NanoSocrates/Playgrounds/nanosocrates-train-toy.ipynb
2025-10-11 19:35:43 +02:00

225 lines
8.0 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "adbd9598",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Chris\\miniconda3\\envs\\deep_learning\\Lib\\site-packages\\torch\\utils\\_device.py:103: UserWarning: Aten Op fallback from XPU to CPU happends. This may have performance implications. If need debug the fallback ops please set environment variable `PYTORCH_DEBUG_XPU_FALLBACK=1` (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\build\\xpu\\ATen\\RegisterXPU_0.cpp:54528.)\n",
" return func(*args, **kwargs)\n"
]
},
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"import random\n",
"import torch\n",
"import pandas as pd\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"import Project_Model.Libs.TorchShims as torch_shims\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"DEVICE = torch_shims.get_default_device()\n",
"torch.set_default_device(DEVICE)\n",
"\n",
"# set a default device\n",
"\n",
"# BPE Init\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"\n",
"# Constants\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_MULTIPLIER = 4\n",
"ATTENTION_HEADS = 8\n",
"SENTENCE_LENGTH = 256\n",
"NUMBER_OF_BLOCKS = 4\n",
"MAX_EPOCHS = int(1e3)\n",
"\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"\n",
"\n",
"# Load CSV\n",
"TOY_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"\n",
"TOY_DATASET = pd.read_csv(TOY_DATASET_PATH)\n",
"\n",
"TOY_BATCH_INPUT_LIST: list[list[int]] = []\n",
"TOY_BATCH_PADDING_LIST: list[list[bool]] = []\n",
"TOY_BATCH_TARGET_LIST: list[list[int]] = []\n",
"TOY_BATCH_DECODER_DEFAULT: list[list[int]]= []\n",
"\n",
"\n",
"for index, row in TOY_DATASET.iterrows():\n",
"\n",
" RDFs: str = row[\"RDFs\"]\n",
" Abstract: str = row[\"Abstract\"]\n",
"\n",
" input_tokens = TOKENANO.encode(RDFs)\n",
" output_tokens = TOKENANO.encode(Abstract)[1:]\n",
" decoder_default_tokens = TOKENANO.encode(\"<SOS>\")\n",
"\n",
" input_tokens, padding = Transformer.normalize_sequence(\n",
" input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" output_tokens, _ = Transformer.normalize_sequence(\n",
" output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" decoder_default_tokens, _ = Transformer.normalize_sequence(\n",
" decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN, False\n",
" )\n",
"\n",
" TOY_BATCH_INPUT_LIST.append(input_tokens)\n",
" TOY_BATCH_PADDING_LIST.append(padding)\n",
" TOY_BATCH_TARGET_LIST.append(output_tokens)\n",
" TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)\n",
"\n",
" output_tokens = TOKENANO.encode(RDFs)\n",
" input_tokens = TOKENANO.encode(Abstract)[1:]\n",
" decoder_default_tokens = TOKENANO.encode(\"<SOS>\")\n",
"\n",
" input_tokens, padding = Transformer.normalize_sequence(\n",
" input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" output_tokens, _ = Transformer.normalize_sequence(\n",
" output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" decoder_default_tokens, _ = Transformer.normalize_sequence(\n",
" decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN, False\n",
" )\n",
"\n",
" TOY_BATCH_INPUT_LIST.append(input_tokens)\n",
" TOY_BATCH_PADDING_LIST.append(padding)\n",
" TOY_BATCH_TARGET_LIST.append(output_tokens)\n",
" TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)\n",
"\n",
"# Training loop\n",
"LOSS_HISTORY = []\n",
"NANOSOCRATES = Transformer.TrainingModel(\n",
" TOKEN_SPACE_SIZE,\n",
" EMBEDDED_SIZE,\n",
" FEED_FORWARD_MULTIPLIER,\n",
" ATTENTION_HEADS,\n",
" NUMBER_OF_BLOCKS\n",
")\n",
"cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)\n",
"optimizer = torch.optim.AdamW(NANOSOCRATES.parameters())\n",
"scheduler = Transformer.WarmupLR(optimizer, 4000, EMBEDDED_SIZE)\n",
"last_loss = 0\n",
"current_epoch = 0\n",
"\n",
"while current_epoch < MAX_EPOCHS:\n",
"\n",
" optimizer.zero_grad()\n",
"\n",
" encoder_list = torch.tensor(TOY_BATCH_INPUT_LIST[:])\n",
" decoder_list = torch.tensor(TOY_BATCH_DECODER_DEFAULT[:])\n",
" src_padding = torch.tensor(TOY_BATCH_PADDING_LIST[:], dtype=torch.bool)\n",
"\n",
" # Transform target into logits\n",
" target_logits = torch.tensor(TOY_BATCH_TARGET_LIST[:])\n",
"\n",
" last_loss = 0\n",
" last_prediction: torch.Tensor\n",
"\n",
" for i in range(0, SENTENCE_LENGTH):\n",
"\n",
" optimizer.zero_grad()\n",
" tgt_padding = decoder_list.eq(PAD_TOKEN)\n",
"\n",
" logits: torch.Tensor = NANOSOCRATES((encoder_list, src_padding, decoder_list, tgt_padding))\n",
" prob = torch.softmax(logits, 2)\n",
"\n",
" most_probable_tokens = torch.argmax(prob, 2)\n",
" last_prediction = most_probable_tokens\n",
"\n",
" logits = logits[:,:i,:]\n",
" logits = logits.permute(0, 2, 1)\n",
"\n",
" loss : torch.Tensor = cross_entropy(logits, target_logits[:, 0:i])\n",
" # loss : torch.Tensor = cross_entropy(logits, target_logits)\n",
"\n",
" last_loss = loss\n",
" loss.backward()\n",
" optimizer.step()\n",
" scheduler.step()\n",
"\n",
" if i < SENTENCE_LENGTH - 1:\n",
" decoder_list[:,i+1] = target_logits[:,i]\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" current_epoch += 1\n",
"\n",
" if current_epoch % 1 == 0:\n",
" print(f\"EPOCH {current_epoch}\\n\\tLoss: {last_loss}\")\n",
"\n",
" for encoded_sentence, expected_sentence in zip(\n",
" Transformer.tensor2token(last_prediction[:,:], END_TOKEN), # type: ignore\n",
" Transformer.tensor2token(target_logits[:,:], END_TOKEN)\n",
" ):\n",
" decoded_sentence = TOKENANO.decode(encoded_sentence)\n",
" decoded_target = TOKENANO.decode(expected_sentence)\n",
" print(f\"\\tACTUAL:\\n\\t\\t{decoded_sentence}\\n\\tEXPECTED:\\n\\t\\t{decoded_target}\\n\")\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}