NanoSocrates/Project_Model/Libs/Embedder/Classes/NanoSocratesEmbedder.py
2025-10-07 12:15:03 +02:00

26 lines
849 B
Python

import torch
from ..Utils import fixed_positional_encoding
# WIP FOR BATCHING
class NanoSocratesEmbedder(torch.nn.Module):
def __init__(self, vocabulary_size: int, embedding_size: int) -> None:
super().__init__()
self.__embedder = torch.nn.Embedding(vocabulary_size, embedding_size)
def forward(self, tokenized_sentence: list[list[int]]) -> torch.Tensor:
TOKENIZED_TENSOR = torch.tensor(tokenized_sentence)
computed_embeddings: torch.Tensor = self.__embedder(TOKENIZED_TENSOR)
_, SENTENCE_LENGHT, EMBEDDING_SIZE = computed_embeddings.shape # for batching
POSITIONAL_ENCODINGS = fixed_positional_encoding(
SENTENCE_LENGHT, EMBEDDING_SIZE
)
computed_embeddings = computed_embeddings + POSITIONAL_ENCODINGS # for batching
return computed_embeddings