 0:
print(f"RDF number {rdf_idx}:\n\t{SUBJECT} - {RELATIONSHIP} - {OBJECT}")
SUBJECT_ID = selectSubjectId(CURS, SUBJECT)
OBJECT_ID = selectObjectId(CURS, OBJECT)
RELATIONSHIP_ID = selectRelationshipId(CURS, RELATIONSHIP)
SUB_SECTIONS = SUBJECT.split("/")
REL_SECTIONS = RELATIONSHIP.split("/")
OBJ_SECTIONS = OBJECT.split("/")
SUB_ABBR_ID = None
REL_ABBR_ID = None
OBJ_ABBR_ID = None
skip = False
# guard
if SUBJECT_ID is None:
print(f"No SubjectId for {SUBJECT}")
skip = True
if OBJECT_ID is None:
print(f"No ObjectId for {OBJECT}")
skip = True
if RELATIONSHIP_ID is None:
print(f"No RelationshipId for {RELATIONSHIP}")
skip = True
if skip:
continue
if len(SUB_SECTIONS) > 4:
index = min(len(SUB_SECTIONS), 7)
while index > 3:
PATH = "/".join(SUB_SECTIONS[0:index]) + "%"
SUB_ABBR_ID = select_abbreviation_id(PATH)
if SUB_ABBR_ID is not None:
if insert_subject_abbreviation(SUBJECT_ID, SUB_ABBR_ID):
total += 1
index = 0
index -= 1
if len(REL_SECTIONS) > 4:
index = min(len(REL_SECTIONS), 7)
while index > 2:
PATH = "/".join(REL_SECTIONS[0:index]) + "%"
REL_ABBR_ID = select_abbreviation_id(PATH)
if REL_ABBR_ID is not None:
if insert_relationship_abbreviation(RELATIONSHIP_ID, REL_ABBR_ID):
total += 1
index = 0
index -= 1
if len(OBJ_SECTIONS) > 4:
index = min(len(OBJ_SECTIONS), 7)
while index > 3:
PATH = "/".join(OBJ_SECTIONS[0:index]) + "%"
OBJ_ABBR_ID = select_abbreviation_id(PATH)
if OBJ_ABBR_ID is not None:
if insert_object_abbreviation(OBJECT_ID, OBJ_ABBR_ID):
total += 1
index = 0
index -= 1
print(total)
# MARK: Actual Code
# parseMovies()
# parseWikiPageId()
# parseAbstract()
# insertOrigin(CURS)
# parseAbbreviations()
# parseRDF_Reverse()
# parseRDF_Dataset()
# parseAbbr_Reverse()
parseAbbr_Dataset()
CONN.commit()
CONN.close()
MOVIES_CSV_HANDLER.close()
PAGEID_CSV_HANDLER.close()
SUMMARY_CSV_HANDLER.close()
DATASET_CSV_HANDLER.close()
REVERSE_CSV_HANDLER.close()
URI_ABBR_CSV_HANDLER.close()
"""
The MovieUri: http://dbpedia.org/resource/1%25_(film) has not a MovieId
The MovieUri: http://dbpedia.org/resource/10%25:_What_Makes_a_Hero%3F has not a MovieId
The MovieUri: http://dbpedia.org/resource/100%25_Arabica has not a MovieId
The MovieUri: http://dbpedia.org/resource/100%25_Kadhal has not a MovieId
The MovieUri: http://dbpedia.org/resource/100%25_Love_(2011_film) has not a MovieId
The MovieUri: http://dbpedia.org/resource/100%25_Love_(2012_film) has not a MovieId
The MovieUri: http://dbpedia.org/resource/100%25_Wolf has not a MovieId
The MovieUri: http://dbpedia.org/resource/Who_the_$&%25_Is_Jackson_Pollock%3F has not a MovieId
The MovieUri: http://dbpedia.org/resource/99%25:_The_Occupy_Wall_Street_Collaborative_Film has not a MovieId
The MovieUri: http://dbpedia.org/resource/99_and_44/100%25_Dead has not a MovieId
The MovieUri: http://dbpedia.org/resource/Postcards_from_the_48%25 has not a MovieId
The MovieUri: http://dbpedia.org/resource/Wool_100%25 has not a MovieId
"""
"""
The WikiPageId: 10068850 has not a MovieId
The WikiPageId: 55069615 has not a MovieId
The WikiPageId: 49510056 has not a MovieId
The WikiPageId: 4049786 has not a MovieId
The WikiPageId: 55510238 has not a MovieId
The WikiPageId: 31239628 has not a MovieId
The WikiPageId: 34757217 has not a MovieId
The WikiPageId: 64311757 has not a MovieId
The WikiPageId: 8326198 has not a MovieId
The WikiPageId: 42162164 has not a MovieId
The WikiPageId: 18502369 has not a MovieId
The WikiPageId: 58092358 has not a MovieId
The WikiPageId: 40710250 has not a MovieId
"""

View File

View File

View File

View File

View File

@ -0,0 +1,22 @@
from enum import Enum
class SpecialToken(str, Enum):
# (Enum, str) -> throws an error
START_TRIPLE_LIST = "<SOTL>"
START_TRIPLE = "<SOT>"
END_TRIPLE = "<EOT>"
SUBJECT = "<SUBJ>"
RELATIONSHIP = "<PRED>"
OBJECT = "<OBJ>"
ABSTRACT = "<ABS>"
END_OF_SENTENCE = "<EOS>"
CORPUS_END = "<END>"
## Tasks' Token
RDF_TO_TEXT = "<RDF2TXT>"
TEXT_TO_RDF = "<TEXT2RDF>"
CONTINUE_RDF = "<CONTINUERDF>"
MASK = "<MASK>"
#BPE Training:

