embeddedLibrary/libraries/dataAcquisition.c
mrheltic 6aec8d0d45 Hotfixes
Passing array of possible faulty sensors
2024-12-05 12:21:54 +01:00

509 lines
15 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include <dataAcquisition.h>
int outlierCount;
// Variable definition
static float **readings;
static int sensorsNumber;
static int slidingWindowSize;
/**
* @brief Sets the number of sensors.
*
* This function sets the global variable `sensorsNumber` to the specified value.
*
* @param number The number of sensors to set.
*/
static void setSensorsNumber(int number)
{
sensorsNumber = number;
}
/**
* @brief Sets the size of the sliding window.
*
* This function sets the size of the sliding window used for data acquisition.
*
* @param size The desired size of the sliding window.
*/
static void setSlidingWindowSize(int size)
{
slidingWindowSize = size;
}
/**
* @brief Initializes the sensor readings array.
*
* This function allocates memory for a 2D array to store sensor readings.
* Each sensor will have a sliding window of readings.
*
* @param numSensors The number of sensors.
* @param windowSize The size of the sliding window for each sensor.
*
* The function performs the following steps:
* 1. Allocates memory for the array of sensor readings.
* 2. Allocates memory for each sensor's sliding window of readings.
* 3. Sets the number of sensors and the sliding window size using private setter functions.
*
* If memory allocation fails at any point, the function prints an error message and exits the program.
*/
void initializeReadings(int numSensors, float deltaTime)
{
int windowSize = (int)(1000 / deltaTime); // Standard case of 1 second of acquisition
// Allocate memory for the array of sensor readings
readings = (float **)malloc(numSensors * sizeof(float *));
// Check if memory allocation was successful
if (readings == NULL)
{
perror("Failed to allocate memory for readings");
exit(EXIT_FAILURE);
}
// Allocate memory for each sensor's sliding window of readings
for (int i = 0; i < numSensors; i++)
{
readings[i] = (float *)calloc(windowSize, sizeof(float));
if (readings[i] == NULL)
{
perror("Failed to allocate memory for sensor readings");
exit(EXIT_FAILURE);
}
}
// Calling the private setter functions
setSensorsNumber(numSensors);
setSlidingWindowSize(windowSize);
}
/**
* @brief Frees the memory allocated for sensor readings.
*
* This function iterates through the array of sensor readings and frees the memory
* allocated for each individual reading. After freeing all individual readings, it
* checks if the main readings array is not NULL and frees it as well.
*
* @return true if the main readings array was successfully freed, false otherwise.
*/
bool freeReadings()
{
for (int i = 0; i < sensorsNumber; i++)
{
free(readings[i]);
}
if (readings != NULL)
{
free(readings);
readings = NULL;
return true;
}
else
{
return false;
}
}
/**
* @brief Get the number of sensors.
*
* This function returns the total number of sensors currently available.
*
* @return int The number of sensors.
*/
// Get the number of sensors
int getSensorsNumber()
{
return sensorsNumber;
}
/**
* @brief Get the sliding window size.
*
* This function returns the current size of the sliding window used in data acquisition.
*
* @return The size of the sliding window.
*/
// Get the sliding window size
int getSlidingWindowSize()
{
return slidingWindowSize;
}
/**
* @brief Checks if the sliding window for a given sensor is full.
*
* This function iterates through the readings of a specified sensor and
* determines if all entries in the sliding window are non-zero, indicating
* that the window is full.
*
* @param sensorIndex The index of the sensor to check.
* @return true if the sliding window is full (all entries are non-zero),
* false otherwise.
*/
// Control on the fullness of the sliding window
bool isFull(int sensorIndex)
{
for (int i = 0; i < slidingWindowSize; i++)
{
if (readings[sensorIndex][i] == 0)
{
return false;
}
}
return true;
}
/**
* @brief Retrieves the last reading from the specified sensor.
*
* This function returns the most recent reading from the sensor identified by
* the given index. If the sensor's data buffer is full, it returns the last
* value in the buffer. Otherwise, it returns the first value.
*
* @param sensorIndex The index of the sensor to retrieve the reading from.
* @return The last reading from the specified sensor.
*/
float getLastReading(int sensorIndex)
{
if (isFull(sensorIndex))
{
return readings[sensorIndex][slidingWindowSize - 1];
}
else
{
return readings[sensorIndex][0];
}
}
static int lastSensorIndex = -1;
/**
* @brief Adds a new sensor reading to the data acquisition system.
