NanoSocrates/Playgrounds/encoder.ipynb
2025-10-07 16:36:26 +02:00

132 lines
5.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "c64b0e24",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[7706, 290, 756, 4270, 7357, 115, 351, 1507, 1213, 410, 3382, 317, 497, 4740, 2784, 7700], [7706, 290, 756, 4270, 7357, 115, 351, 1507, 1213, 410, 3382, 317, 497, 4740, 2784, 7700]]\n",
"2\n",
"Embedder Tensor: torch.Size([2, 16, 256])\n",
"Values:\n",
"tensor([[[-0.6981, 0.0804, -2.1672, ..., 0.3919, 0.3341, 1.0794],\n",
" [ 2.5818, -0.2308, 0.6001, ..., -0.0500, -0.0408, -0.9852],\n",
" [-0.6967, 0.8109, 1.3108, ..., 2.1693, 1.4143, -0.1236],\n",
" ...,\n",
" [ 2.1226, 2.5695, -1.6178, ..., -0.0652, -0.0802, 0.1103],\n",
" [ 0.8770, -2.4782, 0.8536, ..., 2.0471, -1.5702, 0.7387],\n",
" [-0.0495, -1.8601, 0.0405, ..., 2.3944, -0.4297, 1.1141]],\n",
"\n",
" [[-0.6981, 0.0804, -2.1672, ..., 0.3919, 0.3341, 1.0794],\n",
" [ 2.5818, -0.2308, 0.6001, ..., -0.0500, -0.0408, -0.9852],\n",
" [-0.6967, 0.8109, 1.3108, ..., 2.1693, 1.4143, -0.1236],\n",
" ...,\n",
" [ 2.1226, 2.5695, -1.6178, ..., -0.0652, -0.0802, 0.1103],\n",
" [ 0.8770, -2.4782, 0.8536, ..., 2.0471, -1.5702, 0.7387],\n",
" [-0.0495, -1.8601, 0.0405, ..., 2.3944, -0.4297, 1.1141]]],\n",
" grad_fn=<AddBackward0>)\n",
"ENCODER Tensor: torch.Size([2, 16, 256])\n",
"Values:\n",
"tensor([[[-1.6325, 0.4094, -2.1403, ..., 0.4654, 0.5993, 0.9683],\n",
" [ 1.8236, 0.4025, -0.6972, ..., 0.2430, 0.2536, -1.0889],\n",
" [-0.0587, 0.1618, -0.2335, ..., 1.7609, 1.2664, -0.4452],\n",
" ...,\n",
" [ 2.0337, 1.3184, -1.3165, ..., -0.3303, 0.6572, 0.0884],\n",
" [ 0.5752, -2.5594, -0.2393, ..., 1.3318, -1.4236, 0.4686],\n",
" [ 1.0075, -2.4273, -0.4593, ..., 1.6660, 0.0359, 0.2927]],\n",
"\n",
" [[-1.8300, -0.3079, -1.6585, ..., 0.4859, 0.5652, 0.8072],\n",
" [ 1.5461, -0.5666, -0.0330, ..., 0.5651, 0.2974, -1.0879],\n",
" [-0.9060, 0.2700, -0.4585, ..., 2.0363, 1.2657, -0.7060],\n",
" ...,\n",
" [ 1.6688, 1.7038, -1.9549, ..., -0.2052, 0.6270, 0.4598],\n",
" [ 0.0482, -2.3951, -0.4351, ..., 1.6230, -1.3662, -0.0390],\n",
" [ 0.8146, -2.6169, -0.6188, ..., 1.4525, 0.0507, 0.5177]]],\n",
" grad_fn=<NativeLayerNormBackward0>)\n"
]
}
],
"source": [
"import random\n",
"import torch\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"\n",
"TEXT = \"<ABS>The Dark Knight is a 2008 superhero film directed by Christopher Nolan,<SOTL>\"\n",
"\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(\n",
" VOCABULARY,\n",
" SPECIAL_VOC\n",
")\n",
"\n",
"TOKENIZATION = [TOKENANO.encode(TEXT), TOKENANO.encode(TEXT)]\n",
"print(TOKENIZATION)\n",
"\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_DIM = EMBEDDED_SIZE * 4\n",
"\n",
"EMBEDDER = Embedder.NanoSocratesEmbedder(TOKEN_SPACE_SIZE, EMBEDDED_SIZE)\n",
"tensor: torch.Tensor = EMBEDDER(TOKENIZATION)\n",
"ENCODER = torch.nn.Sequential(\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
" Transformer.Encoder(EMBEDDED_SIZE, FEED_FORWARD_DIM, 4),\n",
")\n",
"print(len(TOKENIZATION))\n",
"print(f\"Embedder Tensor: {tensor.shape}\")\n",
"print(f\"Values:\\n{tensor}\")\n",
"\n",
"BATCH_SIZE, TOKENS, DIMENSIONS = tensor.shape\n",
"PAD_MASK = torch.tensor([[True] * TOKENS] * BATCH_SIZE, dtype=torch.bool)\n",
"tensor, _ = ENCODER((tensor, PAD_MASK))\n",
"print(f\"ENCODER Tensor: {tensor.shape}\")\n",
"print(f\"Values:\\n{tensor}\")\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}