NanoSocrates/Scripts/Training/bpe_trainer.py
2025-10-01 00:32:43 +02:00

108 lines
3.0 KiB
Python

import argparse
import json
from pathlib import Path
import sys
# TODO: make relative imports
import Project_Model.Libs.BPE as BPE
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
DEFAULT_CHUNK_SIZE = int(18e4)
DEFAULT_DEBUG_AFTER_ITER = 1
DEFAULT_MAX_VOCABULARY = int(32E3)
DEFAULT_MERGE_TRESHOLD = 1
DEFAULT_MAX_ITERATIONS = 0
TOKEN_LIST = [token.value for token in SpecialToken]
class ProgramArgs:
def __init__(
self,
input_file: str,
cache_dir: str,
output_file: str,
max_vocabulary: int,
max_iterations: int,
merge_treshold: int,
chunk_size: int,
debug_after: int,
) -> None:
self.input_file = input_file
self.cache_dir = cache_dir
self.output_file = output_file
self.max_vocabulary = max_vocabulary
self.max_iterations = max_iterations
self.merge_treshold = merge_treshold
self.chunk_size = chunk_size
self.debug_after = debug_after
def get_args(args: list[str]) -> ProgramArgs:
PARSER = argparse.ArgumentParser()
PARSER.add_argument("--input-file", "--input", "-i", required=True, type=str)
PARSER.add_argument("--cache-dir", "--cache", "-c", required=True, type=str)
PARSER.add_argument("--output-file", "--output", "-o", required=True, type=str)
PARSER.add_argument("--max-vocabulary", "--max-voc", default=DEFAULT_MAX_VOCABULARY, type=int)
PARSER.add_argument("--max-iterations", "--max-iter", default=DEFAULT_MAX_ITERATIONS, type=int)
PARSER.add_argument("--merge-treshold", "--tresh", default=DEFAULT_MERGE_TRESHOLD, type=int)
PARSER.add_argument("--chunk-size", default=DEFAULT_CHUNK_SIZE, type=int)
PARSER.add_argument("--debug-after", default=DEFAULT_DEBUG_AFTER_ITER, type=int)
parsed_args, _ = PARSER.parse_known_args(args)
return ProgramArgs(
parsed_args.input_file,
parsed_args.cache_dir,
parsed_args.output_file,
parsed_args.max_vocabulary,
parsed_args.max_iterations,
parsed_args.merge_treshold,
parsed_args.chunk_size,
parsed_args.debug_after,
) # type ignore
def train(args: ProgramArgs):
TRAINER = BPE.NanoSocraTrainer(
args.max_vocabulary,
TOKEN_LIST,
args.chunk_size,
args.merge_treshold,
args.max_iterations,
args.debug_after
)
DATASET_PATH = Path(args.input_file)
CACHE_DIR = Path(args.cache_dir)
VOCABULARY_PATH = Path(args.output_file)
print(f"Training BPE")
BPE_ENCODER = TRAINER.trainBPE(
DATASET_PATH,
CACHE_DIR
)
VOCABULARY = BPE_ENCODER.vocabulary
JSON_VOCABULARY: dict[str, int]= {}
for key, item in VOCABULARY.items():
TUPLE_STR = f"{key}"
JSON_VOCABULARY[TUPLE_STR] = item
VOCABULARY_JSON = json.dumps(JSON_VOCABULARY)
print(f"Saving Vocabulary in {VOCABULARY_PATH}")
FILE = open(VOCABULARY_PATH, "w")
FILE.write(VOCABULARY_JSON)
FILE.close()
if __name__ == "__main__":
ARGS = get_args(sys.argv)
train(ARGS)