View File

@ -0,0 +1,149 @@
#######################################################
# This file stand as endpoint to interact with DB #
#######################################################
# import sqlite3
import pandas as pd
from sqlalchemy import create_engine
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
class SqlEndpoint():
def __init__(self, DB_PATH = "./Assets/Dataset/DatawareHouse/dataset.db", chunk_size_row = 500):
# self.CONN = sqlite3.connect(DB_PATH) # DEPRECATED
self.sql_engine = create_engine(f"sqlite:///{DB_PATH}")
# /// 3 slash -> relative path
# //// 4 slash -> absolute
# self.conn = self.sql_engine.connect().execution_options(stream_results=True)
# it seems that sqlite doenst support streamer cursor
# PRAGMA exeutes better in writing not reading
self.chunk_size_row = chunk_size_row # not used now, since each chunk is a movie
self.movie_ids = movie_ids = pd.read_sql_query("SELECT MovieID FROM Movies;", self.sql_engine)["MovieID"]
def get_RDF(self) -> pd.DataFrame :
QUERY = """
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI
FROM RDFs
INNER JOIN Subjects USING (SubjectID)
INNER JOIN Relationships USING (RelationshipID)
INNER JOIN Objects USING (ObjectID);
"""
return pd.read_sql_query(QUERY, self.CONN)
def get_chunked_abbreviated_dataset(self) -> pd.DataFrame :
"""
Returns:
pd.DataFrame: MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
"""
QUERY = """
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
FROM RDFs
INNER JOIN ParsedSubjects USING (SubjectID)
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
INNER JOIN WikipediaAbstracts USING (MovieID);
"""
# return pd.read_sql_query(QUERY, self.CONN, chunksize=500)
# sqlite3
return pd.read_sql_query(QUERY, self.sql_engine, chunksize=self.chunk_size_row)
def get_chunked_abbreviated_dataset_with_start_token(self)-> pd.DataFrame:
# DEPRECATED !
start_token = SpecialToken()
QUERY = """
SELECT
MovieID,
? || SubjectURI AS SubjectURI,
? || RelationshipURI AS RelationshipURI,
? || ObjectURI AS ObjectURI,
Abstract
FROM RDFs
INNER JOIN ParsedSubjects USING (SubjectID)
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
INNER JOIN WikipediaAbstracts USING (MovieID);
"""
return pd.read_sql_query(QUERY, self.sql_engine, chunksize=self.chunk_size_row)
def get_abbreviated_dataset_by_movie_id(self):# -> iter[pd.DataFrame]:
"""
Gets each time a DataFrame per movie ( with all its rows in the dataset).
The retrieved RDFs are already abbrevieted by the sql parser
Yields:
Pandas.DataFrame: [MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract]
"""
# chunk by movieId, abstract is the same and some intersting logic are appliable
# movie_ids = pd.read_sql_query("SELECT MovieID FROM Movies;", self.sql_engine)["MovieID"]
# CHOOSEN MOVIE:
# The Dark Knight : 117248
# Inception : 147074
# The Avengers : 113621
# Cast Away : 1123
# The Departed : 117586
# American Psycho : 90177
# Avatar : 71587
# Django Unchained : 138952
# Spirited Away : 144137
# Knives Out : 148025
# movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
# movie_ids = movie_list
QUERY = """
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
FROM RDFs
INNER JOIN ParsedSubjects USING (SubjectID)
INNER JOIN ParsedRelationships USING (RelationshipID)
INNER JOIN ParsedObjects USING (ObjectID)
INNER JOIN WikipediaAbstracts USING (MovieID)
WHERE MovieID = (?);
"""
for movie_id in self.movie_ids:
yield pd.read_sql_query(QUERY, self.sql_engine, params=(movie_id,))
def get_movies_id_count(self) -> pd.DataFrame:
"""
Gets the count of each Movie in the Dataset
Returns:
Pandas.DataFrame: [MovieID, Count]
"""
QUERY = """
SELECT MovieID, COUNT(*) AS Count
FROM RDFs
GROUP BY MovieID;
"""
return pd.read_sql_query(QUERY, self.sql_engine)
def get_relationship_count(self) -> pd.DataFrame:
"""
Gets the count of each Relationship in the Dataset
Returns:
Pandas.DataFrame: [RelationshipURI, Count]
"""
QUERY = """
SELECT RelationshipURI, COUNT(*) AS Count
FROM RDFs
INNER JOIN ParsedRelationships USING (RelationshipID)
GROUP BY RelationshipURI;
"""
return pd.read_sql_query(QUERY, self.sql_engine)
def get_dataframe_from_query(self, query: str, params=None):
if params is None:
return pd.read_sql_query(query, self.sql_engine)
return pd.read_sql_query(query, self.sql_engine, params=params)
if __name__ == "__main__" :
sql_endpoint = SqlEndpoint()
for pandas_row in sql_endpoint.get_abbreviated_dataset_by_movie_id():
print(pandas_row)
# sql_endpoint.get_RDF()
print("done")

View File

View File

@ -0,0 +1,9 @@
import pandas as pd
def get_raw_from_dataframe(DF: pd.DataFrame) -> str:
output = ''
for row in DF.itertuples(index=False, name=None):
output += "".join(map(str, row))
return output

