2025-10-08 11:39:08 +02:00

104 lines
4.4 KiB
Python

import random
from typing import Generator
import pandas as pd
import Project_Model.Libs.BPE as BPE
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Project_Model.Libs.Transformer.Classes.SpannedMasker import SpannedMasker
from TokenCompletation import TokenCompletationTransformer
from Project_Model.Libs.BPE.Enums.SpecialToken import SpecialToken
class Batcher:
def __init__(self, dataset_path: str, batch_size:int, tokenizer: BPE.TokeNanoCore, masker: SpannedMasker) -> None:
# ABSTRACT, TRIPLE
# tasks:
# rdf2text: X: TRIPLE, Y: ABSTRACT
# text2rdf: X: ABSTRACT, X:TRIPLE
# masking ( call masker): X: incomplete_triple Y: complete_triple (as exam)
# completation: X: TRIPLE SUBSET, Y: related TRIPLE SUBSET
self._dataset_path = dataset_path
self._batch_size = batch_size
self._tokenizer = tokenizer
self._masker = masker
sotl = self._tokenizer.encode(SpecialToken.START_TRIPLE_LIST.value)
eos = self._tokenizer.encode(SpecialToken.END_OF_SEQUENCE.value)
self._token_completation = TokenCompletationTransformer(sotl,eos)
def get_batch(self)-> Generator[pd.DataFrame]:
for batch in pd.read_csv(self._dataset_path, chunksize= int(self._batch_size/4)): #now we support 3 task
tokenized_batch = pd.DataFrame()
tokenized_batch[["Abstract","RDFs"]] = (
batch[["Abstract","RDFs"]]
.map(lambda t: self._tokenizer.encode(t))
)
rdf2txt_batch = self.__rdf2txt_transformation(tokenized_batch)
txt2rdf_batch = self.__txt2rdf_transformation(tokenized_batch)
mask_batch = self.__masking_trasformation(tokenized_batch)
completation_batch = self.__token_completation_task(tokenized_batch)
output = pd.concat([rdf2txt_batch,txt2rdf_batch,mask_batch,completation_batch],ignore_index=True)
output = output.sample(frac=1).reset_index(drop=True)
yield output
def __random_subset_rdfs(self, batch: pd.DataFrame, seed = 0):
# WIP
rng = random.Random(seed)
def to_list(x):
return x.split(SpecialToken.START_TRIPLE.value)[1:]
batch["RDFs"] = batch["RDFs"].map(
to_list
)
def __rdf2txt_transformation(self, batch: pd.DataFrame):
batch = batch.rename(columns={"RDFs": "X", "Abstract": "Y"})
return batch[["X", "Y"]]
def __txt2rdf_transformation(self, batch: pd.DataFrame):
batch = batch.rename(columns={ "Abstract": "X","RDFs": "Y"})
return batch[["X", "Y"]]
def __masking_trasformation(self, batch: pd.DataFrame):
# mask_sequence: List[int] -> Tuple[List[int], List[int]]
xy_tuples = batch["RDFs"].apply(self._masker.mask_sequence) # Series of (X, Y)
output = batch.copy()
# Expand into two columns preserving the original index
output[["X", "Y"]] = pd.DataFrame(xy_tuples.tolist(), index=batch.index)
return output[["X", "Y"]]
def __token_completation_task(self, batch: pd.DataFrame):
xy_tuples = batch["RDFs"].apply(self._token_completation.get_completation_tuple)
output = batch.copy()
output[["X", "Y"]] = pd.DataFrame(xy_tuples.tolist(), index=batch.index)
return output[["X", "Y"]]
"""
DATASET_PATH = "Assets/Dataset/Tmp/rdf_text.csv"
VOCABULARY_path = "Assets/Dataset/Tmp/trimmed.json"
from pathlib import Path
VOCABULARY = BPE.load_nanos_vocabulary(Path(VOCABULARY_path))
SPECIAL_LIST = BPE.default_special_tokens()
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_LIST)
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(SPECIAL_LIST)))
MASKER = SpannedMasker(TOKENANO.vocabulary_size,SPECIAL_TOKENS)
prova = "<ABS>Cactus Flower is a 1969 American screwball comedy film directed by Gene Saks, and starring Walter Matthau, Ingrid Bergman and Goldie Hawn, who won an Academy Award for her performance.The screenplay was adapted by I. A. L. Diamond from the 1965 Broadway play of the same title written by Abe Burrows, which, in turn, is based on the French play Fleur de cactus by Pierre Barillet and Jean-Pierre Gredy. Cactus Flower was the ninth highest-grossing film of 1969."
print(TOKENANO.encode(prova))
batcher = Batcher(DATASET_PATH,8,TOKENANO,MASKER)
for batch in batcher.get_batch():
print(batch)
"""