V0.8.9.9
This commit is contained in:
@@ -101,4 +101,89 @@ $$
|
||||
$$
|
||||
|
||||
and so, you just need to substitute these matrices to the equation of the
|
||||
$G_p(s)$ and you get you controller
|
||||
$G_p(s)$ and you get you controller
|
||||
|
||||
## Inserting the reeference
|
||||
Until now we've worked without taking the reference into consideration, so
|
||||
let's add it like we normally do:
|
||||
|
||||

|
||||
|
||||
Here we can compute the error and our $G(s)$ we have in our system:
|
||||
$$
|
||||
e = r(t) - y(t) \\
|
||||
G(s) = \frac{G_c(s)G_p(s)}{1 + G_c(s)G_p(s)}
|
||||
$$
|
||||
|
||||
|
||||
Another way to deal with the reference is to put it between our blocks:
|
||||

|
||||
|
||||
|
||||
$$
|
||||
e = r(t) - \mathcal{L}^{-1}\left\{Y(s)G_c(s)\right\} \\
|
||||
G(s) = \frac{G_p(s)}{1 + G_c(s)G_p(s)}
|
||||
$$
|
||||
|
||||
Now, let's see the difference in both $G_1(s)$ and $G_2(s)$:
|
||||
$$
|
||||
\begin{align*}
|
||||
G_1(s) &= \frac{G_c(s)G_p(s)}{1 + G_c(s)G_p(s)}
|
||||
|
||||
|
||||
\\
|
||||
|
||||
|
||||
&= \frac{
|
||||
\frac{N_c}{D_c}\frac{N_p}{D_p}
|
||||
}{
|
||||
1 + \frac{N_c}{D_c} \frac{N_p}{D_p}
|
||||
} \\
|
||||
|
||||
|
||||
&= \frac{
|
||||
\frac{N_c N_p}{D_c D_p}
|
||||
}{
|
||||
\frac{D_cD_p +N_cN_p}{D_cD_p}
|
||||
} \\
|
||||
|
||||
|
||||
&= \frac{
|
||||
N_c N_p
|
||||
}{
|
||||
D_cD_p +N_cN_p
|
||||
} \\
|
||||
|
||||
\end{align*}
|
||||
\;\;\;\;
|
||||
\begin{align*}
|
||||
G_2(s) &= \frac{G_p(s)}{1 + G_c(s)G_p(s)}
|
||||
|
||||
|
||||
\\
|
||||
|
||||
|
||||
&= \frac{
|
||||
\frac{N_p}{D_p}
|
||||
}{
|
||||
1 + \frac{N_c}{D_c} \frac{N_p}{D_p}
|
||||
} \\
|
||||
|
||||
|
||||
&= \frac{
|
||||
\frac{N_p}{D_p}
|
||||
}{
|
||||
\frac{D_cD_p +N_cN_p}{D_cD_p}
|
||||
} \\
|
||||
|
||||
|
||||
&= \frac{
|
||||
N_c D_c
|
||||
}{
|
||||
D_cD_p +N_cN_p
|
||||
} \\
|
||||
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
While both have the same `poles`, they differ in their `zeroes`
|
||||
|
||||
Reference in New Issue
Block a user