View File

@ -0,0 +1,897 @@
{
"type": "excalidraw",
"version": 2,
"source": "https://marketplace.visualstudio.com/items?itemName=pomdtr.excalidraw-editor",
"elements": [
{
"id": "3zbCui3XtIGozHXTVAGRp",
"type": "rectangle",
"x": 316.5,
"y": 123,
"width": 436.5,
"height": 145.5,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a0",
"roundness": {
"type": 3
},
"seed": 1698427950,
"version": 35,
"versionNonce": 601575602,
"isDeleted": false,
"boundElements": [
{
"id": "wD66RDbG05HfvRhAtMb0J",
"type": "text"
},
{
"id": "gus_rxauKJ6T2L_F59PfN",
"type": "arrow"
}
],
"updated": 1758818588814,
"link": null,
"locked": false
},
{
"id": "wD66RDbG05HfvRhAtMb0J",
"type": "text",
"x": 480.98004150390625,
"y": 183.25,
"width": 107.5399169921875,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a1",
"roundness": null,
"seed": 910769774,
"version": 31,
"versionNonce": 1120989938,
"isDeleted": false,
"boundElements": null,
"updated": 1758818416720,
"link": null,
"locked": false,
"text": "dataset.db",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "3zbCui3XtIGozHXTVAGRp",
"originalText": "dataset.db",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "87-MeaiZGT1wln0nggYPZ",
"type": "rectangle",
"x": 339.5,
"y": 309.5,
"width": 392,
"height": 156,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a2",
"roundness": {
"type": 3
},
"seed": 655550318,
"version": 77,
"versionNonce": 1103939826,
"isDeleted": false,
"boundElements": null,
"updated": 1758818339000,
"link": null,
"locked": false
},
{
"id": "EjUxEhZqEBzwvlw0VE9eJ",
"type": "rectangle",
"x": 355.5,
"y": 327,
"width": 162,
"height": 125.5,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a3",
"roundness": {
"type": 3
},
"seed": 1739846638,
"version": 64,
"versionNonce": 1594290034,
"isDeleted": false,
"boundElements": [
{
"type": "text",
"id": "ogRkV0neHrhEKTE6zlggl"
}
],
"updated": 1758818391415,
"link": null,
"locked": false
},
{
"id": "ogRkV0neHrhEKTE6zlggl",
"type": "text",
"x": 378.7100524902344,
"y": 377.25,
"width": 115.57989501953125,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a3V",
"roundness": null,
"seed": 2037675630,
"version": 12,
"versionNonce": 1286472046,
"isDeleted": false,
"boundElements": null,
"updated": 1758818399222,
"link": null,
"locked": false,
"text": "RDF_String",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "EjUxEhZqEBzwvlw0VE9eJ",
"originalText": "RDF_String",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "hoIRMNiMJZl4YDo-hovWy",
"type": "rectangle",
"x": 542.5,
"y": 327,
"width": 173,
"height": 125.5,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a4",
"roundness": {
"type": 3
},
"seed": 1189796530,
"version": 99,
"versionNonce": 1071057006,
"isDeleted": false,
"boundElements": [
{
"type": "text",
"id": "rsapATFAT5YSBCXzLupgZ"
},
{
"id": "gus_rxauKJ6T2L_F59PfN",
"type": "arrow"
},
{
"id": "Wk1bJbbtC31FqObEL5xWt",
"type": "arrow"
}
],
"updated": 1758818593647,
"link": null,
"locked": false
},
{
"id": "rsapATFAT5YSBCXzLupgZ",
"type": "text",
"x": 585.6800384521484,
"y": 377.25,
"width": 86.63992309570312,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a5",
"roundness": null,
"seed": 829619694,
"version": 12,
"versionNonce": 713902318,
"isDeleted": false,
"boundElements": null,
"updated": 1758818405150,
"link": null,
"locked": false,
"text": "Abstract",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "hoIRMNiMJZl4YDo-hovWy",
"originalText": "Abstract",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "jSx8ApfhtRs_nk37VvDMb",
"type": "rectangle",
"x": 316.5,
"y": 511,
"width": 436.5,
"height": 145.5,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a6",
"roundness": {
"type": 3
},
"seed": 492582894,
"version": 132,
"versionNonce": 893797614,
"isDeleted": false,
"boundElements": [
{
"type": "text",
"id": "6E23g-rgowNqHsBxX-LuM"
},
{
"id": "hyFKqXwet_F79QM71atgI",
"type": "arrow"
},
{
"id": "x_DP1FcQ7jraGz0gBuDi3",
"type": "arrow"
},
{
"id": "1IGbCps2EHnzKgJUWM5nq",
"type": "arrow"
},
{
"id": "Wk1bJbbtC31FqObEL5xWt",
"type": "arrow"
}
],
"updated": 1758818593647,
"link": null,
"locked": false
},
{
"id": "6E23g-rgowNqHsBxX-LuM",
"type": "text",
"x": 499.9100341796875,
"y": 571.25,
"width": 69.679931640625,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a7",
"roundness": null,
"seed": 267696178,
"version": 132,
"versionNonce": 1668243186,
"isDeleted": false,
"boundElements": null,
"updated": 1758818543211,
"link": null,
"locked": false,
"text": "Pandas",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "jSx8ApfhtRs_nk37VvDMb",
"originalText": "Pandas",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "ohj18N4AOTDz5lJNcV9gi",
"type": "rectangle",
"x": 261,
"y": 765.5,
"width": 157,
"height": 87,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a8",
"roundness": {
"type": 3
},
"seed": 1446207150,
"version": 279,
"versionNonce": 317375026,
"isDeleted": false,
"boundElements": [
{
"id": "Ea1_ke2wA0D8ZjVOUtvfY",
"type": "text"
},
{
"id": "hyFKqXwet_F79QM71atgI",
"type": "arrow"
}
],
"updated": 1758818570993,
"link": null,
"locked": false
},
{
"id": "Ea1_ke2wA0D8ZjVOUtvfY",
"type": "text",
"x": 297.0800323486328,
"y": 796.5,
"width": 84.83993530273438,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a9",
"roundness": null,
"seed": 435116270,
"version": 199,
"versionNonce": 1282911218,
"isDeleted": false,
"boundElements": null,
"updated": 1758818570993,
"link": null,
"locked": false,
"text": "train.txt",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "ohj18N4AOTDz5lJNcV9gi",
"originalText": "train.txt",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "A4Y54Y26fe257U_QU9lxX",
"type": "rectangle",
"x": 464,
"y": 765.5,
"width": 157,
"height": 87,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aA",
"roundness": {
"type": 3
},
"seed": 186148850,
"version": 232,
"versionNonce": 997119858,