*
* This function updates the readings for the sensors in a circular buffer manner.
* If the buffer for a sensor is full, it shifts the readings to make space for the new value.
* If the buffer is not full, it adds the new value to the first available position.
*
* @param value The new sensor reading to be added.
*/
void addReading(float value)
{
lastSensorIndex = (lastSensorIndex + 1) % sensorsNumber;
int sensorIndex = lastSensorIndex;
if (isFull(sensorIndex))
{
for (int i = 0; i < slidingWindowSize - 1; i++)
{
readings[sensorIndex][i] = readings[sensorIndex][i + 1];
}
readings[sensorIndex][slidingWindowSize - 1] = value;
}
else
{
for (int i = 0; i < slidingWindowSize; i++)
{
if (readings[sensorIndex][i] == 0)
{
readings[sensorIndex][i] = value;
break;
}
}
}
}
/**
* @brief Calculates the average reading for a specified sensor.
*
* This function computes the average of the readings stored in a sliding window
* for the sensor specified by the sensorIndex parameter. If the sliding window
* is not full, the function prints a message and returns 0.
*
* @param sensorIndex The index of the sensor for which the average reading is to be calculated.
* @return The average reading of the specified sensor if the sliding window is full; otherwise, returns 0.
*/
float getAverageOnSensor(int sensorIndex)
{
if (isFull(sensorIndex) == false)
{
printf("The sliding window is not full\n");
return 0;
}
else
{
float sum = 0;
for (int i = 0; i < slidingWindowSize; i++)
{
sum += readings[sensorIndex][i];
}
return sum / slidingWindowSize;
}
}
/**
* @brief Calculates the average reading from all sensors.
*
* This function iterates through all available sensors, retrieves the last reading
* from each sensor, and calculates the average of these readings.
*
* @return The average reading from all sensors as a float.
*/
float getAverageOnAllSensors()
{
float sum = 0;
for (int i = 0; i < sensorsNumber; i++)
{
sum += getLastReading(i);
}
return sum / sensorsNumber;
}
/**
* @brief Calculates the overall average of sensor readings.
*
* This function iterates through all sensors and their respective sliding windows
* to calculate the overall average of the readings. It first checks if the sliding
* window for each sensor is full. If any sliding window is not full, it prints a
* message indicating which sensor's sliding window is not full and returns 0.
* Otherwise, it sums up all the readings from all sensors and calculates the average.
*
* @return The overall average of the sensor readings if all sliding windows are full,
* otherwise returns 0.
*/
float getOverallAverage()
{
float sum = 0;
int totalReadings = 0;
for (int i = 0; i < sensorsNumber; i++)
{
if (!isFull(i))
{
printf("The sliding window for sensor %d is not full\n", i);
return 0;
}
for (int j = 0; j < slidingWindowSize; j++)
{
sum += readings[i][j];
totalReadings++;
}
}
return sum / totalReadings;
}
/**
* @brief Calculates the standard deviation of sensor readings.
*
* This function computes the standard deviation of the readings from a specified sensor.
* It first checks if the sliding window for the sensor is full. If not, it prints a message
* and returns 0. If the sliding window is full, it calculates the average of the readings,
* then computes the sum of the squared differences between each reading and the average.
* Finally, it returns the square root of the average of these squared differences.
*
* @param sensorIndex The index of the sensor for which the standard deviation is to be calculated.
* @return The standard deviation of the sensor readings, or 0 if the sliding window is not full.
*/
float getStandardDeviationOnSensor(int sensorIndex)
{
if (isFull(sensorIndex) == false)
{
printf("The sliding window is not full\n");
return 0;
}
else
{
float sum = 0;
float average = getAverageOnSensor(sensorIndex);
for (int i = 0; i < slidingWindowSize; i++)
{
sum += pow(readings[sensorIndex][i] - average, 2);
}
return sqrt(sum / slidingWindowSize);
}
}
/**
* @brief Calculates the standard deviation of the readings from all sensors.
*
* This function computes the standard deviation of the sensor readings by first
* calculating the average of all sensor readings, then summing the squared
* differences between each reading and the average, and finally taking the
* square root of the average of these squared differences.
*
* @return The standard deviation of the sensor readings.
*/
float getStandardDeviationOnAllSensors()
{
float sum = 0;
float average = getAverageOnAllSensors();
for (int i = 0; i < sensorsNumber; i++)
{
float lastReading = getLastReading(i);
sum += pow(lastReading - average, 2);
}
return sqrt(sum / sensorsNumber);
}
/**
* @brief Detects anomalies in sensor readings based on a given average and standard deviation.
