142 lines
5.8 KiB
Python

import re
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
from Scripts.DataCleaning.filter import PipelineApplier
# tasks dataset builder
from Scripts.DataCleaning.data_output_models.rdf_mask_task import RDF_mask_task_dataset
from Scripts.DataCleaning.data_output_models.bpe_corpus import BPE_corpus
from Scripts.DataCleaning.data_output_models.rdf_text_tasks import RDF_text_task_dataset
from Scripts.DataCleaning.data_output_models.rdf_completation_task import RDF_completation_task_dataset
from Scripts.DataCleaning.data_output_models.debug_csv import Debug_csv
import pandas as pd
class Pipeline():
def __init__(self):
self.sql_endpoint = SqlEndpoint()
# classes to manage taskes' datasets
self.task_rdf_mask = RDF_mask_task_dataset("./Assets/Dataset/Tmp/rdf_mask.csv")
self.task_bpe_corpus = BPE_corpus("./Assets/Dataset/Tmp/corpus.txt")
self.task_rdf_text = RDF_text_task_dataset("./Assets/Dataset/Tmp/rdf_text.csv")
self.task_rdf_completation = RDF_completation_task_dataset("./Assets/Dataset/Tmp/rdf_completation.csv")
# prepare the filter
# the filter applier needs to know the frequence of Movies and Relationship among all the Dataset
self.filter_applier = PipelineApplier()
MOVIE_COUNT = self.sql_endpoint.get_movies_id_count()
REL_COUNT = self.sql_endpoint.get_relationship_count()
self.filter_applier.generate_frequency_movie_filter(MOVIE_COUNT,50,3000)
self.filter_applier.generate_frequency_relationship_filter(REL_COUNT, 50, 2395627)
# prepare the filter on the relationshipURI you want to delete:
relationship_uri_banned_list = [
"dbp-dbp:wikiPageUsesTemplate","w3:2000/01/rdf-schema#label","dbp-dbo:abstract",
"dbp-dbo:wikiPageID","dbp-dbo:wikiPageRevisionID", "dbp-dbo:wikiPageDisambiguates",
"w3:2002/07/owl#sameAs","dbp-dbp:image","dbp-dbo:wikiPageLength", "w3:2000/01/rdf-schema#comment",
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type"]
self.filter_applier.generate_list_relationship_filter(relationship_uri_banned_list)
def execute_task_bpe_corpus(self):
for RDF in self._get_cleaned_movie_rows():
RDF = self.filter_applier.rebuild_by_movie(RDF)
RDF = RDF[["Triple","Abstract"]]
self.task_bpe_corpus.write_from_df(RDF)
self._end_file_handler()
def execute_task_rdf_mask(self):
for RDF in self._get_cleaned_movie_rows():
self.task_rdf_mask.write(RDF)
self._end_file_handler()
def execute_tasks_rdf_text(self):
for RDF in self._get_cleaned_movie_rows():
RDF = self.filter_applier.rebuild_by_movie(RDF)
self.task_rdf_text.write(RDF)
self._end_file_handler()
def execute_task_rdf_completation(self):
for RDF in self._get_cleaned_movie_rows():
RDF["Triple"] = self.filter_applier.build_triple(RDF)
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
self._end_file_handler()
def execute_all_task(self):
for RDF in self._get_cleaned_movie_rows():
self.task_rdf_mask.write(RDF)
RDF["Triple"] = self.filter_applier.build_triple(RDF)
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
RDF = self.filter_applier.group_by_movie_from_triple(RDF[["MovieID","Triple","Abstract"]])
self.task_rdf_text.write(RDF)
self.task_bpe_corpus.write_from_df(RDF[["Triple","Abstract"]])
self._end_file_handler()
def _end_file_handler(self):
self.task_bpe_corpus.close()
self.task_rdf_mask.close()
self.task_rdf_text.close()
self.task_rdf_completation.close()
def _get_cleaned_movie_rows(self):
for RDF in self.sql_endpoint.get_abbreviated_dataset_by_movie_id():
RDF = self.filter_applier.drop_na_from_dataset(RDF)
RDF = self.filter_applier.filter_by_frequency_movie_id(RDF)
RDF = self.filter_applier.filter_by_frequency_relationship(RDF)
# other filter
#
RDF = self.filter_applier.delete_relationship_by_list_filter(RDF)
# regex on ObjectURI
RDF = self.filter_applier.regex_on_objects(RDF)
if RDF.empty:
continue
RDF = self.filter_applier.rdf_add_special_token(RDF) # WARNING, THIS MUST BE DONE AFTER FILTER BY FREQUENCE
yield RDF
def use_toy_dataset(self):
# CHOOSEN MOVIE:
# The Dark Knight : 117248
# Inception : 147074
# The Avengers : 113621
# Cast Away : 1123
# The Departed : 117586
# American Psycho : 90177
# Avatar : 71587
# Django Unchained : 138952
# Spirited Away : 144137
# Knives Out : 148025
movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
self.sql_endpoint.movie_ids = movie_list
def generate_csv_debug_file(self, debug_path:str):
debug_csv = Debug_csv(debug_path)
for RDF in self._get_cleaned_movie_rows():
debug_csv.write(RDF)
debug_csv.close()
# there are a lot of settings to manage
# you only need to change settings:
# in the init for file paths, frequency filter limit, banned reletionshipURI
# in the use_toy_dataset , to change the toy dataset
# in _get_cleaned_movie_rows: to change how the pipeline behave
pipeline = Pipeline()
pipeline.use_toy_dataset()
# pipeline.execute_task_bpe_corpus()
# pipeline.execute_task_rdf_mask()
# pipeline.execute_tasks_rdf_text()
# pipeline.execute_task_rdf_completation()
# pipeline.execute_all_task()
pipeline.generate_csv_debug_file("Assets/Dataset/Tmp/debug.csv")