"isDeleted": false,
"boundElements": [
{
"id": "v4TvUlDEjH7EvPDmtbOn2",
"type": "text"
},
{
"id": "1IGbCps2EHnzKgJUWM5nq",
"type": "arrow"
}
],
"updated": 1758818570993,
"link": null,
"locked": false
},
{
"id": "v4TvUlDEjH7EvPDmtbOn2",
"type": "text",
"x": 476.3500442504883,
"y": 796.5,
"width": 132.29991149902344,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aB",
"roundness": null,
"seed": 1131059634,
"version": 171,
"versionNonce": 239540530,
"isDeleted": false,
"boundElements": null,
"updated": 1758818570993,
"link": null,
"locked": false,
"text": "validation.txt",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "A4Y54Y26fe257U_QU9lxX",
"originalText": "validation.txt",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "mPaYpJ9Xn7tlJPmKPqJKJ",
"type": "rectangle",
"x": 674.5,
"y": 765.5,
"width": 157,
"height": 87,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aC",
"roundness": {
"type": 3
},
"seed": 1049323314,
"version": 235,
"versionNonce": 330560690,
"isDeleted": false,
"boundElements": [
{
"type": "text",
"id": "kg9nm2rpud6cax5aNPSnu"
},
{
"id": "x_DP1FcQ7jraGz0gBuDi3",
"type": "arrow"
}
],
"updated": 1758818570993,
"link": null,
"locked": false
},
{
"id": "kg9nm2rpud6cax5aNPSnu",
"type": "text",
"x": 711.4300231933594,
"y": 796.5,
"width": 83.13995361328125,
"height": 25,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aD",
"roundness": null,
"seed": 522572142,
"version": 193,
"versionNonce": 1920372338,
"isDeleted": false,
"boundElements": null,
"updated": 1758818570993,
"link": null,
"locked": false,
"text": "test.txt",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "center",
"verticalAlign": "middle",
"containerId": "mPaYpJ9Xn7tlJPmKPqJKJ",
"originalText": "test.txt",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "hyFKqXwet_F79QM71atgI",
"type": "arrow",
"x": 534.65,
"y": 661.5,
"width": 195.25,
"height": 99,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aG",
"roundness": null,
"seed": 873266098,
"version": 71,
"versionNonce": 541154738,
"isDeleted": false,
"boundElements": null,
"updated": 1758818570993,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
0,
49.5
],
[
-195.25,
49.5
],
[
-195.25,
99
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "jSx8ApfhtRs_nk37VvDMb",
"fixedPoint": [
0.49977090492554405,
1.034364261168385
],
"focus": 0,
"gap": 0
},
"endBinding": {
"elementId": "ohj18N4AOTDz5lJNcV9gi",
"fixedPoint": [
0.4993630573248406,
-0.05747126436781609
],
"focus": 0,
"gap": 0
},
"startArrowhead": null,
"endArrowhead": "triangle",
"elbowed": true,
"fixedSegments": null,
"startIsSpecial": null,
"endIsSpecial": null
},
{
"id": "x_DP1FcQ7jraGz0gBuDi3",
"type": "arrow",
"x": 534.65,
"y": 661.5,
"width": 218.25,
"height": 99,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aH",
"roundness": null,
"seed": 1210817582,
"version": 77,
"versionNonce": 1483392370,
"isDeleted": false,
"boundElements": null,
"updated": 1758818580594,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
0,
49.5
],
[
218.25,
49.5
],
[
218.25,
99
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "jSx8ApfhtRs_nk37VvDMb",
"fixedPoint": [
0.49977090492554405,
1.034364261168385
],
"focus": 0,
"gap": 0
},
"endBinding": {
"elementId": "mPaYpJ9Xn7tlJPmKPqJKJ",
"fixedPoint": [
0.4993630573248406,
-0.05747126436781609
],
"focus": 0,
"gap": 0
},
"startArrowhead": null,
"endArrowhead": "triangle",
"elbowed": true,
"fixedSegments": null,
"startIsSpecial": null,
"endIsSpecial": null
},
{
"id": "1IGbCps2EHnzKgJUWM5nq",
"type": "arrow",
"x": 534.65,
"y": 661.5,
"width": 0.5719232650604908,
"height": 99.07394122590165,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aK",
"roundness": null,
"seed": 1205316658,
"version": 96,
"versionNonce": 1748050674,
"isDeleted": false,
"boundElements": null,
"updated": 1758818570993,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
-0.5719232650604908,
99.07394122590165
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "jSx8ApfhtRs_nk37VvDMb",
"fixedPoint": [
0.49977090492554405,
1.034364261168385
],
"focus": 0,
"gap": 0
},
"endBinding": {
"elementId": "A4Y54Y26fe257U_QU9lxX",
"fixedPoint": [
0.44635717665566554,
-0.056621365219521276
],
"focus": 0,
"gap": 0
},
"startArrowhead": null,
"endArrowhead": "triangle",
"elbowed": true,
"fixedSegments": null,
"startIsSpecial": null,
"endIsSpecial": null
},
{
"id": "gus_rxauKJ6T2L_F59PfN",
"type": "arrow",
"x": 539,
"y": 271.5,
"width": 0,
"height": 33.5,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aL",
"roundness": null,
"seed": 763990258,
"version": 17,
"versionNonce": 1028811378,
"isDeleted": false,
"boundElements": null,
"updated": 1758818588814,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
0,
33.5
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "3zbCui3XtIGozHXTVAGRp",
"focus": -0.019473081328751418,
"gap": 3
},
"endBinding": {
"elementId": "hoIRMNiMJZl4YDo-hovWy",
"focus": -1.0404624277456647,
"gap": 30.7545797799829
},
"startArrowhead": null,
"endArrowhead": "triangle",
"elbowed": false
},
{
"id": "Wk1bJbbtC31FqObEL5xWt",
"type": "arrow",
"x": 536.5,
"y": 468.5,
"width": 0,
"height": 39,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aM",
"roundness": null,
"seed": 1489771054,
"version": 33,
"versionNonce": 1828178606,
"isDeleted": false,
"boundElements": null,
"updated": 1758818593647,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
0,
39
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "hoIRMNiMJZl4YDo-hovWy",
"focus": 1.0693641618497107,
"gap": 27.157190169432425
},
"endBinding": {
"elementId": "jSx8ApfhtRs_nk37VvDMb",
"focus": 0.008018327605956525,
"gap": 3.5
},
"startArrowhead": null,
"endArrowhead": "triangle",
"elbowed": false
}
],
"appState": {
"gridSize": 20,
"gridStep": 5,
"gridModeEnabled": false,
"viewBackgroundColor": "#ffffff"
},
"files": {}
}

