NanoSocrates/Project_Model/Tests/spanned_masker_test.py

93 lines
2.9 KiB
Python

from functools import reduce
from pathlib import Path
import pytest
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
VOCABULARY_PATH = Path("Assets/Model/toy_10/toy_dictionary.json")
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
SPECIAL_LIST = BPE.default_special_tokens()
class TestSpannedMasker:
def test_spanned_masking(self):
CORPUS_PATH = Path("Project_Model/Tests/spanner_file/mask.txt")
TEXT = CORPUS_PATH.read_text("utf-8")
CORRUPTION_PERCENTAGE = 0.15
TOLERANCE = 0.15
TOKENIZER = BPE.TokeNanoCore(VOCABULARY, SPECIAL_LIST)
VOCABULARY_SIZE = TOKENIZER.vocabulary_size
TOKENS = TOKENIZER.encode(TEXT)
LEGAL_TOKENS: set[int] = set(TOKENIZER.encode("<SUBJ><OBJ><PRED>"))
SPECIAL_TOKENS: set[int] = set(TOKENIZER.encode("".join(SPECIAL_LIST)))
ILLEGAL_TOKENS: set[int] = SPECIAL_TOKENS.difference(LEGAL_TOKENS)
MASKER = Transformer.SpannedMasker(VOCABULARY_SIZE,ILLEGAL_TOKENS,CORRUPTION_PERCENTAGE, 3)
SPECIAL_FORMATTER = TOKENIZER.encode("*<SOT>")[0]
END_FORMATTER = TOKENIZER.encode("<EOT>")[0]
OUTPUT, TARGET = MASKER.mask_sequence(TOKENS)
UNCORRUPTED_TOKENS = list(
filter(lambda token: token <= VOCABULARY_SIZE, OUTPUT)
)
CORRUPTED_TOKENS = list(filter(lambda token: token <= VOCABULARY_SIZE, TARGET))
TARGET.append(END_FORMATTER)
OUTPUT = list(
map(
lambda token: SPECIAL_FORMATTER if token > VOCABULARY_SIZE else token,
OUTPUT,
)
)
TARGET = list(
map(
lambda token: SPECIAL_FORMATTER if token > VOCABULARY_SIZE else token,
TARGET,
)
)
OUT_TEXT = TOKENIZER.decode(OUTPUT)
TAR_TEXT = TOKENIZER.decode(TARGET)
ACTUAL_CORRUPTION_PERCENTAGE = len(CORRUPTED_TOKENS) / len(TOKENS)
print(f"Original text:\n\n{TEXT}")
print(f"Inputs:\n\n{OUT_TEXT}")
print(f"Targets:\n\n{TAR_TEXT}")
print(f"Target Tokens:\n\n{OUTPUT}")
print(
"\n".join(
[
f"======================",
f"Original length: {len(TOKENS)}",
f"Uncorrupted Chars: {len(UNCORRUPTED_TOKENS)}",
f"Corrupted Chars: {len(CORRUPTED_TOKENS)}",
f"Percentage_corruption: {(len(CORRUPTED_TOKENS)/len(TOKENS))*100}%",
f"======================",
]
)
)
for token in TARGET[:len(TARGET) - 1]:
assert token not in ILLEGAL_TOKENS
assert ACTUAL_CORRUPTION_PERCENTAGE > CORRUPTION_PERCENTAGE - TOLERANCE
assert ACTUAL_CORRUPTION_PERCENTAGE < CORRUPTION_PERCENTAGE + TOLERANCE
if __name__ == "__main__":
TestSpannedMasker().test_spanned_masking()