import random from typing import Generator import pandas as pd import Project_Model.Libs.BPE as BPE from Scripts.Libs.CleaningPipeline.special_token import SpecialToken from Project_Model.Libs.Transformer.Classes.SpannedMasker import SpannedMasker from TokenCompletation import TokenCompletationTransformer from Project_Model.Libs.BPE.Enums.SpecialToken import SpecialToken class Batcher: def __init__(self, dataset_path: str, batch_size:int, tokenizer: BPE.TokeNanoCore, masker: SpannedMasker) -> None: # ABSTRACT, TRIPLE # tasks: # rdf2text: X: TRIPLE, Y: ABSTRACT # text2rdf: X: ABSTRACT, X:TRIPLE # masking ( call masker): X: incomplete_triple Y: complete_triple (as exam) # completation: X: TRIPLE SUBSET, Y: related TRIPLE SUBSET self._dataset_path = dataset_path self._batch_size = batch_size self._tokenizer = tokenizer self._masker = masker sotl = self._tokenizer.encode(SpecialToken.START_TRIPLE_LIST.value) eos = self._tokenizer.encode(SpecialToken.END_OF_SEQUENCE.value) self._token_completation = TokenCompletationTransformer(sotl,eos) def get_batch(self)-> Generator[pd.DataFrame]: for batch in pd.read_csv(self._dataset_path, chunksize= int(self._batch_size/4)): #now we support 3 task tokenized_batch = pd.DataFrame() tokenized_batch[["Abstract","RDFs"]] = ( batch[["Abstract","RDFs"]] .map(lambda t: self._tokenizer.encode(t)) ) rdf2txt_batch = self.__rdf2txt_transformation(tokenized_batch) txt2rdf_batch = self.__txt2rdf_transformation(tokenized_batch) mask_batch = self.__masking_trasformation(tokenized_batch) completation_batch = self.__token_completation_task(tokenized_batch) output = pd.concat([rdf2txt_batch,txt2rdf_batch,mask_batch,completation_batch],ignore_index=True) output = output.sample(frac=1).reset_index(drop=True) yield output def __random_subset_rdfs(self, batch: pd.DataFrame, seed = 0): # WIP rng = random.Random(seed) def to_list(x): return x.split(SpecialToken.START_TRIPLE.value)[1:] batch["RDFs"] = batch["RDFs"].map( to_list ) def __rdf2txt_transformation(self, batch: pd.DataFrame): batch = batch.rename(columns={"RDFs": "X", "Abstract": "Y"}) return batch[["X", "Y"]] def __txt2rdf_transformation(self, batch: pd.DataFrame): batch = batch.rename(columns={ "Abstract": "X","RDFs": "Y"}) return batch[["X", "Y"]] def __masking_trasformation(self, batch: pd.DataFrame): # mask_sequence: List[int] -> Tuple[List[int], List[int]] xy_tuples = batch["RDFs"].apply(self._masker.mask_sequence) # Series of (X, Y) output = batch.copy() # Expand into two columns preserving the original index output[["X", "Y"]] = pd.DataFrame(xy_tuples.tolist(), index=batch.index) return output[["X", "Y"]] def __token_completation_task(self, batch: pd.DataFrame): xy_tuples = batch["RDFs"].apply(self._token_completation.get_completation_tuple) output = batch.copy() output[["X", "Y"]] = pd.DataFrame(xy_tuples.tolist(), index=batch.index) return output[["X", "Y"]] """ DATASET_PATH = "Assets/Dataset/Tmp/rdf_text.csv" VOCABULARY_path = "Assets/Dataset/Tmp/trimmed.json" from pathlib import Path VOCABULARY = BPE.load_nanos_vocabulary(Path(VOCABULARY_path)) SPECIAL_LIST = BPE.default_special_tokens() TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_LIST) SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(SPECIAL_LIST))) MASKER = SpannedMasker(TOKENANO.vocabulary_size,SPECIAL_TOKENS) prova = "Cactus Flower is a 1969 American screwball comedy film directed by Gene Saks, and starring Walter Matthau, Ingrid Bergman and Goldie Hawn, who won an Academy Award for her performance.The screenplay was adapted by I. A. L. Diamond from the 1965 Broadway play of the same title written by Abe Burrows, which, in turn, is based on the French play Fleur de cactus by Pierre Barillet and Jean-Pierre Gredy. Cactus Flower was the ninth highest-grossing film of 1969." print(TOKENANO.encode(prova)) batcher = Batcher(DATASET_PATH,8,TOKENANO,MASKER) for batch in batcher.get_batch(): print(batch) """