View File

@ -0,0 +1,826 @@
{
"type": "excalidraw",
"version": 2,
"source": "https://marketplace.visualstudio.com/items?itemName=pomdtr.excalidraw-editor",
"elements": [
{
"type": "line",
"version": 4622,
"versionNonce": 1623045672,
"isDeleted": false,
"id": "twu_PiAvEuQ4l1YYtZLET",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 289.8504963515835,
"y": 91.87474806402287,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 77.09201683999922,
"height": 99.49948667804088,
"seed": 1975340120,
"groupIds": [
"9PT4BXPfQ6UoCaB-T-h9A",
"dp_TZJyYdyPIH1hOkAPlb"
],
"strokeSharpness": "round",
"boundElementIds": [],
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
0.2542098813493443,
75.20117273657175
],
[
0.011896425679918422,
83.76249969444815
],
[
3.970409367559332,
87.46174320643391
],
[
17.75573317066317,
90.59250103325854
],
[
41.05683533152865,
91.56737225214069
],
[
63.319497586673116,
90.01084754868091
],
[
75.14781395923075,
86.28844687220405
],
[
76.81603792670788,
83.15042405259751
],
[
77.05033394391478,
76.25776215104557
],
[
76.86643881413028,
6.3089586511537865
],
[
76.45188016352971,
-0.2999144698665015
],
[
71.50179495549581,
-3.9936571317850627
],
[
61.077971898861186,
-6.132877429442784
],
[
37.32348754161154,
-7.932114425900202
],
[
18.278415656797975,
-6.859225353587373
],
[
3.2995959613238286,
-3.2201165291205287
],
[
-0.04168289608444441,
-0.045185660461322996
],
[
0,
0
]
],
"index": "a1",
"frameId": null,
"roundness": {
"type": 2
},
"boundElements": [],
"updated": 1758646548051,
"link": null,
"locked": false
},
{
"type": "line",
"version": 2327,
"versionNonce": 1593094440,
"isDeleted": false,
"id": "hmJk4dH9VpOsfkrCTkhvh",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 290.3744257898585,
"y": 149.00103172175278,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 77.17198221193564,
"height": 8.562348957853036,
"seed": 637665624,
"groupIds": [
"9PT4BXPfQ6UoCaB-T-h9A",
"dp_TZJyYdyPIH1hOkAPlb"
],
"strokeSharpness": "round",
"boundElementIds": [],
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
2.033150371639873,
3.413095389435587
],
[
10.801287372573954,
6.276651055277943
],
[
22.468666942209353,
8.010803051612635
],
[
40.747074201802775,
8.168828515515864
],
[
62.077348233027564,
7.0647721921469495
],
[
74.53446931782398,
3.04824021069218
],
[
77.17198221193564,
-0.3935204423371723
]
],
"index": "a2",
"frameId": null,
"roundness": {
"type": 2
},
"boundElements": [],
"updated": 1758646548051,
"link": null,
"locked": false
},
{
"type": "line",
"version": 2413,
"versionNonce": 311708712,
"isDeleted": false,
"id": "X1ldVIXm4DfBal5N2Pwn9",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 289.3425684673547,
"y": 120.03697638652972,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 77.17198221193564,
"height": 8.562348957853036,
"seed": 904402520,
"groupIds": [
"9PT4BXPfQ6UoCaB-T-h9A",
"dp_TZJyYdyPIH1hOkAPlb"
],
"strokeSharpness": "round",
"boundElementIds": [],
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
2.033150371639873,
3.413095389435587
],
[
10.801287372573954,
6.276651055277943
],
[
22.468666942209353,
8.010803051612635
],
[
40.747074201802775,
8.168828515515864
],
[
62.077348233027564,
7.0647721921469495
],
[
74.53446931782398,
3.04824021069218
],
[
77.17198221193564,
-0.3935204423371723
]
],
"index": "a3",
"frameId": null,
"roundness": {
"type": 2
},
"boundElements": [],
"updated": 1758646548051,
"link": null,
"locked": false
},
{
"type": "ellipse",
"version": 5410,
"versionNonce": 92833576,
"isDeleted": false,
"id": "CFhp5ZxSVwHYzGUj4hEn1",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 288.28461948527263,
"y": 84.74247943834126,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 76.59753601865496,
"height": 15.49127539284798,
"seed": 1782811480,
"groupIds": [
"9PT4BXPfQ6UoCaB-T-h9A",
"dp_TZJyYdyPIH1hOkAPlb"
],
"strokeSharpness": "sharp",
"boundElementIds": [
"bxuMGTzXLn7H-uBCptINx"
],
"index": "a4",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1758646548051,
"link": null,
"locked": false
},
{
"type": "ellipse",
"version": 820,
"versionNonce": 608002600,
"isDeleted": false,
"id": "B43R7rWwK2_vdiRHBSSPk",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 324.77660659049513,
"y": 109.21914711824485,
"strokeColor": "#000000",
"backgroundColor": "#228be6",
"width": 11.226103154161754,
"height": 12.183758484455605,
"seed": 1298686040,
"groupIds": [
"9PT4BXPfQ6UoCaB-T-h9A",
"dp_TZJyYdyPIH1hOkAPlb"
],
"strokeSharpness": "sharp",
"boundElementIds": [],
"index": "a5",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1758646548051,
"link": null,
"locked": false
},
{
"type": "ellipse",
"version": 1108,
"versionNonce": 1839127848,
"isDeleted": false,
"id": "CkKMb9wkJfVk04T217zSs",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 325.12774837442873,
"y": 135.43576140530996,
"strokeColor": "#000000",
"backgroundColor": "#228be6",
"width": 11.226103154161754,
"height": 12.183758484455605,
"seed": 2133497176,
"groupIds": [
"9PT4BXPfQ6UoCaB-T-h9A",
"dp_TZJyYdyPIH1hOkAPlb"
],
"strokeSharpness": "sharp",
"boundElementIds": [],
"index": "a6",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1758646548051,
"link": null,
"locked": false
},
{
"type": "ellipse",
"version": 991,
"versionNonce": 588838952,
"isDeleted": false,
"id": "SHJdKeQPkfpvzSoNH--3o",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 6.239590202363168,
"x": 325.77660659049513,
"y": 164.20448797661635,
"strokeColor": "#000000",
"backgroundColor": "#228be6",
"width": 11.226103154161754,
"height": 12.183758484455605,
"seed": 81668696,
"groupIds": [
"9PT4BXPfQ6UoCaB-T-h9A",
"dp_TZJyYdyPIH1hOkAPlb"
],
"strokeSharpness": "sharp",
"boundElementIds": [],
"index": "a7",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1758646548051,
"link": null,
"locked": false
},
{
"type": "text",
"version": 489,
"versionNonce": 2023207720,
"isDeleted": false,
"id": "vUSyMBPup0jZ71CYXKyGb",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 280.1846389770508,
"y": 185.79462957545917,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 95.63072204589844,
"height": 23.595161071904883,
"seed": 425140056,
"groupIds": [
"dp_TZJyYdyPIH1hOkAPlb"
],
"strokeSharpness": "sharp",
"boundElementIds": [],
"fontSize": 17.4778970902999,
"fontFamily": 1,
"text": "dataset.db",
"baseline": 16.595161071904883,
"textAlign": "center",
"verticalAlign": "top",
"index": "a8",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1758646548051,
"link": null,
"locked": false,
"containerId": null,
"originalText": "dataset.db",
"autoResize": true,
"lineHeight": 1.350000000000001
},
{
"id": "R7pU0VP6CFKCAwuvt0xsr",
"type": "text",
"x": 295.5,
"y": 342,
"width": 374,
"height": 225,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "#228be6",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a9",
"roundness": null,
"seed": 705463336,
"version": 1130,
"versionNonce": 72522328,
"isDeleted": false,
"boundElements": null,
"updated": 1758648226024,
"link": null,
"locked": false,
