NanoSocrates/Scripts/DataCleaning/path_splitter_tree.py

162 lines
4.1 KiB
Python

import argparse
import csv
import sys
from typing import Self
class ProgramArgs:
def __init__(self, file: str, csv_uri_header: str, output: str, treshold: int):
"""
Args:
file (str):
csv_header (str): The name of the column of the csv file from which the program will get the URIs
output (str):
treshold (int):
"""
self.file = file
self.csv_uri_header = csv_uri_header
self.output = output
self.treshold = treshold
class Node:
def __init__(
self,
name: str,
quantity: int = 0,
):
self.name = name
self.quantity = quantity
self.children: dict[str, Node] = {}
@property
def is_leaf(self):
return len(self.children) == 0
def append_child(self, child: list[str]):
# print(child)
KEY = child[0]
if not self.children.get(KEY):
# if the key has no value, it means we are traversing this branch for the first time
# create another node for the key
self.children[KEY] = Node(KEY, 0)
# take the node for the key
CHILD = self.children[KEY]
self.quantity += 1
# if the child list to enter has only one element, which is KEY, no more node will be created
if len(child) == 1:
return
new_children = child[1:]
CHILD.append_child(new_children)
def __str__(self):
return f"{self.name}/ - {self.quantity}"
def get_args(args: list[str]) -> ProgramArgs:
PARSER = argparse.ArgumentParser()
PARSER.add_argument("--input-file", "-i", required=True, type=str)
PARSER.add_argument("--header-name", "-c", required=True, type=str) # c stands for column
PARSER.add_argument("--output-file", "-o", required=True, type=str)
PARSER.add_argument("--treshold", "-t", type=int, default=1)
parsed_args, _ = PARSER.parse_known_args(args)
# print(parsed_args.input_file)
return ProgramArgs(parsed_args.input_file, parsed_args.header_name ,parsed_args.output_file, parsed_args.treshold) # type ignore
def get_debug_args() -> ProgramArgs:
# -i ./Assets/Dataset/1-hop/movies.csv -c subject -o Assets/Dataset/Tmp/prova.csv -t 1
FILE = "./Assets/Dataset/1-hop/movies.csv"
CSV_HEADER = "subject"
OUTPUT = "./Assets/Dataset/Tmp/prova.csv"
TRESHOLD = 1
return ProgramArgs(
FILE,
CSV_HEADER,
OUTPUT,
TRESHOLD
)
def tree_like(file: str, csv_uri_header:str, out: str):
INDENTATION = " "
properties: dict[str, Node] = {}
properties["pure"] = Node("pure", 0)
properties["URI"] = Node("uri", 0)
FILE = open(file, "r", encoding="utf-8")
# It is needed the header-name
for row in csv.DictReader(FILE):
uri_element = row[csv_uri_header]
sections = uri_element.split("/")
sections = list(filter(lambda item: item != "", sections))
# print(sections)
if sections[0] != "http:" and sections[0] != "https:":
properties["pure"].append_child(sections)
continue
properties["URI"].append_child(sections)
FILE.close()
stack: list[tuple[Node, int]] = []
for _, item in properties.items():
stack.append((item, 0))
OUT = open(out, mode="w", encoding="utf-8")
while len(stack) > 0:
LAST_ITEM = stack.pop()
NODE: Node = LAST_ITEM[0]
DEPTH: int = LAST_ITEM[1]
INDENT: str = INDENTATION * DEPTH
# Leaf node have quantity 0, so if i want them to appear the threshold have to be 0
# if NODE.quantity < ARGS.treshold:
if ARGS.treshold > NODE.quantity:
continue
OUT.write(f"{INDENT}- {NODE}\n")
if NODE.is_leaf:
continue
CHILDREN = []
for _, child in NODE.children.items():
CHILDREN.append((child, DEPTH + 1))
stack.extend(CHILDREN)
OUT.close()
if __name__ == "__main__":
ARGS = get_args(sys.argv)
# ARGS = get_debug_args()
tree_like(ARGS.file,ARGS.csv_uri_header, ARGS.output)