NanoSocrates/Project_Model/Libs/Training/logistic_collector.py
2025-10-08 22:51:36 +02:00

43 lines
1.9 KiB
Python

import torch
class LogitsCollector:
def __init__(self, pad_token: int, end_token: int, tokenizer) -> None:
self.__pad_token = pad_token # used to skip PAD
self.__end_token = end_token # used to stop at END
self.__tokenizer = tokenizer # exposes .decode(list[int]) -> str
self.__steps: list[torch.Tensor] = [] # list of per-step logits [B,V]
def reset(self) -> None:
self.__steps.clear() # clear history
def add(self, logits_step: torch.Tensor) -> None:
if logits_step.dim() == 3: # handle [B,1,V]
logits_step = logits_step[:, -1, :] # -> [B,V]
self.__steps.append(logits_step.detach()) # store raw logits (detached)
def tokens(self) -> list[list[int]]:
if not self.__steps:
return []
stack = torch.stack(self.__steps, dim=0) # [T,B,V]
probs = torch.softmax(stack, dim=-1) # softmax over vocab -> [T,B,V]
ids = probs.argmax(dim=-1).transpose(0, 1) # greedy ids -> [B,T]
out: list[list[int]] = []
for row in ids.tolist():
seq: list[int] = []
for tok in row:
if tok == self.__end_token: # stop on END
break
if tok == self.__pad_token: # skip PAD
continue
seq.append(tok)
out.append(seq)
return out
def print_decoded(self) -> None:
for i, seq in enumerate(self.tokens()):
try:
text = self.__tokenizer.decode(seq) # decode tokens to string
except Exception:
text = str(seq) # fallback to ids
print(f"[{i}] {text}") # simple print