#include #include #include #include #include "../include/dataAcquisition.h" #define TEST_NUMBER 18 #define NUMBER_OF_SENSORS 5 #define SLIDING_WINDOW_SIZE 10 #define AVERAGE_UNCERTAINTY 0.01 #define STD_UNCERTAINTY 0.01 #define M_PI 3.14159265358979323846 #define NORMAL_DISTRIBUTION_MEAN 10.0 #define NORMAL_DISTRIBUTION_STDDEV 2.0 // Testing the initialization and the instantiation of the sensors' number and sliding window size for uniform distribution void test_initializeReadings_uniform() { initializeReadings(NUMBER_OF_SENSORS, SLIDING_WINDOW_SIZE); assert(getSensorsNumber() == NUMBER_OF_SENSORS); assert(getSlidingWindowSize() == SLIDING_WINDOW_SIZE); } // Testing the logic of add readings to see if the sliding window is full for uniform distribution void test_addReading_uniform() { for (int sensor = 0; sensor < NUMBER_OF_SENSORS; sensor++) { for (int value = 1; value <= SLIDING_WINDOW_SIZE; value++) { addReading(value, sensor); } } assert(isFull(NUMBER_OF_SENSORS - 1) == true); // Assuming the last sensor acquired the data } // Testing the logic of average methods for uniform distribution void test_averageOnSensor_uniform() { //printf("Average on sensor %d: %f\n", NUMBER_OF_SENSORS - 1, getAverageOnSensor(NUMBER_OF_SENSORS - 1)); float average = getAverageOnSensor(NUMBER_OF_SENSORS - 1); float expected_average = (SLIDING_WINDOW_SIZE + 1) / 2.0; assert(fabs(average - expected_average) < AVERAGE_UNCERTAINTY); } void test_standardDeviationOnSensor_uniform() { //printf("Standard deviation on sensor %d: %f\n", NUMBER_OF_SENSORS - 1, getStandardDeviationOnSensor(NUMBER_OF_SENSORS - 1)); float standard_deviation = getStandardDeviationOnSensor(NUMBER_OF_SENSORS - 1); float expected_standard_deviation = 2.872281323269; assert(fabs(standard_deviation - expected_standard_deviation) < STD_UNCERTAINTY); } void test_averageOnAllSensors_uniform() { //printf("Average on all sensors: %f\n", getAverageOnAllSensors()); float average = getAverageOnAllSensors(); float expected_average = SLIDING_WINDOW_SIZE; assert(fabs(average - expected_average) < AVERAGE_UNCERTAINTY); } void test_standardDeviationOnAllSensors_uniform() { //printf("Standard deviation on all sensors: %f\n", getStandardDeviationOnAllSensors()); float standard_deviation = getStandardDeviationOnAllSensors(); float expected_standard_deviation = 0; assert(fabs(standard_deviation - expected_standard_deviation) < STD_UNCERTAINTY); } void test_overallAverage_uniform() { //printf("Overall average on all sensors: %f\n", getOverallAverage()); float average = getOverallAverage(); float expected_overall_average = (SLIDING_WINDOW_SIZE + 1) / 2.0; assert(fabs(average - expected_overall_average) < AVERAGE_UNCERTAINTY); } void test_overallStandardDeviation_uniform() { //printf("Overall standard deviation: %f\n", getOverallStandardDeviation()); float standard_deviation = getStandardDeviationOnSensor(NUMBER_OF_SENSORS - 1); float expected_standard_deviation = 2.872281323269; assert(fabs(standard_deviation - expected_standard_deviation) < STD_UNCERTAINTY); } void test_anomalyDetect_uniform() { float average = getOverallAverage(); float standard_deviation = getOverallStandardDeviation(); anomalyDetect(average, standard_deviation); //printf("Outlier count: %i\n", getOutlierCount()); assert(fabs(getOutlierCount() - 0) < 0.01); // Adding an outlier addReading(20, NUMBER_OF_SENSORS - 1); average = getOverallAverage(); standard_deviation = getOverallStandardDeviation(); anomalyDetect(average, standard_deviation); //printf("Outlier count: %i\n", getOutlierCount()); assert(fabs(getOutlierCount() - 1) < 0.01); } void test_freeReadings() { assert(freeReadings() == true); } // TODO: Test all the functions with a normal distribution // TODO: Evaluate the normal distribution with the anomaly detection void test_initializeReadings_normal() { initializeReadings(NUMBER_OF_SENSORS, SLIDING_WINDOW_SIZE); assert(getSensorsNumber() == NUMBER_OF_SENSORS); assert(getSlidingWindowSize() == SLIDING_WINDOW_SIZE); } void test_addReading_normal() { for (int sensor = 0; sensor < NUMBER_OF_SENSORS; sensor++) { for (int i = 0; i < SLIDING_WINDOW_SIZE; i++) { float u1 = (float)rand() / RAND_MAX; float u2 = (float)rand() / RAND_MAX; float z0 = sqrt(-2.0 * log(u1)) * cos(2.0 * M_PI * u2); float value = NORMAL_DISTRIBUTION_MEAN + z0 * NORMAL_DISTRIBUTION_STDDEV; addReading(value, sensor); } } assert(isFull(NUMBER_OF_SENSORS - 1) == true); // Assuming the last sensor acquired the data } void test_averageOnSensor_normal() { //printf("Average on sensor %d: %f\n", NUMBER_OF_SENSORS - 1, getAverageOnSensor(NUMBER_OF_SENSORS - 1)); float average = getAverageOnSensor(NUMBER_OF_SENSORS - 1); assert(fabs(average - NORMAL_DISTRIBUTION_MEAN) < AVERAGE_UNCERTAINTY * 50); } void test_standardDeviationOnSensor_normal() { //printf("Standard deviation on sensor %d: %f\n", NUMBER_OF_SENSORS - 1, getStandardDeviationOnSensor(NUMBER_OF_SENSORS - 1)); float standard_deviation = getStandardDeviationOnSensor(NUMBER_OF_SENSORS - 1); assert(fabs(standard_deviation - NORMAL_DISTRIBUTION_STDDEV) < STD_UNCERTAINTY * 50); } void test_averageOnAllSensors_normal() { //printf("Average on all sensors: %f\n", getAverageOnAllSensors()); float average = getAverageOnAllSensors(); assert(fabs(average - NORMAL_DISTRIBUTION_MEAN) < AVERAGE_UNCERTAINTY * 50); } void test_standardDeviationOnAllSensors_normal() { //printf("Standard deviation on all sensors: %f\n", getStandardDeviationOnAllSensors()); float standard_deviation = getStandardDeviationOnAllSensors(); assert(fabs(standard_deviation - NORMAL_DISTRIBUTION_STDDEV) < STD_UNCERTAINTY * 50); } void test_overallAverage_normal() { //printf("Overall average on all sensors: %f\n", getOverallAverage()); float average = getOverallAverage(); assert(fabs(average - NORMAL_DISTRIBUTION_MEAN) < AVERAGE_UNCERTAINTY * 50); } void test_overallStandardDeviation_normal() { //printf("Overall standard deviation: %f\n", getOverallStandardDeviation()); float standard_deviation = getStandardDeviationOnSensor(NUMBER_OF_SENSORS - 1); assert(fabs(standard_deviation - NORMAL_DISTRIBUTION_STDDEV) < STD_UNCERTAINTY * 50); } void test_anomalyDetect_normal() { float average = getOverallAverage(); float standard_deviation = getOverallStandardDeviation(); anomalyDetect(average, standard_deviation); //printf("Outlier count: %i\n", getOutlierCount()); assert(fabs(NUMBER_OF_SENSORS * SLIDING_WINDOW_SIZE * 0.05 >= getOutlierCount())); // Assuming 5% of the data is outliers // Adding an outlier addReading(NORMAL_DISTRIBUTION_MEAN * 100, NUMBER_OF_SENSORS - 1); average = getOverallAverage(); standard_deviation = getOverallStandardDeviation(); anomalyDetect(average, standard_deviation); //printf("Outlier count: %i\n", getOutlierCount()); assert(fabs(NUMBER_OF_SENSORS * SLIDING_WINDOW_SIZE * 0.05 + 1 >= getOutlierCount())); // Assuming 5% of the data is outliers and adding one more } int main() { int tests_run = 0; int tests_passed = 0; printf("=== Test Suite ===\n"); #define RUN_TEST(test) do { \ printf("Progress: %.2f%%, Running %s...", (tests_run / (float)TEST_NUMBER) * 100, #test); \ test(); \ tests_run++; \ tests_passed++; \ printf("OK\n"); \ } while(0) srand(42); RUN_TEST(test_initializeReadings_uniform); RUN_TEST(test_addReading_uniform); RUN_TEST(test_averageOnSensor_uniform); RUN_TEST(test_standardDeviationOnSensor_uniform); RUN_TEST(test_averageOnAllSensors_uniform); RUN_TEST(test_standardDeviationOnAllSensors_uniform); RUN_TEST(test_overallAverage_uniform); RUN_TEST(test_overallStandardDeviation_uniform); RUN_TEST(test_anomalyDetect_uniform); RUN_TEST(test_addReading_normal); RUN_TEST(test_averageOnSensor_normal); RUN_TEST(test_standardDeviationOnSensor_normal); RUN_TEST(test_averageOnAllSensors_normal); RUN_TEST(test_standardDeviationOnAllSensors_normal); RUN_TEST(test_overallAverage_normal); RUN_TEST(test_overallStandardDeviation_normal); RUN_TEST(test_anomalyDetect_normal); RUN_TEST(test_freeReadings); printf("\n=== Results ===\n"); printf("Tests run: %d\n", tests_run); printf("Tests passed: %d\n", tests_passed); printf("Test coverage: %.2f%%\n", (tests_passed / (float)tests_run) * 100); return 0; }