"text": "class Extract(Action):\n # Static\n + type : ActionTypes = Extract\n \n # Properties\n - db_connection: Path\n - query: str\n - query_parameters: [str]\n - output_mapper: [str]",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class Extract(Action):\n # Static\n + type : ActionTypes = Extract\n \n # Properties\n - db_connection: Path\n - query: str\n - query_parameters: [str]\n - output_mapper: [str]",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "G1xIRcJgm34_NMEWQFFlW",
"type": "text",
"x": 1419.5,
"y": 110,
"width": 253,
"height": 75,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "#228be6",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aA",
"roundness": null,
"seed": 651981400,
"version": 256,
"versionNonce": 138082856,
"isDeleted": false,
"boundElements": null,
"updated": 1758646570344,
"link": null,
"locked": false,
"text": "class Pipeline\n - actions: [Action]\n ",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class Pipeline\n - actions: [Action]\n ",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "TBVy3JbJCkbA9kjVEJ8lv",
"type": "text",
"x": 694,
"y": 100,
"width": 495,
"height": 150,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "#228be6",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aB",
"roundness": null,
"seed": 680960040,
"version": 560,
"versionNonce": 85012520,
"isDeleted": false,
"boundElements": null,
"updated": 1758649442239,
"link": null,
"locked": false,
"text": "class Action\n + type: ActionTypes\n + name: str\n + depends_on: [str]\n\n + execute(mem) -> [Dict<str, any>] | Void",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class Action\n + type: ActionTypes\n + name: str\n + depends_on: [str]\n\n + execute(mem) -> [Dict<str, any>] | Void",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "an7KRTzWpCytKNKgHftKC",
"type": "text",
"x": 1528.5,
"y": 365.5,
"width": 187,
"height": 150,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "#228be6",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aC",
"roundness": null,
"seed": 1974317656,
"version": 306,
"versionNonce": 1574962264,
"isDeleted": false,
"boundElements": null,
"updated": 1758648154009,
"link": null,
"locked": false,
"text": "enum ActionTypes:\n + Extract\n + Aggregate\n + Filter\n + Map\n + Dump",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "enum ActionTypes:\n + Extract\n + Aggregate\n + Filter\n + Map\n + Dump",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "2pQ5EULirrWs_QZPbClhh",
"type": "text",
"x": 785,
"y": 332.5,
"width": 418,
"height": 375,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "#228be6",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aH",
"roundness": null,
"seed": 1402251560,
"version": 742,
"versionNonce": 680432168,
"isDeleted": false,
"boundElements": null,
"updated": 1758649532881,
"link": null,
"locked": false,
"text": "class Aggregate(Action):\n # Static\n + type: ActionTypes = Aggregate\n\n # Properties\n - actionIDs: [str]\n - associations: [Association]\n - output_mapper: [str]\n\n + execute(mem):\n tables = mem.gather(actionIDs)\n\n for join in association:\n \n ",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class Aggregate(Action):\n # Static\n + type: ActionTypes = Aggregate\n\n # Properties\n - actionIDs: [str]\n - associations: [Association]\n - output_mapper: [str]\n\n + execute(mem):\n tables = mem.gather(actionIDs)\n\n for join in association:\n \n ",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "O0fso8DJqFfwJEzmpUikM",
"type": "text",
"x": 1289,
"y": 195,
"width": 594,
"height": 100,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "#228be6",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aI",
"roundness": null,
"seed": 1582329944,
"version": 459,
"versionNonce": 1080077144,
"isDeleted": false,
"boundElements": null,
"updated": 1758647067031,
"link": null,
"locked": false,
"text": "input_mapper: \n - key: ActionID (name) that produced such output\n - value: list of strings that represent the values\n to take",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "input_mapper: \n - key: ActionID (name) that produced such output\n - value: list of strings that represent the values\n to take",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "v0kzO6vlBWOdJCV3yoG69",
"type": "text",
"x": 1379.5,
"y": 718.5,
"width": 286,
"height": 175,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "#228be6",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aL",
"roundness": null,
"seed": 1462407976,
"version": 635,
"versionNonce": 1012998696,
"isDeleted": false,
"boundElements": null,
"updated": 1758649495598,
"link": null,
"locked": false,
"text": "class Association:\n - from_actionID: str\n - from_key_name: str\n - from_value_name: str\n - to_actionID: str\n - to_value_name: str\n - type: Type",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class Association:\n - from_actionID: str\n - from_key_name: str\n - from_value_name: str\n - to_actionID: str\n - to_value_name: str\n - type: Type",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "WK34n9xeVxntypCtrlK6p",
"type": "text",
"x": 256.5,
"y": 787.5,
"width": 517,
"height": 175,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "#228be6",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aM",
"roundness": null,
"seed": 1166526296,
"version": 318,
"versionNonce": 1042162520,
"isDeleted": false,
"boundElements": null,
"updated": 1758649002604,
"link": null,
"locked": false,
"text": "class Filter(Action):\n # Static\n + type: ActionTypes = Filter\n\n # Properties\n - compare: function(Dict<str, any>) -> bool\n - output_mapper: [str]",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class Filter(Action):\n # Static\n + type: ActionTypes = Filter\n\n # Properties\n - compare: function(Dict<str, any>) -> bool\n - output_mapper: [str]",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "NY9jyUFLFFCNPE2sh00SX",
"type": "text",
"x": 1639,
"y": 606.5,
"width": 407,
"height": 200,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "#228be6",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aP",
"roundness": null,
"seed": 20345896,
"version": 168,
"versionNonce": 627282472,
"isDeleted": false,
"boundElements": null,
"updated": 1758649426380,
"link": null,
"locked": false,
"text": "class Map(Action):\n # Static\n + type: ActionTypes = Map\n\n # Properties\n - compare_mapper: [str]\n - mapper: function(any...) -> any\n - output_mapper: [str]",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class Map(Action):\n # Static\n + type: ActionTypes = Map\n\n # Properties\n - compare_mapper: [str]\n - mapper: function(any...) -> any\n - output_mapper: [str]",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "SkhaoW-3TTKDZzEii3Lf6",
"type": "text",
"x": 1457.5,
"y": 955.5,
"width": 121,
"height": 50,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "#228be6",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aQ",
"roundness": null,
"seed": 2071523672,
"version": 37,
"versionNonce": 105260376,
"isDeleted": false,
"boundElements": null,
"updated": 1758648834435,
"link": null,
"locked": false,
"text": "class Dump:\n -",
"fontSize": 20,
"fontFamily": 8,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "class Dump:\n -",
"autoResize": true,
"lineHeight": 1.25
}
],
"appState": {
"gridSize": 20,
"gridStep": 5,
"gridModeEnabled": false,
"viewBackgroundColor": "#ffffff"
},
"files": {}
}

