2025-01-08 15:08:32 +01:00
|
|
|
# Control Formulary
|
|
|
|
|
## Settling time
|
|
|
|
|
$
|
|
|
|
|
T_s = \frac{\ln(a_{\%})}{\zeta \omega_{n}}
|
|
|
|
|
$
|
|
|
|
|
|
|
|
|
|
- $\zeta$ := Damping ratio
|
|
|
|
|
- $\omega_{n}$ := Natural frequency
|
|
|
|
|
|
|
|
|
|
## Overshoot
|
|
|
|
|
$
|
|
|
|
|
\mu_{p}^{\%} = 100 e^{
|
|
|
|
|
\left(
|
|
|
|
|
\frac{- \zeta \pi}{\sqrt{1 - \zeta^{2}}}
|
|
|
|
|
\right)
|
|
|
|
|
}
|
|
|
|
|
$
|
|
|
|
|
|
|
|
|
|
## Reachable Space
|
|
|
|
|
$X_r = Span(K_c)$
|
|
|
|
|
|
|
|
|
|
$X = X_r \bigoplus X_{r}^{\perp} = X_r \bigoplus X_{nr}$
|
|
|
|
|
|
|
|
|
|
> [!TIP]
|
|
|
|
|
> Since $X_{nr} = X_r^{\perp}$ we can find a set of perpendicular
|
|
|
|
|
> vectors by finding $Ker(X_r^{T})$
|
|
|
|
|
|
|
|
|
|
## Non Observable Space
|
|
|
|
|
$X_no = Kern(K_o)$
|
|
|
|
|
|
|
|
|
|
$X = X_no \bigoplus X_{no}^{\perp} = X_no \bigoplus X_{o}$
|
|
|
|
|
|
|
|
|
|
> [!TIP]
|
|
|
|
|
> Since $X_{o} = X_no^{\perp}$ we can find a set of perpendicular
|
2025-01-14 19:14:22 +01:00
|
|
|
> vectors by finding $Ker(X_{no}^{T})$
|
|
|
|
|
|
|
|
|
|
## Sensitivity Function
|
|
|
|
|
This function tells us how much `disturbances` in our system
|
|
|
|
|
affects our $G(s)$ (here $T$):\
|
|
|
|
|
$
|
|
|
|
|
S = \frac{dG}{dT} \frac{G}{T}
|
|
|
|
|
$
|
|
|
|
|
|
|
|
|
|
Once found $S$ we do a `Bode Plot` of it to
|
|
|
|
|
see how much we differ from our original
|
|
|
|
|
`system`
|