*
* This function calculates the upper and lower thresholds for anomaly detection using a 97% confidence interval.
* It then iterates through the sensor readings within a sliding window and counts the number of outliers that fall
* outside the calculated thresholds.
*
* @param average The average value of the sensor readings.
* @param standardDeviation The standard deviation of the sensor readings.
*
* @note The function uses a confidence interval multiplier of 2.17 to determine the thresholds.
* @note The variable `outlierCount` is used to store the number of detected outliers.
* @note The variables `slidingWindowSize` and `sensorsNumber` are assumed to be defined globally.
* @note The 2D array `readings` is assumed to contain the sensor data.
*/
void anomalyDetect(float average, float standardDeviation)
{
float upperThreshold = average + 2.17 * standardDeviation; // 97% confidence interval
float lowerThreshold = average - 2.17 * standardDeviation; // Lower bound for anomaly detection
outlierCount = 0;
for (int j = 0; j < slidingWindowSize; j++)
{
for (int i = 0; i < sensorsNumber; i++)
{
if (readings[i][j] > upperThreshold || readings[i][j] < lowerThreshold)
{
outlierCount++;
}
}
}
}
/**
* @brief Calculates the overall standard deviation of sensor readings.
*
* This function computes the overall standard deviation of the readings from multiple sensors.
* It first checks if the sliding window for each sensor is full. If any sensor's sliding window
* is not full, it prints a message and returns 0. Otherwise, it calculates the sum of the squared
* differences between each reading and the overall average, and then computes the standard deviation.
* The function also calls `anomalyDetect` with the calculated average and standard deviation.
*
* @return The overall standard deviation of the sensor readings. Returns 0 if any sensor's sliding window is not full.
*/
float getOverallStandardDeviation()
{
float sum = 0;
int totalReadings = 0;
float totalAverage = getOverallAverage();
for (int i = 0; i < sensorsNumber; i++)
{
if (!isFull(i))
{
printf("The sliding window for sensor %d is not full\n", i);
return 0;
}
for (int j = 0; j < slidingWindowSize; j++)
{
sum += pow(readings[i][j] - getOverallAverage(), 2);
totalReadings++;
}
}
float totalStandardDeviation = sqrt(sum / totalReadings);
anomalyDetect(totalAverage, totalStandardDeviation);
return totalStandardDeviation;
}
/**
* @brief Retrieves the current count of outliers.
*
* This function returns the number of outliers detected and stored in the
* variable `outlierCount`.
*
* @return The number of outliers.
*/
int getOutlierCount()
{
return outlierCount;
}
Metrics getMetrics(float **readings, int sensorNumber, int slidingWindow)
{
Metrics metrics;
float average = 0;
float standardDeviation = 0;
int outlierCount = 0;
int *faultySensors = (int *)malloc(sensorNumber * sizeof(int));
for (int i = 0; i < sensorNumber; i++)
{
faultySensors[i] = 0;
}
float sum = 0;
for (int j = 0; j < slidingWindow; j++)
{
for (int i = 0; i < sensorNumber; i++)
{
sum += readings[i][j];
}
}
average = sum / (sensorNumber * slidingWindow);
for (int j = 0; j < slidingWindow; j++)
{
for (int i = 0; i < sensorNumber; i++)
{
standardDeviation += pow(readings[i][j] - average, 2);
}
}
standardDeviation = sqrt(standardDeviation / (sensorNumber * slidingWindow));
for (int j = 0; j < slidingWindow; j++)
{
for (int i = 0; i < sensorNumber; i++)
{
if (readings[i][j] > average + 2.17 * standardDeviation || readings[i][j] < average - 2.17 * standardDeviation)
{
outlierCount++;
faultySensors[i]++;
}
}
}
int faultySensorsCount = 0;
for(int i = 0; i < sensorNumber; i++)
{
if(faultySensors[i] >= 0.001 * slidingWindow)
{
faultySensorsCount++;
}
}
int *possiblyFaultySensors = (int *)malloc(faultySensorsCount * sizeof(int));
int j = 0;
for (int i = 0; i < faultySensorsCount; i++)
{
if (faultySensors[i] >= 0.001 * slidingWindow)
{
possiblyFaultySensors[j] = i;
}
}
metrics.mean = average;
metrics.standardDeviation = standardDeviation;
metrics.possibleFaultySensor = possiblyFaultySensors;
free(faultySensors);
return metrics;
}