# Research Material ## BPE - [BPE Wikipedia](https://en.wikipedia.org/wiki/Byte-pair_encoding) - [BPE Hugging Face](https://huggingface.co/learn/llm-course/chapter6/5) - [BPE GeeksForGeeks](https://www.geeksforgeeks.org/nlp/byte-pair-encoding-bpe-in-nlp/) - [BPE Medium Chetna Khanna](https://medium.com/data-science/byte-pair-encoding-subword-based-tokenization-algorithm-77828a70bee0) - [Stack Overflow "Explain bpe (Byte Pair Encoding) with examples?"](https://stackoverflow.com/questions/50583254/explain-bpe-byte-pair-encoding-with-examples) - [Implementing a byte pair encoding(BPE) Tokenizer from scratch](https://sebastianraschka.com/blog/2025/bpe-from-scratch.html) - [Thoretical Analysis of Byte-Pair Encoding](https://arxiv.org/pdf/2411.08671) - [A Formal Perspective on Byte-Pair Encoding](https://aclanthology.org/2023.findings-acl.38v2.pdf) - [Byte Pair Encoding is Suboptimal for Language Model Pretraining](https://arxiv.org/pdf/2004.03720) - [Byte pair encoding: a text compression scheme that accelerates pattern matching](https://www.researchgate.net/profile/Takeshi-Shinohara/publication/2310624_Byte_Pair_Encoding_A_Text_Compression_Scheme_That_Accelerates_Pattern_Matching/links/02e7e522f8ea00c318000000/Byte-Pair-Encoding-A-Text-Compression-Scheme-That-Accelerates-Pattern-Matching.pdf) - [A Formal Perspective on Byte-Pair Encoding](https://arxiv.org/pdf/2306.16837) - [Controlling byte pair encoding for neural machine translation](https://ieeexplore.ieee.org/abstract/document/8300571) - [Scaffold-BPE: Enhancing Byte Pair Encoding for Large Language Models with Simple and Effective Scaffold Token Removal](https://ojs.aaai.org/index.php/AAAI/article/view/34633) - [Parity-Aware Byte-Pair Encoding: Improving Cross-lingual Fairness in Tokenization](https://arxiv.org/pdf/2508.04796) - [Code Completion using Neural A‚ention and Byte Pair Encoding](https://arxiv.org/pdf/2004.06343) - [Getting the most out of your tokenizer for pre-training and domain adaptation](https://arxiv.org/html/2402.01035v2) ## Embedder - [ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING](https://arxiv.org/pdf/2104.09864) - [You could have designed state of the art positional encoding](https://huggingface.co/blog/designing-positional-encoding) - [Rotary Embeddings: A Relative Revolution](https://blog.eleuther.ai/rotary-embeddings/) - [Round and Round We Go! What makes Rotary Positional Encodings useful?](https://arxiv.org/html/2410.06205v1) - [Inside RoPE: Rotary Magic into Position Embeddings](https://learnopencv.com/rope-position-embeddings/) - [What Rotary Position Embedding Can Tell Us: Identifying Query and Key Weights Corresponding to Basic Syntactic or High-level Semantic Information](https://openreview.net/pdf?id=e5Mv7iWfVW) - [A gentle introduction to Rotary Position Embedding](https://krasserm.github.io/2022/12/13/rotary-position-embedding/) - [Context-aware Rotary Position Embedding](https://arxiv.org/pdf/2507.23083) - [LIERE: GENERALIZING ROTARY POSITION ENCODINGS TO HIGHER DIMENSIONAL INPUTS](https://openreview.net/pdf?id=xHMMt7r3GW) - [Rotary Positional Embeddings (RoPE)](https://nn.labml.ai/transformers/rope/index.html) - [Decoding Llama3: An explainer for tinkerers](https://hasgeek.com/simrathanspal/the-llama3-guide/sub/decoding-llama3-part-4-rotary-positional-embedding-3K8ZHpdLi6E56N8ejnaWzm) ## Attention - [Standard Self-Attention (Attention is all you need)](https://arxiv.org/pdf/1706.03762) - [TransMLA: Multi-Head Latent Attention Is All You Need](https://arxiv.org/pdf/2502.07864) - [A Gentle Introduction to Multi-Head Latent Attention (MLA)](https://machinelearningmastery.com/a-gentle-introduction-to-multi-head-latent-attention-mla/) - [Understanding Multi-Head Latent Attention](https://planetbanatt.net/articles/mla.html) - [DeepSeek's Multi-Head Latent Attention](https://liorsinai.github.io/machine-learning/2025/02/22/mla.html) - [MatchFormer: Interleaving Attention in Transformers for Feature Matching](https://arxiv.org/pdf/2203.09645) - [FIT: Far-reaching Interleaved Transformers](https://arxiv.org/pdf/2305.12689) - [Gemma explained: What’s new in Gemma 3](https://developers.googleblog.com/en/gemma-explained-whats-new-in-gemma-3/) - [The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation](https://ai.meta.com/blog/llama-4-multimodal-intelligence/) - [Attention was never enough: Tracing the rise of hybrid LLMs](https://www.ai21.com/blog/rise-of-hybrid-llms/) - ## Spanned Masking - [Salient Span Masking for Temporal Understanding](https://arxiv.org/pdf/2303.12860) - [PMI-MASKING: PRINCIPLED MASKING OF CORRELATED SPANS](https://arxiv.org/pdf/2010.01825) ## Models - [What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?](https://arxiv.org/pdf/2204.05832)