V0.5.0
This commit is contained in:
132
docs/Chapters/Examples/EXAMPLE-3.md
Normal file
132
docs/Chapters/Examples/EXAMPLE-3.md
Normal file
@@ -0,0 +1,132 @@
|
||||
# Example 3
|
||||
|
||||
## Double Mass Cart
|
||||
|
||||

|
||||
|
||||
### Formulas
|
||||
|
||||
- Resulting forces for cart 1:\
|
||||
$
|
||||
m_1 \ddot{p}_1 = k_2(p_2 - p_1) + b_2( \dot{p}_2 - \dot{p}_1) -
|
||||
k_1 p_1 - b_1 \dot{p}_1
|
||||
$
|
||||
|
||||
- Resulting forces for cart 2:\
|
||||
$
|
||||
m_2 \ddot{p}_2 = F - k_2(p_2 - p_1) - b_2( \dot{p}_2 - \dot{p}_1)
|
||||
$
|
||||
|
||||
### Reasoning
|
||||
We now have 2 different accelerations. The highest order of derivatives is 2 for
|
||||
2 variables, hence we need 4 variables in the `state`:
|
||||
|
||||
$$
|
||||
x = \begin{bmatrix}
|
||||
x_1 = p_1\\
|
||||
x_2 = p_2\\
|
||||
x_3 = \dot{p}_1\\
|
||||
x_4 = \dot{p}_2
|
||||
\end{bmatrix}
|
||||
|
||||
\dot{x} = \begin{bmatrix}
|
||||
\dot{x}_1 = \dot{p}_1 = x_3 \\
|
||||
\dot{x}_2 = \dot{p}_2 = x_4\\
|
||||
\dot{x}_3 = \ddot{p}_1 =
|
||||
\frac{1}{m_1} \left[ k_2(x_2 - x_1) + b_2( x_4 - x_3) -
|
||||
k_1 x_1 - b_1 x_3 \right]\\
|
||||
\dot{x}_4 = \ddot{p}_2 =
|
||||
\frac{1}{m_2} \left[ F - k_2(x_2 - x_1) - b_2( x_4 - x_3) \right]\\
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
Let's write our $S(A, B, C, D)$:
|
||||
$$
|
||||
A = \begin{bmatrix}
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 0 & 0 & 1 \\
|
||||
% 3rd row
|
||||
- \frac{k_2 - k_1}{m_1} &
|
||||
\frac{k_2}{m_1} &
|
||||
-\frac{b_2 + b_1}{m_1} &
|
||||
\frac{b_2}{m_1} \\
|
||||
% 4th row
|
||||
\frac{k_2}{m_12} &
|
||||
- \frac{k_2}{m_2} &
|
||||
\frac{b_2}{m_2} &
|
||||
- \frac{b_2}{m_2} \\
|
||||
\end{bmatrix}
|
||||
|
||||
B = \begin{bmatrix}
|
||||
0 \\
|
||||
0 \\ 0 \\ 1
|
||||
\end{bmatrix}
|
||||
|
||||
C = \begin{bmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0
|
||||
\end{bmatrix}
|
||||
|
||||
D = \begin{bmatrix}
|
||||
0
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
|
||||
## Suspended Mass
|
||||
|
||||
|
||||
> [!NOTE]
|
||||
> For those of you the followed CNS course, refer to professor
|
||||
> PDF for this excercise, as it has some unclear initial conditions
|
||||
>
|
||||
> However, in the formulas section, I'll take straight up his own
|
||||
|
||||

|
||||
|
||||
### Formulas
|
||||
|
||||
- Resulting forces for mass:\
|
||||
$
|
||||
m \ddot{p} = -k(p - r) -b(\dot{p} - \dot{r})
|
||||
$
|
||||
|
||||
### Reasoning
|
||||
|
||||
|
||||
$$
|
||||
x = \begin{bmatrix}
|
||||
x_1 = p \\
|
||||
x_2 = \dot{x}_1
|
||||
\end{bmatrix}
|
||||
|
||||
\dot{x} = \begin{bmatrix}
|
||||
\dot{x}_1 = x_2 \\
|
||||
\dot{x}_2 = \frac{1}{m} \left[-k(x_1 - r) -b(x_2 - \dot{r}) \right]
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
<!-- TODO: Correct here looking from book -->
|
||||
> [!WARNING]
|
||||
> Info here are wrong
|
||||
|
||||
Let's write our $S(A, B, C, D)$:
|
||||
$$
|
||||
A = \begin{bmatrix}
|
||||
0 & 1\\
|
||||
-\frac{k}{m} & - \frac{b}{m}
|
||||
\end{bmatrix}
|
||||
|
||||
B = \begin{bmatrix}
|
||||
0 \\
|
||||
\frac{k + sb}{m}
|
||||
\end{bmatrix}
|
||||
|
||||
C = \begin{bmatrix}
|
||||
1 & 0
|
||||
\end{bmatrix}
|
||||
|
||||
D = \begin{bmatrix}
|
||||
0 & 0
|
||||
\end{bmatrix}
|
||||
$$
|
||||
Reference in New Issue
Block a user