View File

@ -0,0 +1,634 @@
{
"type": "excalidraw",
"version": 2,
"source": "https://marketplace.visualstudio.com/items?itemName=pomdtr.excalidraw-editor",
"elements": [
{
"id": "JNB9z-PeqZ4s8KDfWaoXe",
"type": "rectangle",
"x": 106,
"y": 27,
"width": 653,
"height": 263,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a2",
"roundness": {
"type": 3
},
"seed": 710740889,
"version": 326,
"versionNonce": 1107631703,
"isDeleted": false,
"boundElements": null,
"updated": 1759156408059,
"link": null,
"locked": false
},
{
"id": "e13wNTgUpn2flMpmMttqx",
"type": "text",
"x": 200.5943407656526,
"y": 44.07937975075269,
"width": 307.2781467269385,
"height": 23.3097531902191,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a3",
"roundness": null,
"seed": 1012740663,
"version": 444,
"versionNonce": 589551257,
"isDeleted": false,
"boundElements": null,
"updated": 1759156408059,
"link": null,
"locked": false,
"text": "Libs/CleaningPipeline/sql_endpoint",
"fontSize": 18.64780255217528,
"fontFamily": 5,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "Libs/CleaningPipeline/sql_endpoint",
"autoResize": true,
"lineHeight": 1.25
},
{
"id": "CgxCElJkKBtIHv-5WQrbo",
"type": "text",
"x": 195,
"y": 80.44259472749451,
"width": 403.64997665852184,
"height": 186.4780255217528,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "a4",
"roundness": null,
"seed": 1261951799,
"version": 507,
"versionNonce": 1922906999,
"isDeleted": false,
"boundElements": null,
"updated": 1759156408059,
"link": null,
"locked": false,
"text": "Class SqlEndpoint:\n - sql_engine\n + movie_ids: list[int]\n\n #\n + get_abbreviated_dataset_by_movie_id\n\n",
"fontSize": 18.64780255217528,
"fontFamily": 5,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "Class SqlEndpoint:\n - sql_engine\n + movie_ids: list[int]\n\n #\n + get_abbreviated_dataset_by_movie_id\n\n",
"autoResize": true,
"lineHeight": 1.25
},
{
"type": "line",
"version": 4979,
"versionNonce": 1473849177,
"isDeleted": false,
"id": "sYReMTdYblr-oJtYYJALU",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -67.14432426259049,
"y": 87.19293561900287,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 77.09201683999922,
"height": 99.49948667804088,
"seed": 1263944119,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "round",
"boundElementIds": [],
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
0.2542098813493443,
75.20117273657175
],
[
0.011896425679918422,
83.76249969444815
],
[
3.970409367559332,
87.46174320643391
],
[
17.75573317066317,
90.59250103325854
],
[
41.05683533152865,
91.56737225214069
],
[
63.319497586673116,
90.01084754868091
],
[
75.14781395923075,
86.28844687220405
],
[
76.81603792670788,
83.15042405259751
],
[
77.05033394391478,
76.25776215104557
],
[
76.86643881413028,
6.3089586511537865
],
[
76.45188016352971,
-0.2999144698665015
],
[
71.50179495549581,
-3.9936571317850627
],
[
61.077971898861186,
-6.132877429442784
],
[
37.32348754161154,
-7.932114425900202
],
[
18.278415656797975,
-6.859225353587373
],
[
3.2995959613238286,
-3.2201165291205287
],
[
-0.04168289608444441,
-0.045185660461322996
],
[
0,
0
]
],
"index": "a6",
"frameId": null,
"roundness": {
"type": 2
},
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "line",
"version": 2684,
"versionNonce": 952947769,
"isDeleted": false,
"id": "0S6dEWQVqKUVkP6Z5IX1l",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -66.6203948243155,
"y": 144.31921927673278,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 77.17198221193564,
"height": 8.562348957853036,
"seed": 817033943,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "round",
"boundElementIds": [],
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
2.033150371639873,
3.413095389435587
],
[
10.801287372573954,
6.276651055277943
],
[
22.468666942209353,
8.010803051612635
],
[
40.747074201802775,
8.168828515515864
],
[
62.077348233027564,
7.0647721921469495
],
[
74.53446931782398,
3.04824021069218
],
[
77.17198221193564,
-0.3935204423371723
]
],
"index": "a7",
"frameId": null,
"roundness": {
"type": 2
},
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "line",
"version": 2770,
"versionNonce": 477619481,
"isDeleted": false,
"id": "szGLND7J0nVOvRkNXX9AS",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -67.65225214681931,
"y": 115.35516394150972,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 77.17198221193564,
"height": 8.562348957853036,
"seed": 1704755191,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "round",
"boundElementIds": [],
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
2.033150371639873,
3.413095389435587
],
[
10.801287372573954,
6.276651055277943
],
[
22.468666942209353,
8.010803051612635
],
[
40.747074201802775,
8.168828515515864
],
[
62.077348233027564,
7.0647721921469495
],
[
74.53446931782398,
3.04824021069218
],
[
77.17198221193564,
-0.3935204423371723
]
],
"index": "a8",
"frameId": null,
"roundness": {
"type": 2
},
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "ellipse",
"version": 5767,
"versionNonce": 2119031289,
"isDeleted": false,
"id": "O3t2uGktJlDd1_OX_bpV4",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -68.71020112890136,
"y": 80.06066699332126,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 76.59753601865496,
"height": 15.49127539284798,
"seed": 471296279,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "sharp",
"boundElementIds": [
"bxuMGTzXLn7H-uBCptINx"
],
"index": "a9",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "ellipse",
"version": 1177,
"versionNonce": 525480665,
"isDeleted": false,
"id": "_SzKlOBOvJgBg7FX0JTTM",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -32.218214023678854,
"y": 104.53733467322485,
"strokeColor": "#000000",
"backgroundColor": "#228be6",
"width": 11.226103154161754,
"height": 12.183758484455605,
"seed": 1368927799,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "sharp",
"boundElementIds": [],
"index": "aA",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "ellipse",
"version": 1465,
"versionNonce": 1410887609,
"isDeleted": false,
"id": "oJMl2Kxa3SPaiAY0kxo7A",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -31.867072239745255,
"y": 130.75394896028996,
"strokeColor": "#000000",
"backgroundColor": "#228be6",
"width": 11.226103154161754,
"height": 12.183758484455605,
"seed": 1627606871,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "sharp",
"boundElementIds": [],
"index": "aB",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "ellipse",
"version": 1348,
"versionNonce": 314839193,
"isDeleted": false,
"id": "fB6pJBSMA-pRHrpgYKaLL",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 6.239590202363168,
"x": -31.218214023678854,
"y": 159.52267553159635,
"strokeColor": "#000000",
"backgroundColor": "#228be6",
"width": 11.226103154161754,
"height": 12.183758484455605,
"seed": 1420643447,
"groupIds": [
"9YkNe1yqnfZy9Z1JX2xr4",
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "sharp",
"boundElementIds": [],
"index": "aC",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false
},
{
"type": "text",
"version": 846,
"versionNonce": 1091081593,
"isDeleted": false,
"id": "9gZ3Yy1MeP9kEOTLODqLG",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": -76.81018163712321,
"y": 181.11281713043917,
"strokeColor": "#000000",
"backgroundColor": "#a5d8ff",
"width": 95.63072204589844,
"height": 23.595161071904883,
"seed": 2019206551,
"groupIds": [
"BDBCTrrhjbJynRAyuf3xJ"
],
"strokeSharpness": "sharp",
"boundElementIds": [],
"fontSize": 17.4778970902999,
"fontFamily": 1,
"text": "dataset.db",
"baseline": 16.595161071904883,
"textAlign": "center",
"verticalAlign": "top",
"index": "aD",
"frameId": null,
"roundness": null,
"boundElements": [],
"updated": 1759158252997,
"link": null,
"locked": false,
"containerId": null,
"originalText": "dataset.db",
"autoResize": true,
"lineHeight": 1.350000000000001
},
{
"id": "3eOw20xMhpB5jf_RMG24P",
"type": "text",
"x": 1131.3333333333335,
"y": 31.333333333333428,
"width": 508.3333333333333,
"height": 550,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aE",
"roundness": null,
"seed": 1535658041,
"version": 821,
"versionNonce": 1630266809,
"isDeleted": false,
"boundElements": null,
"updated": 1759157181677,
"link": null,
"locked": false,
"text": "Class PipelineApplier\n - movie_frequence_filter : pd.DataFrame()\n - rel_Frequence_Filter : pd.DataFrame()\n - rel_banned_list: list[str]\n\n + generate_movie_frequency_filter()\n + generate_rel_frequency_filter()\n + generate_list_relationship_filter()\n \n + filter_by_movie_frequency()\n + filter_by_relationship_frequency()\n + delete_relationship_by_list_filter()\n + delete_relationship_by_str()\n\n + drop_na() \n\n + rdf_add_special_token()\n + group_triple_by_movie()\n + build_by_movie()\n # static\n + build_triple()\n + build_incomplete_triple()",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "Class PipelineApplier\n - movie_frequence_filter : pd.DataFrame()\n - rel_Frequence_Filter : pd.DataFrame()\n - rel_banned_list: list[str]\n\n + generate_movie_frequency_filter()\n + generate_rel_frequency_filter()\n + generate_list_relationship_filter()\n \n + filter_by_movie_frequency()\n + filter_by_relationship_frequency()\n + delete_relationship_by_list_filter()\n + delete_relationship_by_str()\n\n + drop_na() \n\n + rdf_add_special_token()\n + group_triple_by_movie()\n + build_by_movie()\n # static\n + build_triple()\n + build_incomplete_triple()",
"autoResize": false,
"lineHeight": 1.25
},
{
"id": "Fbl1gpb5r7QrdRauGUWm2",
"type": "text",
"x": 158.23809523809535,
"y": 502.52380952380935,
"width": 484.2857142857143,
"height": 500,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aF",
"roundness": null,
"seed": 2066618807,
"version": 552,
"versionNonce": 1269344823,
"isDeleted": false,
"boundElements": null,
"updated": 1759158199532,
"link": null,
"locked": false,
"text": "Class Pipeline\n - sql_endpoint: SqlEndpoint()\n\n - task_rdf_mask_file_handler:\n - task_bpe_corpus_file_handler:\n - task_rdf_text_file_handler:\n - task_rdf_completation_file_handler:\n\n - Filter_applier : PipelineApplier()\n\n #\n - get_cleaned_movie_rows()\n \n + execute_task_bpe_corpus()\n + execute_task_rdf_mask()\n + execute_task_rdf_text()\n + execute_task_rdf_completation()\n + execute_all_task()\n\n + use_toy_dataset()",
"fontSize": 20,
"fontFamily": 5,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "Class Pipeline\n - sql_endpoint: SqlEndpoint()\n\n - task_rdf_mask_file_handler:\n - task_bpe_corpus_file_handler:\n - task_rdf_text_file_handler:\n - task_rdf_completation_file_handler:\n\n - Filter_applier : PipelineApplier()\n\n #\n - get_cleaned_movie_rows()\n \n + execute_task_bpe_corpus()\n + execute_task_rdf_mask()\n + execute_task_rdf_text()\n + execute_task_rdf_completation()\n + execute_all_task()\n\n + use_toy_dataset()",
"autoResize": false,
"lineHeight": 1.25
}
],
"appState": {
"gridSize": 20,
"gridStep": 5,
"gridModeEnabled": false,
"viewBackgroundColor": "#ffffff"
},
"files": {}
}

215
docs/DBPEDIA.md Normal file
View File

@ -0,0 +1,215 @@
# DBPedia
## GraphIRI
This is the graph identifier (URI):
`http://dbpedia.org`
## History of queries
```SQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT ?subject, ?relationship, ?object
WHERE {
?subject ?relationship ?object .
{
SELECT ?object
WHERE {
?m rdf:type dbo:Film .
?object ?r ?m
}
}
}
```
### 2 Hops
```SQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT ?subject, ?relationship, ?object
WHERE {
?subject ?relationship ?object .
FILTER (?relationship != <http://dbpedia.org/ontology/wikiPageWikiLink>)
{
SELECT ?object
WHERE {
?m rdf:type dbo:Film .
?object ?r ?m
FILTER (?r != <http://dbpedia.org/ontology/wikiPageWikiLink>)
}
}
}
LIMIT 1000000
```
### 1 Hop
```SQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT ?subject, ?relationship, ?object
WHERE {
?subject ?relationship ?object .
?object rdf:type dbo:Film .
FILTER (?relationship != <http://dbpedia.org/ontology/wikiPageWikiLink>)
}
LIMIT 1000000
```
```SQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT ?subject, ?relationship, ?object
WHERE {
?subject ?relationship ?object .
?subject rdf:type dbo:Film .
}
```
```SQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?subject, ?relationship, ?object
WHERE {
?subject ?relationship ?object .
?subject rdf:type dbo:Film .
?a foaf:primaryTopic ?subject
}
```
```SQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT ?subject
WHERE {
?subject rdf:type dbo:Film .
}
```
```SQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?subject
WHERE {
?subject rdf:type dbo:Film .
?a foaf:primaryTopic ?subject
}
```
```SQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?subject, ?relationship, ?object
WHERE {
?subject ?relationship ?object .
?subject rdf:type dbo:Film .
?a foaf:primaryTopic ?subject
FILTER (?relationship NOT IN (
dbo:wikiPageRedirects,
dbo:wikiPageExternalLink,
dbo:wikiPageWikiLink,
foaf:primaryTopic
))
}
```
#### Wikipedia-movie
a.k.a the file with the wikipedia abstract
```SQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?subject , ?object
WHERE {
?subject foaf:primaryTopic ?object .
?object rdf:type dbo:Film
}
```
#### Reverse
```SQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?subject, ?relationship, ?object
WHERE {
?subject ?relationship ?object .
?object rdf:type dbo:Film .
?a foaf:primaryTopic ?object
FILTER (?relationship NOT IN (
dbo:wikiPageRedirects,
dbo:wikiPageExternalLink,
dbo:wikiPageWikiLink,
foaf:primaryTopic
))
}
```
```SQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?subject, ?relationship, ?object
WHERE {
?subject ?relationship ?object .
?object rdf:type dbo:Film .
?a foaf:primaryTopic ?object
FILTER (?relationship NOT IN (
dbo:wikiPageRedirects,
dbo:wikiPageExternalLink,
dbo:wikiPageWikiLink,
foaf:primaryTopic
))
```
#### Film \ wiki page ID
```SQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?subject ?pageID
WHERE {
?subject rdf:type dbo:Film .
?subject dbo:wikiPageID ?pageID .
?subject rdfs:label ?label .
FILTER (lang(?label) = "en")
}
```

3
docs/DEVELOPMENT.md Normal file
View File

@ -0,0 +1,3 @@
# Development
## Data Gathering

108
docs/RESOURCES.md Normal file
View File

@ -0,0 +1,108 @@
# Resources
## Byte-Pair Encoding (BPE)
### Overview
Byte-Pair Encoding (BPE) is a simple but powerful text compression and tokenization algorithm.
Originally introduced as a data compression method, it has been widely adopted in **Natural Language Processing (NLP)** to build subword vocabularies for models such as GPT and BERT.
---
### Key Idea
BPE works by iteratively replacing the most frequent pair of symbols (initially characters) with a new symbol.
Over time, frequent character sequences (e.g., common morphemes, prefixes, suffixes) are merged into single tokens.
---
### Algorithm Steps
1. **Initialization**
- Treat each character of the input text as a token.
2. **Find Frequent Pairs**
- Count all adjacent token pairs in the sequence.
3. **Merge Most Frequent Pair**
- Replace the most frequent pair with a new symbol not used in the text.
4. **Repeat**
- Continue until no frequent pairs remain or a desired vocabulary size is reached.
---
### Example
Suppose the data to be encoded is:
```text
aaabdaaabac
```
#### Step 1: Merge `"aa"`
Most frequent pair: `"aa"` → replace with `"Z"`
```text
ZabdZabac
Z = aa
```
---
#### Step 2: Merge `"ab"`
Most frequent pair: `"ab"` → replace with `"Y"`
```text
ZYdZYac
Y = ab
Z = aa
```
---
#### Step 3: Merge `"ZY"`
Most frequent pair: `"ZY"` → replace with `"X"`
```text
XdXac
X = ZY
Y = ab
Z = aa
```
---
At this point, no pairs occur more than once, so the process stops.
---
### Decompression
To recover the original data, replacements are applied in **reverse order**:
```text
XdXac
→ ZYdZYac
→ ZabdZabac
→ aaabdaaabac
```
---
### Advantages
- **Efficient vocabulary building**: reduces the need for massive word lists.
- **Handles rare words**: breaks them into meaningful subword units.
- **Balances character- and word-level tokenization**.
---
### Limitations
- Does not consider linguistic meaning—merges are frequency-based.
- May create tokens that are not linguistically natural.
- Vocabulary is fixed after training.

67
docs/SPARQL.md Normal file
View File

@ -0,0 +1,67 @@
# SparQL
> [!NOTE]
> Resources taken from [this website](https://sparql.dev/)
## SQL Queries
### SELECT
```SQL
SELECT ?var1, ?var2, ...
```
### WHERE
```SQL
WHERE {
pattern1 .
pattern2 .
...
}
```
### FILTER
It's used to restrict [`WHERE`](#where) clauses
```SQL
WHERE {
?person <http://example.com/hasCar> ?car .
FILTER (?car = <http://example.com/Car1>)
}
```
### OPTIONAL
It's used to fetch available content if exists
```SQL
SELECT ?person ?car
WHERE {
?person <http://example.com/hasCar> ?car .
OPTIONAL {
?car <http://example.com/hasColor> ?color .
}
}
```
### LIMIT
Limits results
```SQL
LIMIT 10 -- Take only 10 results
```
## SparQL functions
### COUNT
```SQL
SELECT (COUNT(?person) AS ?count)
WHERE {
?person <http://example.com/hasCar> ?car .
}
```

BIN
environment.yaml Normal file

Binary file not shown.

18
requirements.txt Normal file
View File

@ -0,0 +1,18 @@
certifi==2025.8.3
charset-normalizer==3.4.3
idna==3.10
numpy==2.3.3
pandas==2.3.2
pyparsing==3.2.4
python-dateutil==2.9.0.post0
pytz==2025.2
rdflib==7.1.4
requests==2.32.5
setuptools==78.1.1
six==1.17.0
SPARQLWrapper==2.0.0
tzdata==2025.2
urllib3==2.5.0
wheel==0.45.1
Wikipedia-API==0.8.1
SQLAlchemy